| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8ab | Structured version Visualization version GIF version | ||
| Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.) |
| Ref | Expression |
|---|---|
| mapdh8a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdh8a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdh8a.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdh8a.s | ⊢ − = (-g‘𝑈) |
| mapdh8a.o | ⊢ 0 = (0g‘𝑈) |
| mapdh8a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdh8a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdh8a.d | ⊢ 𝐷 = (Base‘𝐶) |
| mapdh8a.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdh8a.q | ⊢ 𝑄 = (0g‘𝐶) |
| mapdh8a.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdh8a.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdh8a.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| mapdh8a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdh8ab.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| mapdh8ab.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| mapdh8ab.eg | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
| mapdh8ab.ee | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) |
| mapdh8ab.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdh8ab.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdh8ab.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| mapdh8ab.t | ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
| mapdh8ab.yz | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
| mapdh8ab.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| mapdh8ab.yn | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇})) |
| Ref | Expression |
|---|---|
| mapdh8ab | ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑍, 𝐸, 𝑇〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh8a.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdh8a.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | mapdh8a.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | mapdh8a.s | . 2 ⊢ − = (-g‘𝑈) | |
| 5 | mapdh8a.o | . 2 ⊢ 0 = (0g‘𝑈) | |
| 6 | mapdh8a.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 7 | mapdh8a.c | . 2 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 8 | mapdh8a.d | . 2 ⊢ 𝐷 = (Base‘𝐶) | |
| 9 | mapdh8a.r | . 2 ⊢ 𝑅 = (-g‘𝐶) | |
| 10 | mapdh8a.q | . 2 ⊢ 𝑄 = (0g‘𝐶) | |
| 11 | mapdh8a.j | . 2 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 12 | mapdh8a.m | . 2 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 13 | mapdh8a.i | . 2 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 14 | mapdh8a.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | mapdh8ab.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 16 | mapdh8ab.mn | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
| 17 | mapdh8ab.eg | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) | |
| 18 | mapdh8ab.ee | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) | |
| 19 | mapdh8ab.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 20 | mapdh8ab.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 21 | mapdh8ab.z | . 2 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
| 22 | 1, 2, 14 | dvhlvec 41228 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 23 | 19 | eldifad 3910 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 24 | 20 | eldifad 3910 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 25 | 21 | eldifad 3910 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| 26 | mapdh8ab.xn | . . . . . 6 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
| 27 | 3, 6, 22, 23, 24, 25, 26 | lspindpi 21071 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
| 28 | 27 | simprd 495 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
| 29 | 28 | necomd 2984 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑋})) |
| 30 | mapdh8ab.yn | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇})) | |
| 31 | 29, 30 | neeqtrd 2998 | . 2 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) |
| 32 | mapdh8ab.t | . 2 ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) | |
| 33 | 30 | sseq1d 3962 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
| 34 | eqid 2733 | . . . . . 6 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 35 | 1, 2, 14 | dvhlmod 41229 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 36 | 3, 34, 6, 35, 24, 25 | lspprcl 20913 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑈)) |
| 37 | 3, 34, 6, 35, 36, 23 | ellspsn5b 20930 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
| 38 | 32 | eldifad 3910 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
| 39 | 3, 34, 6, 35, 36, 38 | ellspsn5b 20930 | . . . . 5 ⊢ (𝜑 → (𝑇 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
| 40 | 33, 37, 39 | 3bitr4d 311 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ 𝑇 ∈ (𝑁‘{𝑌, 𝑍}))) |
| 41 | 26, 40 | mtbid 324 | . . 3 ⊢ (𝜑 → ¬ 𝑇 ∈ (𝑁‘{𝑌, 𝑍})) |
| 42 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑈 ∈ LVec) |
| 43 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 44 | 38 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑇 ∈ 𝑉) |
| 45 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑍 ∈ 𝑉) |
| 46 | mapdh8ab.yz | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) | |
| 47 | 46 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
| 48 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) | |
| 49 | prcom 4684 | . . . . . 6 ⊢ {𝑍, 𝑇} = {𝑇, 𝑍} | |
| 50 | 49 | fveq2i 6831 | . . . . 5 ⊢ (𝑁‘{𝑍, 𝑇}) = (𝑁‘{𝑇, 𝑍}) |
| 51 | 48, 50 | eleqtrdi 2843 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑇, 𝑍})) |
| 52 | 3, 5, 6, 42, 43, 44, 45, 47, 51 | lspexch 21068 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑇 ∈ (𝑁‘{𝑌, 𝑍})) |
| 53 | 41, 52 | mtand 815 | . 2 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) |
| 54 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 31, 32, 53, 26 | mapdh8aa 41895 | 1 ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑍, 𝐸, 𝑇〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 ifcif 4474 {csn 4575 {cpr 4577 〈cotp 4583 ↦ cmpt 5174 ‘cfv 6486 ℩crio 7308 (class class class)co 7352 1st c1st 7925 2nd c2nd 7926 Basecbs 17122 0gc0g 17345 -gcsg 18850 LSubSpclss 20866 LSpanclspn 20906 LVecclvec 21038 HLchlt 39469 LHypclh 40103 DVecHcdvh 41197 LCDualclcd 41705 mapdcmpd 41743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-riotaBAD 39072 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-undef 8209 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-0g 17347 df-mre 17490 df-mrc 17491 df-acs 17493 df-proset 18202 df-poset 18221 df-plt 18236 df-lub 18252 df-glb 18253 df-join 18254 df-meet 18255 df-p0 18331 df-p1 18332 df-lat 18340 df-clat 18407 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cntz 19231 df-oppg 19260 df-lsm 19550 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-nzr 20430 df-rlreg 20611 df-domn 20612 df-drng 20648 df-lmod 20797 df-lss 20867 df-lsp 20907 df-lvec 21039 df-lsatoms 39095 df-lshyp 39096 df-lcv 39138 df-lfl 39177 df-lkr 39205 df-ldual 39243 df-oposet 39295 df-ol 39297 df-oml 39298 df-covers 39385 df-ats 39386 df-atl 39417 df-cvlat 39441 df-hlat 39470 df-llines 39617 df-lplanes 39618 df-lvols 39619 df-lines 39620 df-psubsp 39622 df-pmap 39623 df-padd 39915 df-lhyp 40107 df-laut 40108 df-ldil 40223 df-ltrn 40224 df-trl 40278 df-tgrp 40862 df-tendo 40874 df-edring 40876 df-dveca 41122 df-disoa 41148 df-dvech 41198 df-dib 41258 df-dic 41292 df-dih 41348 df-doch 41467 df-djh 41514 df-lcdual 41706 df-mapd 41744 |
| This theorem is referenced by: mapdh8ac 41897 |
| Copyright terms: Public domain | W3C validator |