![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frsucmptn | Structured version Visualization version GIF version |
Description: The value of the finite recursive definition generator at a successor (special case where the characteristic function is a mapping abstraction and where the mapping class 𝐷 is a proper class). This is a technical lemma that can be used together with frsucmpt 8438 to help eliminate redundant sethood antecedents. (Contributed by Scott Fenton, 19-Feb-2011.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
frsucmpt.1 | ⊢ Ⅎ𝑥𝐴 |
frsucmpt.2 | ⊢ Ⅎ𝑥𝐵 |
frsucmpt.3 | ⊢ Ⅎ𝑥𝐷 |
frsucmpt.4 | ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
frsucmpt.5 | ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
frsucmptn | ⊢ (¬ 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frsucmpt.4 | . . 3 ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) | |
2 | 1 | fveq1i 6893 | . 2 ⊢ (𝐹‘suc 𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) |
3 | frfnom 8435 | . . . . . 6 ⊢ (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) Fn ω | |
4 | fndm 6653 | . . . . . 6 ⊢ ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) Fn ω → dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) = ω) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) = ω |
6 | 5 | eleq2i 2826 | . . . 4 ⊢ (suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) ↔ suc 𝐵 ∈ ω) |
7 | peano2b 7872 | . . . . 5 ⊢ (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω) | |
8 | frsuc 8437 | . . . . . . . 8 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵))) | |
9 | 1 | fveq1i 6893 | . . . . . . . . 9 ⊢ (𝐹‘𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵) |
10 | 9 | fveq2i 6895 | . . . . . . . 8 ⊢ ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)) |
11 | 8, 10 | eqtr4di 2791 | . . . . . . 7 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵))) |
12 | nfmpt1 5257 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥(𝑥 ∈ V ↦ 𝐶) | |
13 | frsucmpt.1 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝐴 | |
14 | 12, 13 | nfrdg 8414 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
15 | nfcv 2904 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥ω | |
16 | 14, 15 | nfres 5984 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
17 | 1, 16 | nfcxfr 2902 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 |
18 | frsucmpt.2 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐵 | |
19 | 17, 18 | nffv 6902 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘𝐵) |
20 | frsucmpt.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐷 | |
21 | frsucmpt.5 | . . . . . . . 8 ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) | |
22 | eqid 2733 | . . . . . . . 8 ⊢ (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶) | |
23 | 19, 20, 21, 22 | fvmptnf 7021 | . . . . . . 7 ⊢ (¬ 𝐷 ∈ V → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ∅) |
24 | 11, 23 | sylan9eqr 2795 | . . . . . 6 ⊢ ((¬ 𝐷 ∈ V ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅) |
25 | 24 | ex 414 | . . . . 5 ⊢ (¬ 𝐷 ∈ V → (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)) |
26 | 7, 25 | biimtrrid 242 | . . . 4 ⊢ (¬ 𝐷 ∈ V → (suc 𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)) |
27 | 6, 26 | biimtrid 241 | . . 3 ⊢ (¬ 𝐷 ∈ V → (suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)) |
28 | ndmfv 6927 | . . 3 ⊢ (¬ suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅) | |
29 | 27, 28 | pm2.61d1 180 | . 2 ⊢ (¬ 𝐷 ∈ V → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅) |
30 | 2, 29 | eqtrid 2785 | 1 ⊢ (¬ 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2107 Ⅎwnfc 2884 Vcvv 3475 ∅c0 4323 ↦ cmpt 5232 dom cdm 5677 ↾ cres 5679 suc csuc 6367 Fn wfn 6539 ‘cfv 6544 ωcom 7855 reccrdg 8409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |