![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0ringmon1p | Structured version Visualization version GIF version |
Description: There are no monic polynomials over a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
Ref | Expression |
---|---|
0ringmon1p.1 | ⊢ 𝑀 = (Monic1p‘𝑅) |
0ringmon1p.2 | ⊢ 𝐵 = (Base‘𝑅) |
0ringmon1p.3 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
0ringmon1p.4 | ⊢ (𝜑 → (♯‘𝐵) = 1) |
Ref | Expression |
---|---|
0ringmon1p | ⊢ (𝜑 → 𝑀 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . . . . 7 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
2 | eqid 2724 | . . . . . . 7 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
3 | eqid 2724 | . . . . . . 7 ⊢ (0g‘(Poly1‘𝑅)) = (0g‘(Poly1‘𝑅)) | |
4 | eqid 2724 | . . . . . . 7 ⊢ ( deg1 ‘𝑅) = ( deg1 ‘𝑅) | |
5 | 0ringmon1p.1 | . . . . . . 7 ⊢ 𝑀 = (Monic1p‘𝑅) | |
6 | eqid 2724 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | ismon1p 26000 | . . . . . 6 ⊢ (𝑝 ∈ 𝑀 ↔ (𝑝 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝑝 ≠ (0g‘(Poly1‘𝑅)) ∧ ((coe1‘𝑝)‘(( deg1 ‘𝑅)‘𝑝)) = (1r‘𝑅))) |
8 | 7 | biimpi 215 | . . . . 5 ⊢ (𝑝 ∈ 𝑀 → (𝑝 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝑝 ≠ (0g‘(Poly1‘𝑅)) ∧ ((coe1‘𝑝)‘(( deg1 ‘𝑅)‘𝑝)) = (1r‘𝑅))) |
9 | 8 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → (𝑝 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝑝 ≠ (0g‘(Poly1‘𝑅)) ∧ ((coe1‘𝑝)‘(( deg1 ‘𝑅)‘𝑝)) = (1r‘𝑅))) |
10 | 9 | simp3d 1141 | . . 3 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → ((coe1‘𝑝)‘(( deg1 ‘𝑅)‘𝑝)) = (1r‘𝑅)) |
11 | 0ringmon1p.3 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → 𝑅 ∈ Ring) |
13 | 9 | simp1d 1139 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → 𝑝 ∈ (Base‘(Poly1‘𝑅))) |
14 | 9 | simp2d 1140 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → 𝑝 ≠ (0g‘(Poly1‘𝑅))) |
15 | eqid 2724 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
16 | eqid 2724 | . . . . . . 7 ⊢ (coe1‘𝑝) = (coe1‘𝑝) | |
17 | 4, 1, 3, 2, 15, 16 | deg1ldg 25950 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝑝 ≠ (0g‘(Poly1‘𝑅))) → ((coe1‘𝑝)‘(( deg1 ‘𝑅)‘𝑝)) ≠ (0g‘𝑅)) |
18 | 12, 13, 14, 17 | syl3anc 1368 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → ((coe1‘𝑝)‘(( deg1 ‘𝑅)‘𝑝)) ≠ (0g‘𝑅)) |
19 | 0ringmon1p.4 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) = 1) | |
20 | 0ringmon1p.2 | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
21 | 20, 15, 6 | 0ring01eq 20419 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (0g‘𝑅) = (1r‘𝑅)) |
22 | 11, 19, 21 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑅) = (1r‘𝑅)) |
23 | 22 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → (0g‘𝑅) = (1r‘𝑅)) |
24 | 18, 23 | neeqtrd 3002 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → ((coe1‘𝑝)‘(( deg1 ‘𝑅)‘𝑝)) ≠ (1r‘𝑅)) |
25 | 24 | neneqd 2937 | . . 3 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → ¬ ((coe1‘𝑝)‘(( deg1 ‘𝑅)‘𝑝)) = (1r‘𝑅)) |
26 | 10, 25 | pm2.65da 814 | . 2 ⊢ (𝜑 → ¬ 𝑝 ∈ 𝑀) |
27 | 26 | eq0rdv 4396 | 1 ⊢ (𝜑 → 𝑀 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∅c0 4314 ‘cfv 6533 1c1 11107 ♯chash 14287 Basecbs 17143 0gc0g 17384 1rcur 20076 Ringcrg 20128 Poly1cpl1 22019 coe1cco1 22020 deg1 cdg1 25909 Monic1pcmn1 25983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-fz 13482 df-fzo 13625 df-seq 13964 df-hash 14288 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17386 df-gsum 17387 df-prds 17392 df-pws 17394 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-submnd 18704 df-grp 18856 df-minusg 18857 df-mulg 18986 df-subg 19040 df-cntz 19223 df-cmn 19692 df-abl 19693 df-mgp 20030 df-ur 20077 df-ring 20130 df-cring 20131 df-cnfld 21229 df-psr 21771 df-mpl 21773 df-opsr 21775 df-psr1 22022 df-ply1 22024 df-coe1 22025 df-mdeg 25910 df-deg1 25911 df-mon1 25988 |
This theorem is referenced by: 0ringirng 33233 |
Copyright terms: Public domain | W3C validator |