MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsucmptn Structured version   Visualization version   GIF version

Theorem frsucmptn 8270
Description: The value of the finite recursive definition generator at a successor (special case where the characteristic function is a mapping abstraction and where the mapping class 𝐷 is a proper class). This is a technical lemma that can be used together with frsucmpt 8269 to help eliminate redundant sethood antecedents. (Contributed by Scott Fenton, 19-Feb-2011.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
frsucmpt.1 𝑥𝐴
frsucmpt.2 𝑥𝐵
frsucmpt.3 𝑥𝐷
frsucmpt.4 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
frsucmpt.5 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
frsucmptn 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅)

Proof of Theorem frsucmptn
StepHypRef Expression
1 frsucmpt.4 . . 3 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
21fveq1i 6775 . 2 (𝐹‘suc 𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵)
3 frfnom 8266 . . . . . 6 (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) Fn ω
4 fndm 6536 . . . . . 6 ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) Fn ω → dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) = ω)
53, 4ax-mp 5 . . . . 5 dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) = ω
65eleq2i 2830 . . . 4 (suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) ↔ suc 𝐵 ∈ ω)
7 peano2b 7729 . . . . 5 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
8 frsuc 8268 . . . . . . . 8 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)))
91fveq1i 6775 . . . . . . . . 9 (𝐹𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)
109fveq2i 6777 . . . . . . . 8 ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵))
118, 10eqtr4di 2796 . . . . . . 7 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)))
12 nfmpt1 5182 . . . . . . . . . . . 12 𝑥(𝑥 ∈ V ↦ 𝐶)
13 frsucmpt.1 . . . . . . . . . . . 12 𝑥𝐴
1412, 13nfrdg 8245 . . . . . . . . . . 11 𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
15 nfcv 2907 . . . . . . . . . . 11 𝑥ω
1614, 15nfres 5893 . . . . . . . . . 10 𝑥(rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
171, 16nfcxfr 2905 . . . . . . . . 9 𝑥𝐹
18 frsucmpt.2 . . . . . . . . 9 𝑥𝐵
1917, 18nffv 6784 . . . . . . . 8 𝑥(𝐹𝐵)
20 frsucmpt.3 . . . . . . . 8 𝑥𝐷
21 frsucmpt.5 . . . . . . . 8 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
22 eqid 2738 . . . . . . . 8 (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶)
2319, 20, 21, 22fvmptnf 6897 . . . . . . 7 𝐷 ∈ V → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = ∅)
2411, 23sylan9eqr 2800 . . . . . 6 ((¬ 𝐷 ∈ V ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)
2524ex 413 . . . . 5 𝐷 ∈ V → (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅))
267, 25syl5bir 242 . . . 4 𝐷 ∈ V → (suc 𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅))
276, 26syl5bi 241 . . 3 𝐷 ∈ V → (suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅))
28 ndmfv 6804 . . 3 (¬ suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)
2927, 28pm2.61d1 180 . 2 𝐷 ∈ V → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)
302, 29eqtrid 2790 1 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  wnfc 2887  Vcvv 3432  c0 4256  cmpt 5157  dom cdm 5589  cres 5591  suc csuc 6268   Fn wfn 6428  cfv 6433  ωcom 7712  reccrdg 8240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator