MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsucmptn Structured version   Visualization version   GIF version

Theorem frsucmptn 8057
Description: The value of the finite recursive definition generator at a successor (special case where the characteristic function is a mapping abstraction and where the mapping class 𝐷 is a proper class). This is a technical lemma that can be used together with frsucmpt 8056 to help eliminate redundant sethood antecedents. (Contributed by Scott Fenton, 19-Feb-2011.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
frsucmpt.1 𝑥𝐴
frsucmpt.2 𝑥𝐵
frsucmpt.3 𝑥𝐷
frsucmpt.4 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
frsucmpt.5 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
frsucmptn 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅)

Proof of Theorem frsucmptn
StepHypRef Expression
1 frsucmpt.4 . . 3 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
21fveq1i 6646 . 2 (𝐹‘suc 𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵)
3 frfnom 8053 . . . . . 6 (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) Fn ω
4 fndm 6425 . . . . . 6 ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) Fn ω → dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) = ω)
53, 4ax-mp 5 . . . . 5 dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) = ω
65eleq2i 2881 . . . 4 (suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) ↔ suc 𝐵 ∈ ω)
7 peano2b 7576 . . . . 5 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
8 frsuc 8055 . . . . . . . 8 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)))
91fveq1i 6646 . . . . . . . . 9 (𝐹𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)
109fveq2i 6648 . . . . . . . 8 ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵))
118, 10eqtr4di 2851 . . . . . . 7 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)))
12 nfmpt1 5128 . . . . . . . . . . . 12 𝑥(𝑥 ∈ V ↦ 𝐶)
13 frsucmpt.1 . . . . . . . . . . . 12 𝑥𝐴
1412, 13nfrdg 8033 . . . . . . . . . . 11 𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
15 nfcv 2955 . . . . . . . . . . 11 𝑥ω
1614, 15nfres 5820 . . . . . . . . . 10 𝑥(rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
171, 16nfcxfr 2953 . . . . . . . . 9 𝑥𝐹
18 frsucmpt.2 . . . . . . . . 9 𝑥𝐵
1917, 18nffv 6655 . . . . . . . 8 𝑥(𝐹𝐵)
20 frsucmpt.3 . . . . . . . 8 𝑥𝐷
21 frsucmpt.5 . . . . . . . 8 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
22 eqid 2798 . . . . . . . 8 (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶)
2319, 20, 21, 22fvmptnf 6767 . . . . . . 7 𝐷 ∈ V → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = ∅)
2411, 23sylan9eqr 2855 . . . . . 6 ((¬ 𝐷 ∈ V ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)
2524ex 416 . . . . 5 𝐷 ∈ V → (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅))
267, 25syl5bir 246 . . . 4 𝐷 ∈ V → (suc 𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅))
276, 26syl5bi 245 . . 3 𝐷 ∈ V → (suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅))
28 ndmfv 6675 . . 3 (¬ suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)
2927, 28pm2.61d1 183 . 2 𝐷 ∈ V → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)
302, 29syl5eq 2845 1 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1538  wcel 2111  wnfc 2936  Vcvv 3441  c0 4243  cmpt 5110  dom cdm 5519  cres 5521  suc csuc 6161   Fn wfn 6319  cfv 6324  ωcom 7560  reccrdg 8028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029
This theorem is referenced by:  trpredlem1  33179
  Copyright terms: Public domain W3C validator