![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frsucmpt | Structured version Visualization version GIF version |
Description: The successor value resulting from finite recursive definition generation (special case where the generation function is expressed in maps-to notation). (Contributed by NM, 14-Sep-2003.) (Revised by Scott Fenton, 2-Nov-2011.) |
Ref | Expression |
---|---|
frsucmpt.1 | ⊢ Ⅎ𝑥𝐴 |
frsucmpt.2 | ⊢ Ⅎ𝑥𝐵 |
frsucmpt.3 | ⊢ Ⅎ𝑥𝐷 |
frsucmpt.4 | ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
frsucmpt.5 | ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
frsucmpt | ⊢ ((𝐵 ∈ ω ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frsuc 8458 | . . 3 ⊢ (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵))) | |
2 | frsucmpt.4 | . . . 4 ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) | |
3 | 2 | fveq1i 6898 | . . 3 ⊢ (𝐹‘suc 𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘suc 𝐵) |
4 | 2 | fveq1i 6898 | . . . 4 ⊢ (𝐹‘𝐵) = ((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵) |
5 | 4 | fveq2i 6900 | . . 3 ⊢ ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘((rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω)‘𝐵)) |
6 | 1, 3, 5 | 3eqtr4g 2793 | . 2 ⊢ (𝐵 ∈ ω → (𝐹‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵))) |
7 | fvex 6910 | . . 3 ⊢ (𝐹‘𝐵) ∈ V | |
8 | nfmpt1 5256 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝑥 ∈ V ↦ 𝐶) | |
9 | frsucmpt.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
10 | 8, 9 | nfrdg 8435 | . . . . . . 7 ⊢ Ⅎ𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
11 | nfcv 2899 | . . . . . . 7 ⊢ Ⅎ𝑥ω | |
12 | 10, 11 | nfres 5987 | . . . . . 6 ⊢ Ⅎ𝑥(rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↾ ω) |
13 | 2, 12 | nfcxfr 2897 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
14 | frsucmpt.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
15 | 13, 14 | nffv 6907 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝐵) |
16 | frsucmpt.3 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
17 | frsucmpt.5 | . . . 4 ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) | |
18 | eqid 2728 | . . . 4 ⊢ (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶) | |
19 | 15, 16, 17, 18 | fvmptf 7026 | . . 3 ⊢ (((𝐹‘𝐵) ∈ V ∧ 𝐷 ∈ 𝑉) → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = 𝐷) |
20 | 7, 19 | mpan 689 | . 2 ⊢ (𝐷 ∈ 𝑉 → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = 𝐷) |
21 | 6, 20 | sylan9eq 2788 | 1 ⊢ ((𝐵 ∈ ω ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Ⅎwnfc 2879 Vcvv 3471 ↦ cmpt 5231 ↾ cres 5680 suc csuc 6371 ‘cfv 6548 ωcom 7870 reccrdg 8430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 |
This theorem is referenced by: frsucmpt2 8461 dffi3 9455 axdclem 10543 |
Copyright terms: Public domain | W3C validator |