MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44-3 Structured version   Visualization version   GIF version

Theorem tz7.44-3 8355
Description: The value of 𝐹 at a limit ordinal. Part 3 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
tz7.44.1 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
tz7.44.2 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
tz7.44.3 (𝑦𝑋 → (𝐹𝑦) ∈ V)
tz7.44.4 𝐹 Fn 𝑋
tz7.44.5 Ord 𝑋
Assertion
Ref Expression
tz7.44-3 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = (𝐹𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑦,𝐺   𝑥,𝐻   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐺(𝑥)   𝐻(𝑦)   𝑋(𝑥)

Proof of Theorem tz7.44-3
StepHypRef Expression
1 fveq2 6843 . . . . . 6 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
2 reseq2 5933 . . . . . . 7 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
32fveq2d 6847 . . . . . 6 (𝑦 = 𝐵 → (𝐺‘(𝐹𝑦)) = (𝐺‘(𝐹𝐵)))
41, 3eqeq12d 2753 . . . . 5 (𝑦 = 𝐵 → ((𝐹𝑦) = (𝐺‘(𝐹𝑦)) ↔ (𝐹𝐵) = (𝐺‘(𝐹𝐵))))
5 tz7.44.2 . . . . 5 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
64, 5vtoclga 3535 . . . 4 (𝐵𝑋 → (𝐹𝐵) = (𝐺‘(𝐹𝐵)))
76adantr 482 . . 3 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = (𝐺‘(𝐹𝐵)))
82eleq1d 2823 . . . . . . 7 (𝑦 = 𝐵 → ((𝐹𝑦) ∈ V ↔ (𝐹𝐵) ∈ V))
9 tz7.44.3 . . . . . . 7 (𝑦𝑋 → (𝐹𝑦) ∈ V)
108, 9vtoclga 3535 . . . . . 6 (𝐵𝑋 → (𝐹𝐵) ∈ V)
1110adantr 482 . . . . 5 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) ∈ V)
12 simpr 486 . . . . . . . . 9 ((𝐵𝑋 ∧ Lim 𝐵) → Lim 𝐵)
13 nlim0 6377 . . . . . . . . . . 11 ¬ Lim ∅
14 dmres 5960 . . . . . . . . . . . . . 14 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
15 tz7.44.5 . . . . . . . . . . . . . . . . . 18 Ord 𝑋
16 ordelss 6334 . . . . . . . . . . . . . . . . . 18 ((Ord 𝑋𝐵𝑋) → 𝐵𝑋)
1715, 16mpan 689 . . . . . . . . . . . . . . . . 17 (𝐵𝑋𝐵𝑋)
1817adantr 482 . . . . . . . . . . . . . . . 16 ((𝐵𝑋 ∧ Lim 𝐵) → 𝐵𝑋)
19 tz7.44.4 . . . . . . . . . . . . . . . . 17 𝐹 Fn 𝑋
20 fndm 6606 . . . . . . . . . . . . . . . . 17 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
2119, 20ax-mp 5 . . . . . . . . . . . . . . . 16 dom 𝐹 = 𝑋
2218, 21sseqtrrdi 3996 . . . . . . . . . . . . . . 15 ((𝐵𝑋 ∧ Lim 𝐵) → 𝐵 ⊆ dom 𝐹)
23 df-ss 3928 . . . . . . . . . . . . . . 15 (𝐵 ⊆ dom 𝐹 ↔ (𝐵 ∩ dom 𝐹) = 𝐵)
2422, 23sylib 217 . . . . . . . . . . . . . 14 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐵 ∩ dom 𝐹) = 𝐵)
2514, 24eqtrid 2789 . . . . . . . . . . . . 13 ((𝐵𝑋 ∧ Lim 𝐵) → dom (𝐹𝐵) = 𝐵)
26 dmeq 5860 . . . . . . . . . . . . . 14 ((𝐹𝐵) = ∅ → dom (𝐹𝐵) = dom ∅)
27 dm0 5877 . . . . . . . . . . . . . 14 dom ∅ = ∅
2826, 27eqtrdi 2793 . . . . . . . . . . . . 13 ((𝐹𝐵) = ∅ → dom (𝐹𝐵) = ∅)
2925, 28sylan9req 2798 . . . . . . . . . . . 12 (((𝐵𝑋 ∧ Lim 𝐵) ∧ (𝐹𝐵) = ∅) → 𝐵 = ∅)
30 limeq 6330 . . . . . . . . . . . 12 (𝐵 = ∅ → (Lim 𝐵 ↔ Lim ∅))
3129, 30syl 17 . . . . . . . . . . 11 (((𝐵𝑋 ∧ Lim 𝐵) ∧ (𝐹𝐵) = ∅) → (Lim 𝐵 ↔ Lim ∅))
3213, 31mtbiri 327 . . . . . . . . . 10 (((𝐵𝑋 ∧ Lim 𝐵) ∧ (𝐹𝐵) = ∅) → ¬ Lim 𝐵)
3332ex 414 . . . . . . . . 9 ((𝐵𝑋 ∧ Lim 𝐵) → ((𝐹𝐵) = ∅ → ¬ Lim 𝐵))
3412, 33mt2d 136 . . . . . . . 8 ((𝐵𝑋 ∧ Lim 𝐵) → ¬ (𝐹𝐵) = ∅)
3534iffalsed 4498 . . . . . . 7 ((𝐵𝑋 ∧ Lim 𝐵) → if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) = if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵)))))
36 limeq 6330 . . . . . . . . . 10 (dom (𝐹𝐵) = 𝐵 → (Lim dom (𝐹𝐵) ↔ Lim 𝐵))
3725, 36syl 17 . . . . . . . . 9 ((𝐵𝑋 ∧ Lim 𝐵) → (Lim dom (𝐹𝐵) ↔ Lim 𝐵))
3812, 37mpbird 257 . . . . . . . 8 ((𝐵𝑋 ∧ Lim 𝐵) → Lim dom (𝐹𝐵))
3938iftrued 4495 . . . . . . 7 ((𝐵𝑋 ∧ Lim 𝐵) → if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵)))) = ran (𝐹𝐵))
4035, 39eqtrd 2777 . . . . . 6 ((𝐵𝑋 ∧ Lim 𝐵) → if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) = ran (𝐹𝐵))
41 rnexg 7842 . . . . . . 7 ((𝐹𝐵) ∈ V → ran (𝐹𝐵) ∈ V)
42 uniexg 7678 . . . . . . 7 (ran (𝐹𝐵) ∈ V → ran (𝐹𝐵) ∈ V)
4311, 41, 423syl 18 . . . . . 6 ((𝐵𝑋 ∧ Lim 𝐵) → ran (𝐹𝐵) ∈ V)
4440, 43eqeltrd 2838 . . . . 5 ((𝐵𝑋 ∧ Lim 𝐵) → if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) ∈ V)
45 eqeq1 2741 . . . . . . 7 (𝑥 = (𝐹𝐵) → (𝑥 = ∅ ↔ (𝐹𝐵) = ∅))
46 dmeq 5860 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → dom 𝑥 = dom (𝐹𝐵))
47 limeq 6330 . . . . . . . . 9 (dom 𝑥 = dom (𝐹𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹𝐵)))
4846, 47syl 17 . . . . . . . 8 (𝑥 = (𝐹𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹𝐵)))
49 rneq 5892 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → ran 𝑥 = ran (𝐹𝐵))
5049unieqd 4880 . . . . . . . 8 (𝑥 = (𝐹𝐵) → ran 𝑥 = ran (𝐹𝐵))
51 fveq1 6842 . . . . . . . . . 10 (𝑥 = (𝐹𝐵) → (𝑥 dom 𝑥) = ((𝐹𝐵)‘ dom 𝑥))
5246unieqd 4880 . . . . . . . . . . 11 (𝑥 = (𝐹𝐵) → dom 𝑥 = dom (𝐹𝐵))
5352fveq2d 6847 . . . . . . . . . 10 (𝑥 = (𝐹𝐵) → ((𝐹𝐵)‘ dom 𝑥) = ((𝐹𝐵)‘ dom (𝐹𝐵)))
5451, 53eqtrd 2777 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → (𝑥 dom 𝑥) = ((𝐹𝐵)‘ dom (𝐹𝐵)))
5554fveq2d 6847 . . . . . . . 8 (𝑥 = (𝐹𝐵) → (𝐻‘(𝑥 dom 𝑥)) = (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))
5648, 50, 55ifbieq12d 4515 . . . . . . 7 (𝑥 = (𝐹𝐵) → if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥))) = if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵)))))
5745, 56ifbieq2d 4513 . . . . . 6 (𝑥 = (𝐹𝐵) → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))) = if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))))
58 tz7.44.1 . . . . . 6 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
5957, 58fvmptg 6947 . . . . 5 (((𝐹𝐵) ∈ V ∧ if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) ∈ V) → (𝐺‘(𝐹𝐵)) = if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))))
6011, 44, 59syl2anc 585 . . . 4 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐺‘(𝐹𝐵)) = if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))))
6160, 40eqtrd 2777 . . 3 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐺‘(𝐹𝐵)) = ran (𝐹𝐵))
627, 61eqtrd 2777 . 2 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = ran (𝐹𝐵))
63 df-ima 5647 . . 3 (𝐹𝐵) = ran (𝐹𝐵)
6463unieqi 4879 . 2 (𝐹𝐵) = ran (𝐹𝐵)
6562, 64eqtr4di 2795 1 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  Vcvv 3446  cin 3910  wss 3911  c0 4283  ifcif 4487   cuni 4866  cmpt 5189  dom cdm 5634  ran crn 5635  cres 5636  cima 5637  Ord word 6317  Lim wlim 6319   Fn wfn 6492  cfv 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ord 6321  df-lim 6323  df-iota 6449  df-fun 6499  df-fn 6500  df-fv 6505
This theorem is referenced by:  rdglimg  8372
  Copyright terms: Public domain W3C validator