MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frsucmptn Structured version   Visualization version   GIF version

Theorem frsucmptn 8152
Description: The value of the finite recursive definition generator at a successor (special case where the characteristic function is a mapping abstraction and where the mapping class 𝐷 is a proper class). This is a technical lemma that can be used together with frsucmpt 8151 to help eliminate redundant sethood antecedents. (Contributed by Scott Fenton, 19-Feb-2011.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
frsucmpt.1 𝑥𝐴
frsucmpt.2 𝑥𝐵
frsucmpt.3 𝑥𝐷
frsucmpt.4 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
frsucmpt.5 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
frsucmptn 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅)

Proof of Theorem frsucmptn
StepHypRef Expression
1 frsucmpt.4 . . 3 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
21fveq1i 6696 . 2 (𝐹‘suc 𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵)
3 frfnom 8148 . . . . . 6 (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) Fn ω
4 fndm 6459 . . . . . 6 ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) Fn ω → dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) = ω)
53, 4ax-mp 5 . . . . 5 dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) = ω
65eleq2i 2822 . . . 4 (suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) ↔ suc 𝐵 ∈ ω)
7 peano2b 7639 . . . . 5 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
8 frsuc 8150 . . . . . . . 8 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)))
91fveq1i 6696 . . . . . . . . 9 (𝐹𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)
109fveq2i 6698 . . . . . . . 8 ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵))
118, 10eqtr4di 2789 . . . . . . 7 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)))
12 nfmpt1 5138 . . . . . . . . . . . 12 𝑥(𝑥 ∈ V ↦ 𝐶)
13 frsucmpt.1 . . . . . . . . . . . 12 𝑥𝐴
1412, 13nfrdg 8128 . . . . . . . . . . 11 𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
15 nfcv 2897 . . . . . . . . . . 11 𝑥ω
1614, 15nfres 5838 . . . . . . . . . 10 𝑥(rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)
171, 16nfcxfr 2895 . . . . . . . . 9 𝑥𝐹
18 frsucmpt.2 . . . . . . . . 9 𝑥𝐵
1917, 18nffv 6705 . . . . . . . 8 𝑥(𝐹𝐵)
20 frsucmpt.3 . . . . . . . 8 𝑥𝐷
21 frsucmpt.5 . . . . . . . 8 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
22 eqid 2736 . . . . . . . 8 (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶)
2319, 20, 21, 22fvmptnf 6818 . . . . . . 7 𝐷 ∈ V → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = ∅)
2411, 23sylan9eqr 2793 . . . . . 6 ((¬ 𝐷 ∈ V ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)
2524ex 416 . . . . 5 𝐷 ∈ V → (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅))
267, 25syl5bir 246 . . . 4 𝐷 ∈ V → (suc 𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅))
276, 26syl5bi 245 . . 3 𝐷 ∈ V → (suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅))
28 ndmfv 6725 . . 3 (¬ suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)
2927, 28pm2.61d1 183 . 2 𝐷 ∈ V → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)
302, 29syl5eq 2783 1 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1543  wcel 2112  wnfc 2877  Vcvv 3398  c0 4223  cmpt 5120  dom cdm 5536  cres 5538  suc csuc 6193   Fn wfn 6353  cfv 6358  ωcom 7622  reccrdg 8123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124
This theorem is referenced by:  trpredlem1  9310
  Copyright terms: Public domain W3C validator