|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0ringmon1p | Structured version Visualization version GIF version | ||
| Description: There are no monic polynomials over a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| 0ringmon1p.1 | ⊢ 𝑀 = (Monic1p‘𝑅) | 
| 0ringmon1p.2 | ⊢ 𝐵 = (Base‘𝑅) | 
| 0ringmon1p.3 | ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 0ringmon1p.4 | ⊢ (𝜑 → (♯‘𝐵) = 1) | 
| Ref | Expression | 
|---|---|
| 0ringmon1p | ⊢ (𝜑 → 𝑀 = ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . . . . . 7 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 2 | eqid 2736 | . . . . . . 7 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
| 3 | eqid 2736 | . . . . . . 7 ⊢ (0g‘(Poly1‘𝑅)) = (0g‘(Poly1‘𝑅)) | |
| 4 | eqid 2736 | . . . . . . 7 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
| 5 | 0ringmon1p.1 | . . . . . . 7 ⊢ 𝑀 = (Monic1p‘𝑅) | |
| 6 | eqid 2736 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | ismon1p 26183 | . . . . . 6 ⊢ (𝑝 ∈ 𝑀 ↔ (𝑝 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝑝 ≠ (0g‘(Poly1‘𝑅)) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) | 
| 8 | 7 | biimpi 216 | . . . . 5 ⊢ (𝑝 ∈ 𝑀 → (𝑝 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝑝 ≠ (0g‘(Poly1‘𝑅)) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) | 
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → (𝑝 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝑝 ≠ (0g‘(Poly1‘𝑅)) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) | 
| 10 | 9 | simp3d 1144 | . . 3 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅)) | 
| 11 | 0ringmon1p.3 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → 𝑅 ∈ Ring) | 
| 13 | 9 | simp1d 1142 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → 𝑝 ∈ (Base‘(Poly1‘𝑅))) | 
| 14 | 9 | simp2d 1143 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → 𝑝 ≠ (0g‘(Poly1‘𝑅))) | 
| 15 | eqid 2736 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 16 | eqid 2736 | . . . . . . 7 ⊢ (coe1‘𝑝) = (coe1‘𝑝) | |
| 17 | 4, 1, 3, 2, 15, 16 | deg1ldg 26132 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝑝 ≠ (0g‘(Poly1‘𝑅))) → ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) ≠ (0g‘𝑅)) | 
| 18 | 12, 13, 14, 17 | syl3anc 1372 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) ≠ (0g‘𝑅)) | 
| 19 | 0ringmon1p.4 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) = 1) | |
| 20 | 0ringmon1p.2 | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
| 21 | 20, 15, 6 | 0ring01eq 20530 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (0g‘𝑅) = (1r‘𝑅)) | 
| 22 | 11, 19, 21 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑅) = (1r‘𝑅)) | 
| 23 | 22 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → (0g‘𝑅) = (1r‘𝑅)) | 
| 24 | 18, 23 | neeqtrd 3009 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) ≠ (1r‘𝑅)) | 
| 25 | 24 | neneqd 2944 | . . 3 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → ¬ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅)) | 
| 26 | 10, 25 | pm2.65da 816 | . 2 ⊢ (𝜑 → ¬ 𝑝 ∈ 𝑀) | 
| 27 | 26 | eq0rdv 4406 | 1 ⊢ (𝜑 → 𝑀 = ∅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∅c0 4332 ‘cfv 6560 1c1 11157 ♯chash 14370 Basecbs 17248 0gc0g 17485 1rcur 20179 Ringcrg 20231 Poly1cpl1 22179 coe1cco1 22180 deg1cdg1 26094 Monic1pcmn1 26166 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-addf 11235 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-sup 9483 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-fzo 13696 df-seq 14044 df-hash 14371 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-grp 18955 df-minusg 18956 df-mulg 19087 df-subg 19142 df-cntz 19336 df-cmn 19801 df-abl 19802 df-mgp 20139 df-ur 20180 df-ring 20233 df-cring 20234 df-cnfld 21366 df-psr 21930 df-mpl 21932 df-opsr 21934 df-psr1 22182 df-ply1 22184 df-coe1 22185 df-mdeg 26095 df-deg1 26096 df-mon1 26171 | 
| This theorem is referenced by: 0ringirng 33740 | 
| Copyright terms: Public domain | W3C validator |