![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frsucmptn | Structured version Visualization version GIF version |
Description: The value of the finite recursive definition generator at a successor (special case where the characteristic function is a mapping abstraction and where the mapping class 𝐷 is a proper class). This is a technical lemma that can be used together with frsucmpt 8494 to help eliminate redundant sethood antecedents. (Contributed by Scott Fenton, 19-Feb-2011.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
frsucmpt.1 | ⊢ Ⅎ𝑥𝐴 |
frsucmpt.2 | ⊢ Ⅎ𝑥𝐵 |
frsucmpt.3 | ⊢ Ⅎ𝑥𝐷 |
frsucmpt.4 | ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
frsucmpt.5 | ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
frsucmptn | ⊢ (¬ 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frsucmpt.4 | . . 3 ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) | |
2 | 1 | fveq1i 6921 | . 2 ⊢ (𝐹‘suc 𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) |
3 | frfnom 8491 | . . . . . 6 ⊢ (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) Fn ω | |
4 | fndm 6682 | . . . . . 6 ⊢ ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) Fn ω → dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) = ω) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) = ω |
6 | 5 | eleq2i 2836 | . . . 4 ⊢ (suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) ↔ suc 𝐵 ∈ ω) |
7 | peano2b 7920 | . . . . 5 ⊢ (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω) | |
8 | frsuc 8493 | . . . . . . . 8 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵))) | |
9 | 1 | fveq1i 6921 | . . . . . . . . 9 ⊢ (𝐹‘𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵) |
10 | 9 | fveq2i 6923 | . . . . . . . 8 ⊢ ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)) |
11 | 8, 10 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵))) |
12 | nfmpt1 5274 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥(𝑥 ∈ V ↦ 𝐶) | |
13 | frsucmpt.1 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝐴 | |
14 | 12, 13 | nfrdg 8470 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
15 | nfcv 2908 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥ω | |
16 | 14, 15 | nfres 6011 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
17 | 1, 16 | nfcxfr 2906 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 |
18 | frsucmpt.2 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐵 | |
19 | 17, 18 | nffv 6930 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘𝐵) |
20 | frsucmpt.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐷 | |
21 | frsucmpt.5 | . . . . . . . 8 ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) | |
22 | eqid 2740 | . . . . . . . 8 ⊢ (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶) | |
23 | 19, 20, 21, 22 | fvmptnf 7051 | . . . . . . 7 ⊢ (¬ 𝐷 ∈ V → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ∅) |
24 | 11, 23 | sylan9eqr 2802 | . . . . . 6 ⊢ ((¬ 𝐷 ∈ V ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅) |
25 | 24 | ex 412 | . . . . 5 ⊢ (¬ 𝐷 ∈ V → (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)) |
26 | 7, 25 | biimtrrid 243 | . . . 4 ⊢ (¬ 𝐷 ∈ V → (suc 𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)) |
27 | 6, 26 | biimtrid 242 | . . 3 ⊢ (¬ 𝐷 ∈ V → (suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)) |
28 | ndmfv 6955 | . . 3 ⊢ (¬ suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅) | |
29 | 27, 28 | pm2.61d1 180 | . 2 ⊢ (¬ 𝐷 ∈ V → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅) |
30 | 2, 29 | eqtrid 2792 | 1 ⊢ (¬ 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 Ⅎwnfc 2893 Vcvv 3488 ∅c0 4352 ↦ cmpt 5249 dom cdm 5700 ↾ cres 5702 suc csuc 6397 Fn wfn 6568 ‘cfv 6573 ωcom 7903 reccrdg 8465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |