MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglinethru Structured version   Visualization version   GIF version

Theorem tglinethru 25948
Description: If 𝐴 is a line containing two distinct points 𝑃 and 𝑄, then 𝐴 is the line through 𝑃 and 𝑄. Theorem 6.18 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
tglinethru.0 (𝜑𝑃𝑄)
tglinethru.1 (𝜑𝐴 ∈ ran 𝐿)
tglinethru.2 (𝜑𝑃𝐴)
tglinethru.3 (𝜑𝑄𝐴)
Assertion
Ref Expression
tglinethru (𝜑𝐴 = (𝑃𝐿𝑄))

Proof of Theorem tglinethru
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . . 5 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . . . . 5 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . . . . 5 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad4antr 724 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝐺 ∈ TarskiG)
6 simp-4r 803 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑥𝐵)
7 simpllr 793 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑦𝐵)
8 simplrr 796 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑥𝑦)
9 tglineelsb2.2 . . . . . 6 (𝜑𝑄𝐵)
109ad4antr 724 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄𝐵)
11 tglinethru.0 . . . . . . . 8 (𝜑𝑃𝑄)
1211ad4antr 724 . . . . . . 7 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑃𝑄)
1312necomd 3054 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄𝑃)
14 simpr 479 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑃 = 𝑥)
1513, 14neeqtrd 3068 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄𝑥)
16 tglinethru.3 . . . . . . 7 (𝜑𝑄𝐴)
1716ad4antr 724 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄𝐴)
18 simplrl 795 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝐴 = (𝑥𝐿𝑦))
1917, 18eleqtrd 2908 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝑄 ∈ (𝑥𝐿𝑦))
201, 2, 3, 5, 6, 7, 8, 10, 15, 19tglineelsb2 25944 . . . 4 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → (𝑥𝐿𝑦) = (𝑥𝐿𝑄))
2114oveq1d 6920 . . . 4 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → (𝑃𝐿𝑄) = (𝑥𝐿𝑄))
2220, 18, 213eqtr4d 2871 . . 3 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃 = 𝑥) → 𝐴 = (𝑃𝐿𝑄))
23 simplrl 795 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝐴 = (𝑥𝐿𝑦))
244ad4antr 724 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝐺 ∈ TarskiG)
25 simp-4r 803 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑥𝐵)
26 simpllr 793 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑦𝐵)
27 simplrr 796 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑥𝑦)
28 tglineelsb2.1 . . . . . . 7 (𝜑𝑃𝐵)
2928ad4antr 724 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃𝐵)
30 simpr 479 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃𝑥)
31 tglinethru.2 . . . . . . . 8 (𝜑𝑃𝐴)
3231ad4antr 724 . . . . . . 7 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃𝐴)
3332, 23eleqtrd 2908 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃 ∈ (𝑥𝐿𝑦))
341, 2, 3, 24, 25, 26, 27, 29, 30, 33tglineelsb2 25944 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → (𝑥𝐿𝑦) = (𝑥𝐿𝑃))
3530necomd 3054 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑥𝑃)
361, 2, 3, 24, 25, 29, 35tglinecom 25947 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → (𝑥𝐿𝑃) = (𝑃𝐿𝑥))
3723, 34, 363eqtrd 2865 . . . 4 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝐴 = (𝑃𝐿𝑥))
389ad4antr 724 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑄𝐵)
3911ad4antr 724 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑃𝑄)
4039necomd 3054 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑄𝑃)
4116ad4antr 724 . . . . . 6 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑄𝐴)
4241, 37eleqtrd 2908 . . . . 5 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝑄 ∈ (𝑃𝐿𝑥))
431, 2, 3, 24, 29, 25, 30, 38, 40, 42tglineelsb2 25944 . . . 4 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → (𝑃𝐿𝑥) = (𝑃𝐿𝑄))
4437, 43eqtrd 2861 . . 3 (((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) ∧ 𝑃𝑥) → 𝐴 = (𝑃𝐿𝑄))
4522, 44pm2.61dane 3086 . 2 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐴 = (𝑃𝐿𝑄))
46 tglinethru.1 . . 3 (𝜑𝐴 ∈ ran 𝐿)
471, 2, 3, 4, 46tgisline 25939 . 2 (𝜑 → ∃𝑥𝐵𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
4845, 47r19.29vva 3291 1 (𝜑𝐴 = (𝑃𝐿𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wne 2999  ran crn 5343  cfv 6123  (class class class)co 6905  Basecbs 16222  TarskiGcstrkg 25742  Itvcitv 25748  LineGclng 25749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-xnn0 11691  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-concat 13631  df-s1 13656  df-s2 13969  df-s3 13970  df-trkgc 25760  df-trkgb 25761  df-trkgcb 25762  df-trkg 25765  df-cgrg 25823
This theorem is referenced by:  tghilberti2  25950  tglineintmo  25954  colline  25961  tglowdim2ln  25963  mirln  25988  mirln2  25989  perpneq  26026  ragperp  26029  footex  26030  perpdragALT  26036  perpdrag  26037  colperp  26038  opphllem1  26056  opphllem2  26057  opphllem3  26058  opphllem4  26059  opphllem5  26060  opphllem6  26061  oppperpex  26062  opphl  26063  hpgerlem  26074  colhp  26079  lmiisolem  26105  acopy  26142  acopyeu  26143
  Copyright terms: Public domain W3C validator