| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frsucmpt | Structured version Visualization version GIF version | ||
| Description: The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation). (Contributed by NM, 14-Sep-2003.) (Revised by Scott Fenton, 2-Nov-2011.) |
| Ref | Expression |
|---|---|
| frsucmpt.1 | ⊢ Ⅎ𝑥𝐴 |
| frsucmpt.2 | ⊢ Ⅎ𝑥𝐵 |
| frsucmpt.3 | ⊢ Ⅎ𝑥𝐷 |
| frsucmpt.4 | ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
| frsucmpt.5 | ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| frsucmpt | ⊢ ((𝐵 ∈ ω ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frsuc 8459 | . . 3 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵))) | |
| 2 | frsucmpt.4 | . . . 4 ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) | |
| 3 | 2 | fveq1i 6887 | . . 3 ⊢ (𝐹‘suc 𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) |
| 4 | 2 | fveq1i 6887 | . . . 4 ⊢ (𝐹‘𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵) |
| 5 | 4 | fveq2i 6889 | . . 3 ⊢ ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)) |
| 6 | 1, 3, 5 | 3eqtr4g 2794 | . 2 ⊢ (𝐵 ∈ ω → (𝐹‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵))) |
| 7 | fvex 6899 | . . 3 ⊢ (𝐹‘𝐵) ∈ V | |
| 8 | nfmpt1 5230 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝑥 ∈ V ↦ 𝐶) | |
| 9 | frsucmpt.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
| 10 | 8, 9 | nfrdg 8436 | . . . . . . 7 ⊢ Ⅎ𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
| 11 | nfcv 2897 | . . . . . . 7 ⊢ Ⅎ𝑥ω | |
| 12 | 10, 11 | nfres 5979 | . . . . . 6 ⊢ Ⅎ𝑥(rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
| 13 | 2, 12 | nfcxfr 2895 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
| 14 | frsucmpt.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 15 | 13, 14 | nffv 6896 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝐵) |
| 16 | frsucmpt.3 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
| 17 | frsucmpt.5 | . . . 4 ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) | |
| 18 | eqid 2734 | . . . 4 ⊢ (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶) | |
| 19 | 15, 16, 17, 18 | fvmptf 7017 | . . 3 ⊢ (((𝐹‘𝐵) ∈ V ∧ 𝐷 ∈ 𝑉) → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = 𝐷) |
| 20 | 7, 19 | mpan 690 | . 2 ⊢ (𝐷 ∈ 𝑉 → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = 𝐷) |
| 21 | 6, 20 | sylan9eq 2789 | 1 ⊢ ((𝐵 ∈ ω ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Ⅎwnfc 2882 Vcvv 3463 ↦ cmpt 5205 ↾ cres 5667 suc csuc 6365 ‘cfv 6541 ωcom 7869 reccrdg 8431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 |
| This theorem is referenced by: frsucmpt2 8462 dffi3 9453 axdclem 10541 |
| Copyright terms: Public domain | W3C validator |