![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoinvcl | Structured version Visualization version GIF version |
Description: Closure of multiplicative inverse for endomorphism. We use the scalar inverse of the vector space since it is much simpler than the direct inverse of cdleml8 40933. (Contributed by NM, 10-Apr-2014.) (Revised by Mario Carneiro, 23-Jun-2014.) |
Ref | Expression |
---|---|
tendoinv.b | ⊢ 𝐵 = (Base‘𝐾) |
tendoinv.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendoinv.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendoinv.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
tendoinv.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
tendoinv.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
tendoinv.f | ⊢ 𝐹 = (Scalar‘𝑈) |
tendoinv.n | ⊢ 𝑁 = (invr‘𝐹) |
Ref | Expression |
---|---|
tendoinvcl | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → ((𝑁‘𝑆) ∈ 𝐸 ∧ (𝑁‘𝑆) ≠ 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoinv.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2740 | . . . . . . 7 ⊢ ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊) | |
3 | tendoinv.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | tendoinv.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑈) | |
5 | 1, 2, 3, 4 | dvhsca 41032 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐹 = ((EDRing‘𝐾)‘𝑊)) |
6 | 1, 2 | erngdv 40943 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing) |
7 | 5, 6 | eqeltrd 2844 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐹 ∈ DivRing) |
8 | 7 | 3ad2ant1 1133 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → 𝐹 ∈ DivRing) |
9 | simp2 1137 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → 𝑆 ∈ 𝐸) | |
10 | tendoinv.e | . . . . . . 7 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
11 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
12 | 1, 10, 3, 4, 11 | dvhbase 41033 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐹) = 𝐸) |
13 | 12 | 3ad2ant1 1133 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (Base‘𝐹) = 𝐸) |
14 | 9, 13 | eleqtrrd 2847 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → 𝑆 ∈ (Base‘𝐹)) |
15 | simp3 1138 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → 𝑆 ≠ 𝑂) | |
16 | 5 | fveq2d 6919 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘𝐹) = (0g‘((EDRing‘𝐾)‘𝑊))) |
17 | tendoinv.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐾) | |
18 | tendoinv.t | . . . . . . . 8 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
19 | tendoinv.o | . . . . . . . 8 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
20 | eqid 2740 | . . . . . . . 8 ⊢ (0g‘((EDRing‘𝐾)‘𝑊)) = (0g‘((EDRing‘𝐾)‘𝑊)) | |
21 | 17, 1, 18, 2, 19, 20 | erng0g 40944 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘((EDRing‘𝐾)‘𝑊)) = 𝑂) |
22 | 16, 21 | eqtrd 2780 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘𝐹) = 𝑂) |
23 | 22 | 3ad2ant1 1133 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (0g‘𝐹) = 𝑂) |
24 | 15, 23 | neeqtrrd 3021 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → 𝑆 ≠ (0g‘𝐹)) |
25 | eqid 2740 | . . . . 5 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
26 | tendoinv.n | . . . . 5 ⊢ 𝑁 = (invr‘𝐹) | |
27 | 11, 25, 26 | drnginvrcl 20769 | . . . 4 ⊢ ((𝐹 ∈ DivRing ∧ 𝑆 ∈ (Base‘𝐹) ∧ 𝑆 ≠ (0g‘𝐹)) → (𝑁‘𝑆) ∈ (Base‘𝐹)) |
28 | 8, 14, 24, 27 | syl3anc 1371 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (𝑁‘𝑆) ∈ (Base‘𝐹)) |
29 | 28, 13 | eleqtrd 2846 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (𝑁‘𝑆) ∈ 𝐸) |
30 | 11, 25, 26 | drnginvrn0 20770 | . . . 4 ⊢ ((𝐹 ∈ DivRing ∧ 𝑆 ∈ (Base‘𝐹) ∧ 𝑆 ≠ (0g‘𝐹)) → (𝑁‘𝑆) ≠ (0g‘𝐹)) |
31 | 8, 14, 24, 30 | syl3anc 1371 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (𝑁‘𝑆) ≠ (0g‘𝐹)) |
32 | 31, 23 | neeqtrd 3016 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (𝑁‘𝑆) ≠ 𝑂) |
33 | 29, 32 | jca 511 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → ((𝑁‘𝑆) ∈ 𝐸 ∧ (𝑁‘𝑆) ≠ 𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ↦ cmpt 5249 I cid 5592 ↾ cres 5697 ‘cfv 6568 Basecbs 17252 Scalarcsca 17308 0gc0g 17493 invrcinvr 20407 DivRingcdr 20745 HLchlt 39299 LHypclh 39934 LTrncltrn 40051 TEndoctendo 40702 EDRingcedring 40703 DVecHcdvh 41028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 ax-riotaBAD 38902 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-om 7898 df-1st 8024 df-2nd 8025 df-tpos 8261 df-undef 8308 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-1o 8516 df-er 8757 df-map 8880 df-en 8998 df-dom 8999 df-sdom 9000 df-fin 9001 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-nn 12288 df-2 12350 df-3 12351 df-4 12352 df-5 12353 df-6 12354 df-n0 12548 df-z 12634 df-uz 12898 df-fz 13562 df-struct 17188 df-sets 17205 df-slot 17223 df-ndx 17235 df-base 17253 df-ress 17282 df-plusg 17318 df-mulr 17319 df-sca 17321 df-vsca 17322 df-0g 17495 df-proset 18359 df-poset 18377 df-plt 18394 df-lub 18410 df-glb 18411 df-join 18412 df-meet 18413 df-p0 18489 df-p1 18490 df-lat 18496 df-clat 18563 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-grp 18970 df-minusg 18971 df-cmn 19818 df-abl 19819 df-mgp 20156 df-rng 20174 df-ur 20203 df-ring 20256 df-oppr 20354 df-dvdsr 20377 df-unit 20378 df-invr 20408 df-dvr 20421 df-drng 20747 df-oposet 39125 df-ol 39127 df-oml 39128 df-covers 39215 df-ats 39216 df-atl 39247 df-cvlat 39271 df-hlat 39300 df-llines 39448 df-lplanes 39449 df-lvols 39450 df-lines 39451 df-psubsp 39453 df-pmap 39454 df-padd 39746 df-lhyp 39938 df-laut 39939 df-ldil 40054 df-ltrn 40055 df-trl 40109 df-tendo 40705 df-edring 40707 df-dvech 41029 |
This theorem is referenced by: tendolinv 41055 tendorinv 41056 dih1dimatlem0 41278 dih1dimatlem 41279 |
Copyright terms: Public domain | W3C validator |