Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8ab Structured version   Visualization version   GIF version

Theorem mapdh8ab 41896
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8ab.f (𝜑𝐹𝐷)
mapdh8ab.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh8ab.eg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh8ab.ee (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
mapdh8ab.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh8ab.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh8ab.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh8ab.t (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
mapdh8ab.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
mapdh8ab.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh8ab.yn (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇}))
Assertion
Ref Expression
mapdh8ab (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐺,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   ,𝐸,𝑥   ,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐼(𝑥)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdh8ab
StepHypRef Expression
1 mapdh8a.h . 2 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . 2 𝑉 = (Base‘𝑈)
4 mapdh8a.s . 2 = (-g𝑈)
5 mapdh8a.o . 2 0 = (0g𝑈)
6 mapdh8a.n . 2 𝑁 = (LSpan‘𝑈)
7 mapdh8a.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh8a.d . 2 𝐷 = (Base‘𝐶)
9 mapdh8a.r . 2 𝑅 = (-g𝐶)
10 mapdh8a.q . 2 𝑄 = (0g𝐶)
11 mapdh8a.j . 2 𝐽 = (LSpan‘𝐶)
12 mapdh8a.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh8a.i . 2 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh8a.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdh8ab.f . 2 (𝜑𝐹𝐷)
16 mapdh8ab.mn . 2 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 mapdh8ab.eg . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
18 mapdh8ab.ee . 2 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
19 mapdh8ab.x . 2 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
20 mapdh8ab.y . 2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
21 mapdh8ab.z . 2 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
221, 2, 14dvhlvec 41228 . . . . . 6 (𝜑𝑈 ∈ LVec)
2319eldifad 3910 . . . . . 6 (𝜑𝑋𝑉)
2420eldifad 3910 . . . . . 6 (𝜑𝑌𝑉)
2521eldifad 3910 . . . . . 6 (𝜑𝑍𝑉)
26 mapdh8ab.xn . . . . . 6 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
273, 6, 22, 23, 24, 25, 26lspindpi 21071 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
2827simprd 495 . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
2928necomd 2984 . . 3 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑋}))
30 mapdh8ab.yn . . 3 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇}))
3129, 30neeqtrd 2998 . 2 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇}))
32 mapdh8ab.t . 2 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
3330sseq1d 3962 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑍})))
34 eqid 2733 . . . . . 6 (LSubSp‘𝑈) = (LSubSp‘𝑈)
351, 2, 14dvhlmod 41229 . . . . . 6 (𝜑𝑈 ∈ LMod)
363, 34, 6, 35, 24, 25lspprcl 20913 . . . . . 6 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑈))
373, 34, 6, 35, 36, 23ellspsn5b 20930 . . . . 5 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})))
3832eldifad 3910 . . . . . 6 (𝜑𝑇𝑉)
393, 34, 6, 35, 36, 38ellspsn5b 20930 . . . . 5 (𝜑 → (𝑇 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑍})))
4033, 37, 393bitr4d 311 . . . 4 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ 𝑇 ∈ (𝑁‘{𝑌, 𝑍})))
4126, 40mtbid 324 . . 3 (𝜑 → ¬ 𝑇 ∈ (𝑁‘{𝑌, 𝑍}))
4222adantr 480 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑈 ∈ LVec)
4320adantr 480 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
4438adantr 480 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑇𝑉)
4525adantr 480 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑍𝑉)
46 mapdh8ab.yz . . . . 5 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4746adantr 480 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
48 simpr 484 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑍, 𝑇}))
49 prcom 4684 . . . . . 6 {𝑍, 𝑇} = {𝑇, 𝑍}
5049fveq2i 6831 . . . . 5 (𝑁‘{𝑍, 𝑇}) = (𝑁‘{𝑇, 𝑍})
5148, 50eleqtrdi 2843 . . . 4 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑇, 𝑍}))
523, 5, 6, 42, 43, 44, 45, 47, 51lspexch 21068 . . 3 ((𝜑𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑇 ∈ (𝑁‘{𝑌, 𝑍}))
5341, 52mtand 815 . 2 (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇}))
541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 31, 32, 53, 26mapdh8aa 41895 1 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑍, 𝐸, 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  cdif 3895  wss 3898  ifcif 4474  {csn 4575  {cpr 4577  cotp 4583  cmpt 5174  cfv 6486  crio 7308  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  Basecbs 17122  0gc0g 17345  -gcsg 18850  LSubSpclss 20866  LSpanclspn 20906  LVecclvec 21038  HLchlt 39469  LHypclh 40103  DVecHcdvh 41197  LCDualclcd 41705  mapdcmpd 41743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-riotaBAD 39072
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-undef 8209  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-0g 17347  df-mre 17490  df-mrc 17491  df-acs 17493  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-p1 18332  df-lat 18340  df-clat 18407  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cntz 19231  df-oppg 19260  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-nzr 20430  df-rlreg 20611  df-domn 20612  df-drng 20648  df-lmod 20797  df-lss 20867  df-lsp 20907  df-lvec 21039  df-lsatoms 39095  df-lshyp 39096  df-lcv 39138  df-lfl 39177  df-lkr 39205  df-ldual 39243  df-oposet 39295  df-ol 39297  df-oml 39298  df-covers 39385  df-ats 39386  df-atl 39417  df-cvlat 39441  df-hlat 39470  df-llines 39617  df-lplanes 39618  df-lvols 39619  df-lines 39620  df-psubsp 39622  df-pmap 39623  df-padd 39915  df-lhyp 40107  df-laut 40108  df-ldil 40223  df-ltrn 40224  df-trl 40278  df-tgrp 40862  df-tendo 40874  df-edring 40876  df-dveca 41122  df-disoa 41148  df-dvech 41198  df-dib 41258  df-dic 41292  df-dih 41348  df-doch 41467  df-djh 41514  df-lcdual 41706  df-mapd 41744
This theorem is referenced by:  mapdh8ac  41897
  Copyright terms: Public domain W3C validator