| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frsucmpt | Structured version Visualization version GIF version | ||
| Description: The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation). (Contributed by NM, 14-Sep-2003.) (Revised by Scott Fenton, 2-Nov-2011.) |
| Ref | Expression |
|---|---|
| frsucmpt.1 | ⊢ Ⅎ𝑥𝐴 |
| frsucmpt.2 | ⊢ Ⅎ𝑥𝐵 |
| frsucmpt.3 | ⊢ Ⅎ𝑥𝐷 |
| frsucmpt.4 | ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
| frsucmpt.5 | ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| frsucmpt | ⊢ ((𝐵 ∈ ω ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frsuc 8351 | . . 3 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵))) | |
| 2 | frsucmpt.4 | . . . 4 ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) | |
| 3 | 2 | fveq1i 6818 | . . 3 ⊢ (𝐹‘suc 𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) |
| 4 | 2 | fveq1i 6818 | . . . 4 ⊢ (𝐹‘𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵) |
| 5 | 4 | fveq2i 6820 | . . 3 ⊢ ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)) |
| 6 | 1, 3, 5 | 3eqtr4g 2791 | . 2 ⊢ (𝐵 ∈ ω → (𝐹‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵))) |
| 7 | fvex 6830 | . . 3 ⊢ (𝐹‘𝐵) ∈ V | |
| 8 | nfmpt1 5185 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝑥 ∈ V ↦ 𝐶) | |
| 9 | frsucmpt.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
| 10 | 8, 9 | nfrdg 8328 | . . . . . . 7 ⊢ Ⅎ𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
| 11 | nfcv 2894 | . . . . . . 7 ⊢ Ⅎ𝑥ω | |
| 12 | 10, 11 | nfres 5925 | . . . . . 6 ⊢ Ⅎ𝑥(rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
| 13 | 2, 12 | nfcxfr 2892 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
| 14 | frsucmpt.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 15 | 13, 14 | nffv 6827 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝐵) |
| 16 | frsucmpt.3 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
| 17 | frsucmpt.5 | . . . 4 ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) | |
| 18 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶) | |
| 19 | 15, 16, 17, 18 | fvmptf 6945 | . . 3 ⊢ (((𝐹‘𝐵) ∈ V ∧ 𝐷 ∈ 𝑉) → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = 𝐷) |
| 20 | 7, 19 | mpan 690 | . 2 ⊢ (𝐷 ∈ 𝑉 → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = 𝐷) |
| 21 | 6, 20 | sylan9eq 2786 | 1 ⊢ ((𝐵 ∈ ω ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Ⅎwnfc 2879 Vcvv 3436 ↦ cmpt 5167 ↾ cres 5613 suc csuc 6303 ‘cfv 6476 ωcom 7791 reccrdg 8323 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 |
| This theorem is referenced by: frsucmpt2 8354 dffi3 9310 axdclem 10405 |
| Copyright terms: Public domain | W3C validator |