| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0ringmon1p | Structured version Visualization version GIF version | ||
| Description: There are no monic polynomials over a zero ring. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
| Ref | Expression |
|---|---|
| 0ringmon1p.1 | ⊢ 𝑀 = (Monic1p‘𝑅) |
| 0ringmon1p.2 | ⊢ 𝐵 = (Base‘𝑅) |
| 0ringmon1p.3 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 0ringmon1p.4 | ⊢ (𝜑 → (♯‘𝐵) = 1) |
| Ref | Expression |
|---|---|
| 0ringmon1p | ⊢ (𝜑 → 𝑀 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . . 7 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 2 | eqid 2729 | . . . . . . 7 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (0g‘(Poly1‘𝑅)) = (0g‘(Poly1‘𝑅)) | |
| 4 | eqid 2729 | . . . . . . 7 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
| 5 | 0ringmon1p.1 | . . . . . . 7 ⊢ 𝑀 = (Monic1p‘𝑅) | |
| 6 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | ismon1p 26024 | . . . . . 6 ⊢ (𝑝 ∈ 𝑀 ↔ (𝑝 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝑝 ≠ (0g‘(Poly1‘𝑅)) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) |
| 8 | 7 | biimpi 216 | . . . . 5 ⊢ (𝑝 ∈ 𝑀 → (𝑝 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝑝 ≠ (0g‘(Poly1‘𝑅)) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → (𝑝 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝑝 ≠ (0g‘(Poly1‘𝑅)) ∧ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅))) |
| 10 | 9 | simp3d 1144 | . . 3 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅)) |
| 11 | 0ringmon1p.3 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → 𝑅 ∈ Ring) |
| 13 | 9 | simp1d 1142 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → 𝑝 ∈ (Base‘(Poly1‘𝑅))) |
| 14 | 9 | simp2d 1143 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → 𝑝 ≠ (0g‘(Poly1‘𝑅))) |
| 15 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 16 | eqid 2729 | . . . . . . 7 ⊢ (coe1‘𝑝) = (coe1‘𝑝) | |
| 17 | 4, 1, 3, 2, 15, 16 | deg1ldg 25973 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑝 ∈ (Base‘(Poly1‘𝑅)) ∧ 𝑝 ≠ (0g‘(Poly1‘𝑅))) → ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) ≠ (0g‘𝑅)) |
| 18 | 12, 13, 14, 17 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) ≠ (0g‘𝑅)) |
| 19 | 0ringmon1p.4 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) = 1) | |
| 20 | 0ringmon1p.2 | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
| 21 | 20, 15, 6 | 0ring01eq 20414 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (0g‘𝑅) = (1r‘𝑅)) |
| 22 | 11, 19, 21 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑅) = (1r‘𝑅)) |
| 23 | 22 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → (0g‘𝑅) = (1r‘𝑅)) |
| 24 | 18, 23 | neeqtrd 2994 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) ≠ (1r‘𝑅)) |
| 25 | 24 | neneqd 2930 | . . 3 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝑀) → ¬ ((coe1‘𝑝)‘((deg1‘𝑅)‘𝑝)) = (1r‘𝑅)) |
| 26 | 10, 25 | pm2.65da 816 | . 2 ⊢ (𝜑 → ¬ 𝑝 ∈ 𝑀) |
| 27 | 26 | eq0rdv 4366 | 1 ⊢ (𝜑 → 𝑀 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 ‘cfv 6499 1c1 11045 ♯chash 14271 Basecbs 17155 0gc0g 17378 1rcur 20066 Ringcrg 20118 Poly1cpl1 22037 coe1cco1 22038 deg1cdg1 25935 Monic1pcmn1 26007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-mulg 18976 df-subg 19031 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-ur 20067 df-ring 20120 df-cring 20121 df-cnfld 21241 df-psr 21794 df-mpl 21796 df-opsr 21798 df-psr1 22040 df-ply1 22042 df-coe1 22043 df-mdeg 25936 df-deg1 25937 df-mon1 26012 |
| This theorem is referenced by: 0ringirng 33657 |
| Copyright terms: Public domain | W3C validator |