Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frsucmptn | Structured version Visualization version GIF version |
Description: The value of the finite recursive definition generator at a successor (special case where the characteristic function is a mapping abstraction and where the mapping class 𝐷 is a proper class). This is a technical lemma that can be used together with frsucmpt 8269 to help eliminate redundant sethood antecedents. (Contributed by Scott Fenton, 19-Feb-2011.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
frsucmpt.1 | ⊢ Ⅎ𝑥𝐴 |
frsucmpt.2 | ⊢ Ⅎ𝑥𝐵 |
frsucmpt.3 | ⊢ Ⅎ𝑥𝐷 |
frsucmpt.4 | ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
frsucmpt.5 | ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
frsucmptn | ⊢ (¬ 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frsucmpt.4 | . . 3 ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) | |
2 | 1 | fveq1i 6775 | . 2 ⊢ (𝐹‘suc 𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) |
3 | frfnom 8266 | . . . . . 6 ⊢ (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) Fn ω | |
4 | fndm 6536 | . . . . . 6 ⊢ ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) Fn ω → dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) = ω) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) = ω |
6 | 5 | eleq2i 2830 | . . . 4 ⊢ (suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) ↔ suc 𝐵 ∈ ω) |
7 | peano2b 7729 | . . . . 5 ⊢ (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω) | |
8 | frsuc 8268 | . . . . . . . 8 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵))) | |
9 | 1 | fveq1i 6775 | . . . . . . . . 9 ⊢ (𝐹‘𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵) |
10 | 9 | fveq2i 6777 | . . . . . . . 8 ⊢ ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)) |
11 | 8, 10 | eqtr4di 2796 | . . . . . . 7 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵))) |
12 | nfmpt1 5182 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥(𝑥 ∈ V ↦ 𝐶) | |
13 | frsucmpt.1 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝐴 | |
14 | 12, 13 | nfrdg 8245 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
15 | nfcv 2907 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥ω | |
16 | 14, 15 | nfres 5893 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
17 | 1, 16 | nfcxfr 2905 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 |
18 | frsucmpt.2 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐵 | |
19 | 17, 18 | nffv 6784 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘𝐵) |
20 | frsucmpt.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐷 | |
21 | frsucmpt.5 | . . . . . . . 8 ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) | |
22 | eqid 2738 | . . . . . . . 8 ⊢ (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶) | |
23 | 19, 20, 21, 22 | fvmptnf 6897 | . . . . . . 7 ⊢ (¬ 𝐷 ∈ V → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ∅) |
24 | 11, 23 | sylan9eqr 2800 | . . . . . 6 ⊢ ((¬ 𝐷 ∈ V ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅) |
25 | 24 | ex 413 | . . . . 5 ⊢ (¬ 𝐷 ∈ V → (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)) |
26 | 7, 25 | syl5bir 242 | . . . 4 ⊢ (¬ 𝐷 ∈ V → (suc 𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)) |
27 | 6, 26 | syl5bi 241 | . . 3 ⊢ (¬ 𝐷 ∈ V → (suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)) |
28 | ndmfv 6804 | . . 3 ⊢ (¬ suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅) | |
29 | 27, 28 | pm2.61d1 180 | . 2 ⊢ (¬ 𝐷 ∈ V → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅) |
30 | 2, 29 | eqtrid 2790 | 1 ⊢ (¬ 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 Vcvv 3432 ∅c0 4256 ↦ cmpt 5157 dom cdm 5589 ↾ cres 5591 suc csuc 6268 Fn wfn 6428 ‘cfv 6433 ωcom 7712 reccrdg 8240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |