![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frsucmpt | Structured version Visualization version GIF version |
Description: The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation). (Contributed by NM, 14-Sep-2003.) (Revised by Scott Fenton, 2-Nov-2011.) |
Ref | Expression |
---|---|
frsucmpt.1 | ⊢ Ⅎ𝑥𝐴 |
frsucmpt.2 | ⊢ Ⅎ𝑥𝐵 |
frsucmpt.3 | ⊢ Ⅎ𝑥𝐷 |
frsucmpt.4 | ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
frsucmpt.5 | ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
frsucmpt | ⊢ ((𝐵 ∈ ω ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frsuc 8466 | . . 3 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵))) | |
2 | frsucmpt.4 | . . . 4 ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) | |
3 | 2 | fveq1i 6903 | . . 3 ⊢ (𝐹‘suc 𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) |
4 | 2 | fveq1i 6903 | . . . 4 ⊢ (𝐹‘𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵) |
5 | 4 | fveq2i 6905 | . . 3 ⊢ ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)) |
6 | 1, 3, 5 | 3eqtr4g 2793 | . 2 ⊢ (𝐵 ∈ ω → (𝐹‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵))) |
7 | fvex 6915 | . . 3 ⊢ (𝐹‘𝐵) ∈ V | |
8 | nfmpt1 5260 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝑥 ∈ V ↦ 𝐶) | |
9 | frsucmpt.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
10 | 8, 9 | nfrdg 8443 | . . . . . . 7 ⊢ Ⅎ𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
11 | nfcv 2899 | . . . . . . 7 ⊢ Ⅎ𝑥ω | |
12 | 10, 11 | nfres 5991 | . . . . . 6 ⊢ Ⅎ𝑥(rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
13 | 2, 12 | nfcxfr 2897 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
14 | frsucmpt.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
15 | 13, 14 | nffv 6912 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝐵) |
16 | frsucmpt.3 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
17 | frsucmpt.5 | . . . 4 ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) | |
18 | eqid 2728 | . . . 4 ⊢ (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶) | |
19 | 15, 16, 17, 18 | fvmptf 7031 | . . 3 ⊢ (((𝐹‘𝐵) ∈ V ∧ 𝐷 ∈ 𝑉) → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = 𝐷) |
20 | 7, 19 | mpan 688 | . 2 ⊢ (𝐷 ∈ 𝑉 → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = 𝐷) |
21 | 6, 20 | sylan9eq 2788 | 1 ⊢ ((𝐵 ∈ ω ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Ⅎwnfc 2879 Vcvv 3473 ↦ cmpt 5235 ↾ cres 5684 suc csuc 6376 ‘cfv 6553 ωcom 7878 reccrdg 8438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-om 7879 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 |
This theorem is referenced by: frsucmpt2 8469 dffi3 9464 axdclem 10552 |
Copyright terms: Public domain | W3C validator |