| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8ab | Structured version Visualization version GIF version | ||
| Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.) |
| Ref | Expression |
|---|---|
| mapdh8a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdh8a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdh8a.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdh8a.s | ⊢ − = (-g‘𝑈) |
| mapdh8a.o | ⊢ 0 = (0g‘𝑈) |
| mapdh8a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdh8a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdh8a.d | ⊢ 𝐷 = (Base‘𝐶) |
| mapdh8a.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdh8a.q | ⊢ 𝑄 = (0g‘𝐶) |
| mapdh8a.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdh8a.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdh8a.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| mapdh8a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdh8ab.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| mapdh8ab.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| mapdh8ab.eg | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
| mapdh8ab.ee | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) |
| mapdh8ab.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdh8ab.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdh8ab.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| mapdh8ab.t | ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
| mapdh8ab.yz | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
| mapdh8ab.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| mapdh8ab.yn | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇})) |
| Ref | Expression |
|---|---|
| mapdh8ab | ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑍, 𝐸, 𝑇〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh8a.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdh8a.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | mapdh8a.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | mapdh8a.s | . 2 ⊢ − = (-g‘𝑈) | |
| 5 | mapdh8a.o | . 2 ⊢ 0 = (0g‘𝑈) | |
| 6 | mapdh8a.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 7 | mapdh8a.c | . 2 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 8 | mapdh8a.d | . 2 ⊢ 𝐷 = (Base‘𝐶) | |
| 9 | mapdh8a.r | . 2 ⊢ 𝑅 = (-g‘𝐶) | |
| 10 | mapdh8a.q | . 2 ⊢ 𝑄 = (0g‘𝐶) | |
| 11 | mapdh8a.j | . 2 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 12 | mapdh8a.m | . 2 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 13 | mapdh8a.i | . 2 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 14 | mapdh8a.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | mapdh8ab.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 16 | mapdh8ab.mn | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
| 17 | mapdh8ab.eg | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) | |
| 18 | mapdh8ab.ee | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) | |
| 19 | mapdh8ab.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 20 | mapdh8ab.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 21 | mapdh8ab.z | . 2 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
| 22 | 1, 2, 14 | dvhlvec 41147 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 23 | 19 | eldifad 3914 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 24 | 20 | eldifad 3914 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 25 | 21 | eldifad 3914 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| 26 | mapdh8ab.xn | . . . . . 6 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
| 27 | 3, 6, 22, 23, 24, 25, 26 | lspindpi 21067 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
| 28 | 27 | simprd 495 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
| 29 | 28 | necomd 2983 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑋})) |
| 30 | mapdh8ab.yn | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑇})) | |
| 31 | 29, 30 | neeqtrd 2997 | . 2 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑇})) |
| 32 | mapdh8ab.t | . 2 ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) | |
| 33 | 30 | sseq1d 3966 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
| 34 | eqid 2731 | . . . . . 6 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 35 | 1, 2, 14 | dvhlmod 41148 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 36 | 3, 34, 6, 35, 24, 25 | lspprcl 20909 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑈)) |
| 37 | 3, 34, 6, 35, 36, 23 | ellspsn5b 20926 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
| 38 | 32 | eldifad 3914 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
| 39 | 3, 34, 6, 35, 36, 38 | ellspsn5b 20926 | . . . . 5 ⊢ (𝜑 → (𝑇 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
| 40 | 33, 37, 39 | 3bitr4d 311 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ 𝑇 ∈ (𝑁‘{𝑌, 𝑍}))) |
| 41 | 26, 40 | mtbid 324 | . . 3 ⊢ (𝜑 → ¬ 𝑇 ∈ (𝑁‘{𝑌, 𝑍})) |
| 42 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑈 ∈ LVec) |
| 43 | 20 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 44 | 38 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑇 ∈ 𝑉) |
| 45 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑍 ∈ 𝑉) |
| 46 | mapdh8ab.yz | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) | |
| 47 | 46 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
| 48 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) | |
| 49 | prcom 4685 | . . . . . 6 ⊢ {𝑍, 𝑇} = {𝑇, 𝑍} | |
| 50 | 49 | fveq2i 6825 | . . . . 5 ⊢ (𝑁‘{𝑍, 𝑇}) = (𝑁‘{𝑇, 𝑍}) |
| 51 | 48, 50 | eleqtrdi 2841 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑌 ∈ (𝑁‘{𝑇, 𝑍})) |
| 52 | 3, 5, 6, 42, 43, 44, 45, 47, 51 | lspexch 21064 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) → 𝑇 ∈ (𝑁‘{𝑌, 𝑍})) |
| 53 | 41, 52 | mtand 815 | . 2 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑇})) |
| 54 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 31, 32, 53, 26 | mapdh8aa 41814 | 1 ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑍, 𝐸, 𝑇〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∖ cdif 3899 ⊆ wss 3902 ifcif 4475 {csn 4576 {cpr 4578 〈cotp 4584 ↦ cmpt 5172 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Basecbs 17117 0gc0g 17340 -gcsg 18845 LSubSpclss 20862 LSpanclspn 20902 LVecclvec 21034 HLchlt 39388 LHypclh 40022 DVecHcdvh 41116 LCDualclcd 41624 mapdcmpd 41662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-riotaBAD 38991 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-undef 8203 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-0g 17342 df-mre 17485 df-mrc 17486 df-acs 17488 df-proset 18197 df-poset 18216 df-plt 18231 df-lub 18247 df-glb 18248 df-join 18249 df-meet 18250 df-p0 18326 df-p1 18327 df-lat 18335 df-clat 18402 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-subg 19033 df-cntz 19227 df-oppg 19256 df-lsm 19546 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-nzr 20426 df-rlreg 20607 df-domn 20608 df-drng 20644 df-lmod 20793 df-lss 20863 df-lsp 20903 df-lvec 21035 df-lsatoms 39014 df-lshyp 39015 df-lcv 39057 df-lfl 39096 df-lkr 39124 df-ldual 39162 df-oposet 39214 df-ol 39216 df-oml 39217 df-covers 39304 df-ats 39305 df-atl 39336 df-cvlat 39360 df-hlat 39389 df-llines 39536 df-lplanes 39537 df-lvols 39538 df-lines 39539 df-psubsp 39541 df-pmap 39542 df-padd 39834 df-lhyp 40026 df-laut 40027 df-ldil 40142 df-ltrn 40143 df-trl 40197 df-tgrp 40781 df-tendo 40793 df-edring 40795 df-dveca 41041 df-disoa 41067 df-dvech 41117 df-dib 41177 df-dic 41211 df-dih 41267 df-doch 41386 df-djh 41433 df-lcdual 41625 df-mapd 41663 |
| This theorem is referenced by: mapdh8ac 41816 |
| Copyright terms: Public domain | W3C validator |