MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglinethru Structured version   Visualization version   GIF version

Theorem tglinethru 28563
Description: If 𝐴 is a line containing two distinct points 𝑃 and 𝑄, then 𝐴 is the line through 𝑃 and 𝑄. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
tglinethru.0 (𝜑𝑃𝑄)
tglinethru.1 (𝜑𝐴 ∈ ran 𝐿)
tglinethru.2 (𝜑𝑃𝐴)
tglinethru.3 (𝜑𝑄𝐴)
Assertion
Ref Expression
tglinethru (𝜑𝐴 = (𝑃𝐿𝑄))

Proof of Theorem tglinethru
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . . 5 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . . . . 5 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . . . . 5 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad4antr 732 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝐺 ∈ TarskiG)
6 simp-4r 783 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑥𝐵)
7 simpllr 775 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑦𝐵)
8 simplrr 777 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑥𝑦)
9 tglineelsb2.2 . . . . . 6 (𝜑𝑄𝐵)
109ad4antr 732 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄𝐵)
11 tglinethru.0 . . . . . . . 8 (𝜑𝑃𝑄)
1211ad4antr 732 . . . . . . 7 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑃𝑄)
1312necomd 2980 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄𝑃)
14 simpr 484 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑃 = 𝑥)
1513, 14neeqtrd 2994 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄𝑥)
16 tglinethru.3 . . . . . . 7 (𝜑𝑄𝐴)
1716ad4antr 732 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄𝐴)
18 simplrl 776 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝐴 = (𝑥𝐿𝑦))
1917, 18eleqtrd 2830 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄 ∈ (𝑥𝐿𝑦))
201, 2, 3, 5, 6, 7, 8, 10, 15, 19tglineelsb2 28559 . . . 4 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → (𝑥𝐿𝑦) = (𝑥𝐿𝑄))
2114oveq1d 7402 . . . 4 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → (𝑃𝐿𝑄) = (𝑥𝐿𝑄))
2220, 18, 213eqtr4d 2774 . . 3 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝐴 = (𝑃𝐿𝑄))
23 simplrl 776 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝐴 = (𝑥𝐿𝑦))
244ad4antr 732 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝐺 ∈ TarskiG)
25 simp-4r 783 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑥𝐵)
26 simpllr 775 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑦𝐵)
27 simplrr 777 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑥𝑦)
28 tglineelsb2.1 . . . . . . 7 (𝜑𝑃𝐵)
2928ad4antr 732 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃𝐵)
30 simpr 484 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃𝑥)
31 tglinethru.2 . . . . . . . 8 (𝜑𝑃𝐴)
3231ad4antr 732 . . . . . . 7 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃𝐴)
3332, 23eleqtrd 2830 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃 ∈ (𝑥𝐿𝑦))
341, 2, 3, 24, 25, 26, 27, 29, 30, 33tglineelsb2 28559 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → (𝑥𝐿𝑦) = (𝑥𝐿𝑃))
3530necomd 2980 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑥𝑃)
361, 2, 3, 24, 25, 29, 35tglinecom 28562 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → (𝑥𝐿𝑃) = (𝑃𝐿𝑥))
3723, 34, 363eqtrd 2768 . . . 4 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝐴 = (𝑃𝐿𝑥))
389ad4antr 732 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑄𝐵)
3911ad4antr 732 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃𝑄)
4039necomd 2980 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑄𝑃)
4116ad4antr 732 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑄𝐴)
4241, 37eleqtrd 2830 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑄 ∈ (𝑃𝐿𝑥))
431, 2, 3, 24, 29, 25, 30, 38, 40, 42tglineelsb2 28559 . . . 4 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → (𝑃𝐿𝑥) = (𝑃𝐿𝑄))
4437, 43eqtrd 2764 . . 3 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝐴 = (𝑃𝐿𝑄))
4522, 44pm2.61dane 3012 . 2 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐴 = (𝑃𝐿𝑄))
46 tglinethru.1 . . 3 (𝜑𝐴 ∈ ran 𝐿)
471, 2, 3, 4, 46tgisline 28554 . 2 (𝜑 → ∃𝑥𝐵𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
4845, 47r19.29vva 3197 1 (𝜑𝐴 = (𝑃𝐿𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  ran crn 5639  cfv 6511  (class class class)co 7387  Basecbs 17179  TarskiGcstrkg 28354  Itvcitv 28360  LineGclng 28361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-s2 14814  df-s3 14815  df-trkgc 28375  df-trkgb 28376  df-trkgcb 28377  df-trkg 28380  df-cgrg 28438
This theorem is referenced by:  tghilberti2  28565  tglineintmo  28569  colline  28576  tglowdim2ln  28578  mirln  28603  mirln2  28604  perpneq  28641  ragperp  28644  footexALT  28645  footexlem1  28646  perpdragALT  28654  perpdrag  28655  colperp  28656  opphllem1  28674  opphllem2  28675  opphllem3  28676  opphllem4  28677  opphllem5  28678  opphllem6  28679  oppperpex  28680  opphl  28681  hpgerlem  28692  colhp  28697  lmiisolem  28723  acopy  28760  acopyeu  28761
  Copyright terms: Public domain W3C validator