MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsucmptn Structured version   Visualization version   GIF version

Theorem frsucmptn 8407
Description: The value of the finite recursive definition generator at a successor (special case where the characteristic function is a mapping abstraction and where the mapping class 𝐷 is a proper class). This is a technical lemma that can be used together with frsucmpt 8406 to help eliminate redundant sethood antecedents. (Contributed by Scott Fenton, 19-Feb-2011.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
frsucmpt.1 𝑥𝐴
frsucmpt.2 𝑥𝐵
frsucmpt.3 𝑥𝐷
frsucmpt.4 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
frsucmpt.5 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
frsucmptn 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅)

Proof of Theorem frsucmptn
StepHypRef Expression
1 frsucmpt.4 . . 3 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
21fveq1i 6859 . 2 (𝐹‘suc 𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵)
3 frfnom 8403 . . . . . 6 (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) Fn ω
4 fndm 6621 . . . . . 6 ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) Fn ω → dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) = ω)
53, 4ax-mp 5 . . . . 5 dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) = ω
65eleq2i 2820 . . . 4 (suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) ↔ suc 𝐵 ∈ ω)
7 peano2b 7859 . . . . 5 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
8 frsuc 8405 . . . . . . . 8 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)))
91fveq1i 6859 . . . . . . . . 9 (𝐹𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)
109fveq2i 6861 . . . . . . . 8 ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵))
118, 10eqtr4di 2782 . . . . . . 7 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)))
12 nfmpt1 5206 . . . . . . . . . . . 12 𝑥(𝑥 ∈ V ↦ 𝐶)
13 frsucmpt.1 . . . . . . . . . . . 12 𝑥𝐴
1412, 13nfrdg 8382 . . . . . . . . . . 11 𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
15 nfcv 2891 . . . . . . . . . . 11 𝑥ω
1614, 15nfres 5952 . . . . . . . . . 10 𝑥(rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
171, 16nfcxfr 2889 . . . . . . . . 9 𝑥𝐹
18 frsucmpt.2 . . . . . . . . 9 𝑥𝐵
1917, 18nffv 6868 . . . . . . . 8 𝑥(𝐹𝐵)
20 frsucmpt.3 . . . . . . . 8 𝑥𝐷
21 frsucmpt.5 . . . . . . . 8 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
22 eqid 2729 . . . . . . . 8 (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶)
2319, 20, 21, 22fvmptnf 6990 . . . . . . 7 𝐷 ∈ V → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = ∅)
2411, 23sylan9eqr 2786 . . . . . 6 ((¬ 𝐷 ∈ V ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)
2524ex 412 . . . . 5 𝐷 ∈ V → (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅))
267, 25biimtrrid 243 . . . 4 𝐷 ∈ V → (suc 𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅))
276, 26biimtrid 242 . . 3 𝐷 ∈ V → (suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅))
28 ndmfv 6893 . . 3 (¬ suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)
2927, 28pm2.61d1 180 . 2 𝐷 ∈ V → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)
302, 29eqtrid 2776 1 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wnfc 2876  Vcvv 3447  c0 4296  cmpt 5188  dom cdm 5638  cres 5640  suc csuc 6334   Fn wfn 6506  cfv 6511  ωcom 7842  reccrdg 8377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator