MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44-3 Structured version   Visualization version   GIF version

Theorem tz7.44-3 8330
Description: The value of 𝐹 at a limit ordinal. Part 3 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
tz7.44.1 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
tz7.44.2 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
tz7.44.3 (𝑦𝑋 → (𝐹𝑦) ∈ V)
tz7.44.4 𝐹 Fn 𝑋
tz7.44.5 Ord 𝑋
Assertion
Ref Expression
tz7.44-3 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = (𝐹𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑦,𝐺   𝑥,𝐻   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐺(𝑥)   𝐻(𝑦)   𝑋(𝑥)

Proof of Theorem tz7.44-3
StepHypRef Expression
1 fveq2 6822 . . . . . 6 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
2 reseq2 5925 . . . . . . 7 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
32fveq2d 6826 . . . . . 6 (𝑦 = 𝐵 → (𝐺‘(𝐹𝑦)) = (𝐺‘(𝐹𝐵)))
41, 3eqeq12d 2745 . . . . 5 (𝑦 = 𝐵 → ((𝐹𝑦) = (𝐺‘(𝐹𝑦)) ↔ (𝐹𝐵) = (𝐺‘(𝐹𝐵))))
5 tz7.44.2 . . . . 5 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
64, 5vtoclga 3532 . . . 4 (𝐵𝑋 → (𝐹𝐵) = (𝐺‘(𝐹𝐵)))
76adantr 480 . . 3 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = (𝐺‘(𝐹𝐵)))
82eleq1d 2813 . . . . . . 7 (𝑦 = 𝐵 → ((𝐹𝑦) ∈ V ↔ (𝐹𝐵) ∈ V))
9 tz7.44.3 . . . . . . 7 (𝑦𝑋 → (𝐹𝑦) ∈ V)
108, 9vtoclga 3532 . . . . . 6 (𝐵𝑋 → (𝐹𝐵) ∈ V)
1110adantr 480 . . . . 5 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) ∈ V)
12 simpr 484 . . . . . . . . 9 ((𝐵𝑋 ∧ Lim 𝐵) → Lim 𝐵)
13 nlim0 6367 . . . . . . . . . . 11 ¬ Lim ∅
14 dmres 5963 . . . . . . . . . . . . . 14 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
15 tz7.44.5 . . . . . . . . . . . . . . . . . 18 Ord 𝑋
16 ordelss 6323 . . . . . . . . . . . . . . . . . 18 ((Ord 𝑋𝐵𝑋) → 𝐵𝑋)
1715, 16mpan 690 . . . . . . . . . . . . . . . . 17 (𝐵𝑋𝐵𝑋)
1817adantr 480 . . . . . . . . . . . . . . . 16 ((𝐵𝑋 ∧ Lim 𝐵) → 𝐵𝑋)
19 tz7.44.4 . . . . . . . . . . . . . . . . 17 𝐹 Fn 𝑋
20 fndm 6585 . . . . . . . . . . . . . . . . 17 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
2119, 20ax-mp 5 . . . . . . . . . . . . . . . 16 dom 𝐹 = 𝑋
2218, 21sseqtrrdi 3977 . . . . . . . . . . . . . . 15 ((𝐵𝑋 ∧ Lim 𝐵) → 𝐵 ⊆ dom 𝐹)
23 dfss2 3921 . . . . . . . . . . . . . . 15 (𝐵 ⊆ dom 𝐹 ↔ (𝐵 ∩ dom 𝐹) = 𝐵)
2422, 23sylib 218 . . . . . . . . . . . . . 14 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐵 ∩ dom 𝐹) = 𝐵)
2514, 24eqtrid 2776 . . . . . . . . . . . . 13 ((𝐵𝑋 ∧ Lim 𝐵) → dom (𝐹𝐵) = 𝐵)
26 dmeq 5846 . . . . . . . . . . . . . 14 ((𝐹𝐵) = ∅ → dom (𝐹𝐵) = dom ∅)
27 dm0 5863 . . . . . . . . . . . . . 14 dom ∅ = ∅
2826, 27eqtrdi 2780 . . . . . . . . . . . . 13 ((𝐹𝐵) = ∅ → dom (𝐹𝐵) = ∅)
2925, 28sylan9req 2785 . . . . . . . . . . . 12 (((𝐵𝑋 ∧ Lim 𝐵) ∧ (𝐹𝐵) = ∅) → 𝐵 = ∅)
30 limeq 6319 . . . . . . . . . . . 12 (𝐵 = ∅ → (Lim 𝐵 ↔ Lim ∅))
3129, 30syl 17 . . . . . . . . . . 11 (((𝐵𝑋 ∧ Lim 𝐵) ∧ (𝐹𝐵) = ∅) → (Lim 𝐵 ↔ Lim ∅))
3213, 31mtbiri 327 . . . . . . . . . 10 (((𝐵𝑋 ∧ Lim 𝐵) ∧ (𝐹𝐵) = ∅) → ¬ Lim 𝐵)
3332ex 412 . . . . . . . . 9 ((𝐵𝑋 ∧ Lim 𝐵) → ((𝐹𝐵) = ∅ → ¬ Lim 𝐵))
3412, 33mt2d 136 . . . . . . . 8 ((𝐵𝑋 ∧ Lim 𝐵) → ¬ (𝐹𝐵) = ∅)
3534iffalsed 4487 . . . . . . 7 ((𝐵𝑋 ∧ Lim 𝐵) → if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) = if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵)))))
36 limeq 6319 . . . . . . . . . 10 (dom (𝐹𝐵) = 𝐵 → (Lim dom (𝐹𝐵) ↔ Lim 𝐵))
3725, 36syl 17 . . . . . . . . 9 ((𝐵𝑋 ∧ Lim 𝐵) → (Lim dom (𝐹𝐵) ↔ Lim 𝐵))
3812, 37mpbird 257 . . . . . . . 8 ((𝐵𝑋 ∧ Lim 𝐵) → Lim dom (𝐹𝐵))
3938iftrued 4484 . . . . . . 7 ((𝐵𝑋 ∧ Lim 𝐵) → if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵)))) = ran (𝐹𝐵))
4035, 39eqtrd 2764 . . . . . 6 ((𝐵𝑋 ∧ Lim 𝐵) → if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) = ran (𝐹𝐵))
41 rnexg 7835 . . . . . . 7 ((𝐹𝐵) ∈ V → ran (𝐹𝐵) ∈ V)
42 uniexg 7676 . . . . . . 7 (ran (𝐹𝐵) ∈ V → ran (𝐹𝐵) ∈ V)
4311, 41, 423syl 18 . . . . . 6 ((𝐵𝑋 ∧ Lim 𝐵) → ran (𝐹𝐵) ∈ V)
4440, 43eqeltrd 2828 . . . . 5 ((𝐵𝑋 ∧ Lim 𝐵) → if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) ∈ V)
45 eqeq1 2733 . . . . . . 7 (𝑥 = (𝐹𝐵) → (𝑥 = ∅ ↔ (𝐹𝐵) = ∅))
46 dmeq 5846 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → dom 𝑥 = dom (𝐹𝐵))
47 limeq 6319 . . . . . . . . 9 (dom 𝑥 = dom (𝐹𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹𝐵)))
4846, 47syl 17 . . . . . . . 8 (𝑥 = (𝐹𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹𝐵)))
49 rneq 5878 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → ran 𝑥 = ran (𝐹𝐵))
5049unieqd 4871 . . . . . . . 8 (𝑥 = (𝐹𝐵) → ran 𝑥 = ran (𝐹𝐵))
51 fveq1 6821 . . . . . . . . . 10 (𝑥 = (𝐹𝐵) → (𝑥 dom 𝑥) = ((𝐹𝐵)‘ dom 𝑥))
5246unieqd 4871 . . . . . . . . . . 11 (𝑥 = (𝐹𝐵) → dom 𝑥 = dom (𝐹𝐵))
5352fveq2d 6826 . . . . . . . . . 10 (𝑥 = (𝐹𝐵) → ((𝐹𝐵)‘ dom 𝑥) = ((𝐹𝐵)‘ dom (𝐹𝐵)))
5451, 53eqtrd 2764 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → (𝑥 dom 𝑥) = ((𝐹𝐵)‘ dom (𝐹𝐵)))
5554fveq2d 6826 . . . . . . . 8 (𝑥 = (𝐹𝐵) → (𝐻‘(𝑥 dom 𝑥)) = (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))
5648, 50, 55ifbieq12d 4505 . . . . . . 7 (𝑥 = (𝐹𝐵) → if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥))) = if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵)))))
5745, 56ifbieq2d 4503 . . . . . 6 (𝑥 = (𝐹𝐵) → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))) = if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))))
58 tz7.44.1 . . . . . 6 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
5957, 58fvmptg 6928 . . . . 5 (((𝐹𝐵) ∈ V ∧ if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) ∈ V) → (𝐺‘(𝐹𝐵)) = if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))))
6011, 44, 59syl2anc 584 . . . 4 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐺‘(𝐹𝐵)) = if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))))
6160, 40eqtrd 2764 . . 3 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐺‘(𝐹𝐵)) = ran (𝐹𝐵))
627, 61eqtrd 2764 . 2 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = ran (𝐹𝐵))
63 df-ima 5632 . . 3 (𝐹𝐵) = ran (𝐹𝐵)
6463unieqi 4870 . 2 (𝐹𝐵) = ran (𝐹𝐵)
6562, 64eqtr4di 2782 1 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cin 3902  wss 3903  c0 4284  ifcif 4476   cuni 4858  cmpt 5173  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Ord word 6306  Lim wlim 6308   Fn wfn 6477  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-lim 6312  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490
This theorem is referenced by:  rdglimg  8347
  Copyright terms: Public domain W3C validator