|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > frsucmptn | Structured version Visualization version GIF version | ||
| Description: The value of the finite recursive definition generator at a successor (special case where the characteristic function is a mapping abstraction and where the mapping class 𝐷 is a proper class). This is a technical lemma that can be used together with frsucmpt 8479 to help eliminate redundant sethood antecedents. (Contributed by Scott Fenton, 19-Feb-2011.) (Revised by Mario Carneiro, 11-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| frsucmpt.1 | ⊢ Ⅎ𝑥𝐴 | 
| frsucmpt.2 | ⊢ Ⅎ𝑥𝐵 | 
| frsucmpt.3 | ⊢ Ⅎ𝑥𝐷 | 
| frsucmpt.4 | ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) | 
| frsucmpt.5 | ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) | 
| Ref | Expression | 
|---|---|
| frsucmptn | ⊢ (¬ 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frsucmpt.4 | . . 3 ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) | |
| 2 | 1 | fveq1i 6906 | . 2 ⊢ (𝐹‘suc 𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) | 
| 3 | frfnom 8476 | . . . . . 6 ⊢ (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) Fn ω | |
| 4 | fndm 6670 | . . . . . 6 ⊢ ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) Fn ω → dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) = ω) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) = ω | 
| 6 | 5 | eleq2i 2832 | . . . 4 ⊢ (suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) ↔ suc 𝐵 ∈ ω) | 
| 7 | peano2b 7905 | . . . . 5 ⊢ (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω) | |
| 8 | frsuc 8478 | . . . . . . . 8 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵))) | |
| 9 | 1 | fveq1i 6906 | . . . . . . . . 9 ⊢ (𝐹‘𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵) | 
| 10 | 9 | fveq2i 6908 | . . . . . . . 8 ⊢ ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)) | 
| 11 | 8, 10 | eqtr4di 2794 | . . . . . . 7 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵))) | 
| 12 | nfmpt1 5249 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥(𝑥 ∈ V ↦ 𝐶) | |
| 13 | frsucmpt.1 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑥𝐴 | |
| 14 | 12, 13 | nfrdg 8455 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴) | 
| 15 | nfcv 2904 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥ω | |
| 16 | 14, 15 | nfres 5998 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) | 
| 17 | 1, 16 | nfcxfr 2902 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 | 
| 18 | frsucmpt.2 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐵 | |
| 19 | 17, 18 | nffv 6915 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘𝐵) | 
| 20 | frsucmpt.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐷 | |
| 21 | frsucmpt.5 | . . . . . . . 8 ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) | |
| 22 | eqid 2736 | . . . . . . . 8 ⊢ (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶) | |
| 23 | 19, 20, 21, 22 | fvmptnf 7037 | . . . . . . 7 ⊢ (¬ 𝐷 ∈ V → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ∅) | 
| 24 | 11, 23 | sylan9eqr 2798 | . . . . . 6 ⊢ ((¬ 𝐷 ∈ V ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅) | 
| 25 | 24 | ex 412 | . . . . 5 ⊢ (¬ 𝐷 ∈ V → (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)) | 
| 26 | 7, 25 | biimtrrid 243 | . . . 4 ⊢ (¬ 𝐷 ∈ V → (suc 𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)) | 
| 27 | 6, 26 | biimtrid 242 | . . 3 ⊢ (¬ 𝐷 ∈ V → (suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅)) | 
| 28 | ndmfv 6940 | . . 3 ⊢ (¬ suc 𝐵 ∈ dom (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅) | |
| 29 | 27, 28 | pm2.61d1 180 | . 2 ⊢ (¬ 𝐷 ∈ V → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ∅) | 
| 30 | 2, 29 | eqtrid 2788 | 1 ⊢ (¬ 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 Ⅎwnfc 2889 Vcvv 3479 ∅c0 4332 ↦ cmpt 5224 dom cdm 5684 ↾ cres 5686 suc csuc 6385 Fn wfn 6555 ‘cfv 6560 ωcom 7888 reccrdg 8450 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |