MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44-3 Structured version   Visualization version   GIF version

Theorem tz7.44-3 8376
Description: The value of 𝐹 at a limit ordinal. Part 3 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
tz7.44.1 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
tz7.44.2 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
tz7.44.3 (𝑦𝑋 → (𝐹𝑦) ∈ V)
tz7.44.4 𝐹 Fn 𝑋
tz7.44.5 Ord 𝑋
Assertion
Ref Expression
tz7.44-3 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = (𝐹𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑦,𝐺   𝑥,𝐻   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐺(𝑥)   𝐻(𝑦)   𝑋(𝑥)

Proof of Theorem tz7.44-3
StepHypRef Expression
1 fveq2 6858 . . . . . 6 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
2 reseq2 5945 . . . . . . 7 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
32fveq2d 6862 . . . . . 6 (𝑦 = 𝐵 → (𝐺‘(𝐹𝑦)) = (𝐺‘(𝐹𝐵)))
41, 3eqeq12d 2745 . . . . 5 (𝑦 = 𝐵 → ((𝐹𝑦) = (𝐺‘(𝐹𝑦)) ↔ (𝐹𝐵) = (𝐺‘(𝐹𝐵))))
5 tz7.44.2 . . . . 5 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
64, 5vtoclga 3543 . . . 4 (𝐵𝑋 → (𝐹𝐵) = (𝐺‘(𝐹𝐵)))
76adantr 480 . . 3 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = (𝐺‘(𝐹𝐵)))
82eleq1d 2813 . . . . . . 7 (𝑦 = 𝐵 → ((𝐹𝑦) ∈ V ↔ (𝐹𝐵) ∈ V))
9 tz7.44.3 . . . . . . 7 (𝑦𝑋 → (𝐹𝑦) ∈ V)
108, 9vtoclga 3543 . . . . . 6 (𝐵𝑋 → (𝐹𝐵) ∈ V)
1110adantr 480 . . . . 5 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) ∈ V)
12 simpr 484 . . . . . . . . 9 ((𝐵𝑋 ∧ Lim 𝐵) → Lim 𝐵)
13 nlim0 6392 . . . . . . . . . . 11 ¬ Lim ∅
14 dmres 5983 . . . . . . . . . . . . . 14 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
15 tz7.44.5 . . . . . . . . . . . . . . . . . 18 Ord 𝑋
16 ordelss 6348 . . . . . . . . . . . . . . . . . 18 ((Ord 𝑋𝐵𝑋) → 𝐵𝑋)
1715, 16mpan 690 . . . . . . . . . . . . . . . . 17 (𝐵𝑋𝐵𝑋)
1817adantr 480 . . . . . . . . . . . . . . . 16 ((𝐵𝑋 ∧ Lim 𝐵) → 𝐵𝑋)
19 tz7.44.4 . . . . . . . . . . . . . . . . 17 𝐹 Fn 𝑋
20 fndm 6621 . . . . . . . . . . . . . . . . 17 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
2119, 20ax-mp 5 . . . . . . . . . . . . . . . 16 dom 𝐹 = 𝑋
2218, 21sseqtrrdi 3988 . . . . . . . . . . . . . . 15 ((𝐵𝑋 ∧ Lim 𝐵) → 𝐵 ⊆ dom 𝐹)
23 dfss2 3932 . . . . . . . . . . . . . . 15 (𝐵 ⊆ dom 𝐹 ↔ (𝐵 ∩ dom 𝐹) = 𝐵)
2422, 23sylib 218 . . . . . . . . . . . . . 14 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐵 ∩ dom 𝐹) = 𝐵)
2514, 24eqtrid 2776 . . . . . . . . . . . . 13 ((𝐵𝑋 ∧ Lim 𝐵) → dom (𝐹𝐵) = 𝐵)
26 dmeq 5867 . . . . . . . . . . . . . 14 ((𝐹𝐵) = ∅ → dom (𝐹𝐵) = dom ∅)
27 dm0 5884 . . . . . . . . . . . . . 14 dom ∅ = ∅
2826, 27eqtrdi 2780 . . . . . . . . . . . . 13 ((𝐹𝐵) = ∅ → dom (𝐹𝐵) = ∅)
2925, 28sylan9req 2785 . . . . . . . . . . . 12 (((𝐵𝑋 ∧ Lim 𝐵) ∧ (𝐹𝐵) = ∅) → 𝐵 = ∅)
30 limeq 6344 . . . . . . . . . . . 12 (𝐵 = ∅ → (Lim 𝐵 ↔ Lim ∅))
3129, 30syl 17 . . . . . . . . . . 11 (((𝐵𝑋 ∧ Lim 𝐵) ∧ (𝐹𝐵) = ∅) → (Lim 𝐵 ↔ Lim ∅))
3213, 31mtbiri 327 . . . . . . . . . 10 (((𝐵𝑋 ∧ Lim 𝐵) ∧ (𝐹𝐵) = ∅) → ¬ Lim 𝐵)
3332ex 412 . . . . . . . . 9 ((𝐵𝑋 ∧ Lim 𝐵) → ((𝐹𝐵) = ∅ → ¬ Lim 𝐵))
3412, 33mt2d 136 . . . . . . . 8 ((𝐵𝑋 ∧ Lim 𝐵) → ¬ (𝐹𝐵) = ∅)
3534iffalsed 4499 . . . . . . 7 ((𝐵𝑋 ∧ Lim 𝐵) → if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) = if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵)))))
36 limeq 6344 . . . . . . . . . 10 (dom (𝐹𝐵) = 𝐵 → (Lim dom (𝐹𝐵) ↔ Lim 𝐵))
3725, 36syl 17 . . . . . . . . 9 ((𝐵𝑋 ∧ Lim 𝐵) → (Lim dom (𝐹𝐵) ↔ Lim 𝐵))
3812, 37mpbird 257 . . . . . . . 8 ((𝐵𝑋 ∧ Lim 𝐵) → Lim dom (𝐹𝐵))
3938iftrued 4496 . . . . . . 7 ((𝐵𝑋 ∧ Lim 𝐵) → if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵)))) = ran (𝐹𝐵))
4035, 39eqtrd 2764 . . . . . 6 ((𝐵𝑋 ∧ Lim 𝐵) → if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) = ran (𝐹𝐵))
41 rnexg 7878 . . . . . . 7 ((𝐹𝐵) ∈ V → ran (𝐹𝐵) ∈ V)
42 uniexg 7716 . . . . . . 7 (ran (𝐹𝐵) ∈ V → ran (𝐹𝐵) ∈ V)
4311, 41, 423syl 18 . . . . . 6 ((𝐵𝑋 ∧ Lim 𝐵) → ran (𝐹𝐵) ∈ V)
4440, 43eqeltrd 2828 . . . . 5 ((𝐵𝑋 ∧ Lim 𝐵) → if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) ∈ V)
45 eqeq1 2733 . . . . . . 7 (𝑥 = (𝐹𝐵) → (𝑥 = ∅ ↔ (𝐹𝐵) = ∅))
46 dmeq 5867 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → dom 𝑥 = dom (𝐹𝐵))
47 limeq 6344 . . . . . . . . 9 (dom 𝑥 = dom (𝐹𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹𝐵)))
4846, 47syl 17 . . . . . . . 8 (𝑥 = (𝐹𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹𝐵)))
49 rneq 5900 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → ran 𝑥 = ran (𝐹𝐵))
5049unieqd 4884 . . . . . . . 8 (𝑥 = (𝐹𝐵) → ran 𝑥 = ran (𝐹𝐵))
51 fveq1 6857 . . . . . . . . . 10 (𝑥 = (𝐹𝐵) → (𝑥 dom 𝑥) = ((𝐹𝐵)‘ dom 𝑥))
5246unieqd 4884 . . . . . . . . . . 11 (𝑥 = (𝐹𝐵) → dom 𝑥 = dom (𝐹𝐵))
5352fveq2d 6862 . . . . . . . . . 10 (𝑥 = (𝐹𝐵) → ((𝐹𝐵)‘ dom 𝑥) = ((𝐹𝐵)‘ dom (𝐹𝐵)))
5451, 53eqtrd 2764 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → (𝑥 dom 𝑥) = ((𝐹𝐵)‘ dom (𝐹𝐵)))
5554fveq2d 6862 . . . . . . . 8 (𝑥 = (𝐹𝐵) → (𝐻‘(𝑥 dom 𝑥)) = (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))
5648, 50, 55ifbieq12d 4517 . . . . . . 7 (𝑥 = (𝐹𝐵) → if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥))) = if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵)))))
5745, 56ifbieq2d 4515 . . . . . 6 (𝑥 = (𝐹𝐵) → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))) = if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))))
58 tz7.44.1 . . . . . 6 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
5957, 58fvmptg 6966 . . . . 5 (((𝐹𝐵) ∈ V ∧ if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) ∈ V) → (𝐺‘(𝐹𝐵)) = if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))))
6011, 44, 59syl2anc 584 . . . 4 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐺‘(𝐹𝐵)) = if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))))
6160, 40eqtrd 2764 . . 3 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐺‘(𝐹𝐵)) = ran (𝐹𝐵))
627, 61eqtrd 2764 . 2 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = ran (𝐹𝐵))
63 df-ima 5651 . . 3 (𝐹𝐵) = ran (𝐹𝐵)
6463unieqi 4883 . 2 (𝐹𝐵) = ran (𝐹𝐵)
6562, 64eqtr4di 2782 1 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  wss 3914  c0 4296  ifcif 4488   cuni 4871  cmpt 5188  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Ord word 6331  Lim wlim 6333   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-lim 6337  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  rdglimg  8393
  Copyright terms: Public domain W3C validator