| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frsucmptn | Structured version Visualization version GIF version | ||
| Description: The value of the finite recursive definition generator at a successor (special case where the characteristic function is a mapping abstraction and where the mapping class 𝐷 is a proper class). This is a technical lemma that can be used together with frsucmpt 8383 to help eliminate redundant sethood antecedents. (Contributed by Scott Fenton, 19-Feb-2011.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| frsucmpt.1 | ⊢ Ⅎ𝑥𝐴 |
| frsucmpt.2 | ⊢ Ⅎ𝑥𝐵 |
| frsucmpt.3 | ⊢ Ⅎ𝑥𝐷 |
| frsucmpt.4 | ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
| frsucmpt.5 | ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| frsucmptn | ⊢ (¬ 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frsucmpt.4 | . . 3 ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) | |
| 2 | 1 | fveq1i 6841 | . 2 ⊢ (𝐹‘suc 𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) |
| 3 | frfnom 8380 | . . . . . 6 ⊢ (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) Fn ω | |
| 4 | fndm 6603 | . . . . . 6 ⊢ ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) Fn ω → dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) = ω) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) = ω |
| 6 | 5 | eleq2i 2820 | . . . 4 ⊢ (suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) ↔ suc 𝐵 ∈ ω) |
| 7 | peano2b 7839 | . . . . 5 ⊢ (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω) | |
| 8 | frsuc 8382 | . . . . . . . 8 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵))) | |
| 9 | 1 | fveq1i 6841 | . . . . . . . . 9 ⊢ (𝐹‘𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵) |
| 10 | 9 | fveq2i 6843 | . . . . . . . 8 ⊢ ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)) |
| 11 | 8, 10 | eqtr4di 2782 | . . . . . . 7 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵))) |
| 12 | nfmpt1 5201 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥(𝑥 ∈ V ↦ 𝐶) | |
| 13 | frsucmpt.1 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝐴 | |
| 14 | 12, 13 | nfrdg 8359 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
| 15 | nfcv 2891 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥ω | |
| 16 | 14, 15 | nfres 5941 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
| 17 | 1, 16 | nfcxfr 2889 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 |
| 18 | frsucmpt.2 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐵 | |
| 19 | 17, 18 | nffv 6850 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘𝐵) |
| 20 | frsucmpt.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐷 | |
| 21 | frsucmpt.5 | . . . . . . . 8 ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) | |
| 22 | eqid 2729 | . . . . . . . 8 ⊢ (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶) | |
| 23 | 19, 20, 21, 22 | fvmptnf 6972 | . . . . . . 7 ⊢ (¬ 𝐷 ∈ V → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ∅) |
| 24 | 11, 23 | sylan9eqr 2786 | . . . . . 6 ⊢ ((¬ 𝐷 ∈ V ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅) |
| 25 | 24 | ex 412 | . . . . 5 ⊢ (¬ 𝐷 ∈ V → (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)) |
| 26 | 7, 25 | biimtrrid 243 | . . . 4 ⊢ (¬ 𝐷 ∈ V → (suc 𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)) |
| 27 | 6, 26 | biimtrid 242 | . . 3 ⊢ (¬ 𝐷 ∈ V → (suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)) |
| 28 | ndmfv 6875 | . . 3 ⊢ (¬ suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅) | |
| 29 | 27, 28 | pm2.61d1 180 | . 2 ⊢ (¬ 𝐷 ∈ V → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅) |
| 30 | 2, 29 | eqtrid 2776 | 1 ⊢ (¬ 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 Vcvv 3444 ∅c0 4292 ↦ cmpt 5183 dom cdm 5631 ↾ cres 5633 suc csuc 6322 Fn wfn 6494 ‘cfv 6499 ωcom 7822 reccrdg 8354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |