MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44-3 Structured version   Visualization version   GIF version

Theorem tz7.44-3 8427
Description: The value of 𝐹 at a limit ordinal. Part 3 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
tz7.44.1 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
tz7.44.2 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
tz7.44.3 (𝑦𝑋 → (𝐹𝑦) ∈ V)
tz7.44.4 𝐹 Fn 𝑋
tz7.44.5 Ord 𝑋
Assertion
Ref Expression
tz7.44-3 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = (𝐹𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑦,𝐺   𝑥,𝐻   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐺(𝑥)   𝐻(𝑦)   𝑋(𝑥)

Proof of Theorem tz7.44-3
StepHypRef Expression
1 fveq2 6881 . . . . . 6 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
2 reseq2 5966 . . . . . . 7 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
32fveq2d 6885 . . . . . 6 (𝑦 = 𝐵 → (𝐺‘(𝐹𝑦)) = (𝐺‘(𝐹𝐵)))
41, 3eqeq12d 2752 . . . . 5 (𝑦 = 𝐵 → ((𝐹𝑦) = (𝐺‘(𝐹𝑦)) ↔ (𝐹𝐵) = (𝐺‘(𝐹𝐵))))
5 tz7.44.2 . . . . 5 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
64, 5vtoclga 3561 . . . 4 (𝐵𝑋 → (𝐹𝐵) = (𝐺‘(𝐹𝐵)))
76adantr 480 . . 3 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = (𝐺‘(𝐹𝐵)))
82eleq1d 2820 . . . . . . 7 (𝑦 = 𝐵 → ((𝐹𝑦) ∈ V ↔ (𝐹𝐵) ∈ V))
9 tz7.44.3 . . . . . . 7 (𝑦𝑋 → (𝐹𝑦) ∈ V)
108, 9vtoclga 3561 . . . . . 6 (𝐵𝑋 → (𝐹𝐵) ∈ V)
1110adantr 480 . . . . 5 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) ∈ V)
12 simpr 484 . . . . . . . . 9 ((𝐵𝑋 ∧ Lim 𝐵) → Lim 𝐵)
13 nlim0 6417 . . . . . . . . . . 11 ¬ Lim ∅
14 dmres 6004 . . . . . . . . . . . . . 14 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
15 tz7.44.5 . . . . . . . . . . . . . . . . . 18 Ord 𝑋
16 ordelss 6373 . . . . . . . . . . . . . . . . . 18 ((Ord 𝑋𝐵𝑋) → 𝐵𝑋)
1715, 16mpan 690 . . . . . . . . . . . . . . . . 17 (𝐵𝑋𝐵𝑋)
1817adantr 480 . . . . . . . . . . . . . . . 16 ((𝐵𝑋 ∧ Lim 𝐵) → 𝐵𝑋)
19 tz7.44.4 . . . . . . . . . . . . . . . . 17 𝐹 Fn 𝑋
20 fndm 6646 . . . . . . . . . . . . . . . . 17 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
2119, 20ax-mp 5 . . . . . . . . . . . . . . . 16 dom 𝐹 = 𝑋
2218, 21sseqtrrdi 4005 . . . . . . . . . . . . . . 15 ((𝐵𝑋 ∧ Lim 𝐵) → 𝐵 ⊆ dom 𝐹)
23 dfss2 3949 . . . . . . . . . . . . . . 15 (𝐵 ⊆ dom 𝐹 ↔ (𝐵 ∩ dom 𝐹) = 𝐵)
2422, 23sylib 218 . . . . . . . . . . . . . 14 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐵 ∩ dom 𝐹) = 𝐵)
2514, 24eqtrid 2783 . . . . . . . . . . . . 13 ((𝐵𝑋 ∧ Lim 𝐵) → dom (𝐹𝐵) = 𝐵)
26 dmeq 5888 . . . . . . . . . . . . . 14 ((𝐹𝐵) = ∅ → dom (𝐹𝐵) = dom ∅)
27 dm0 5905 . . . . . . . . . . . . . 14 dom ∅ = ∅
2826, 27eqtrdi 2787 . . . . . . . . . . . . 13 ((𝐹𝐵) = ∅ → dom (𝐹𝐵) = ∅)
2925, 28sylan9req 2792 . . . . . . . . . . . 12 (((𝐵𝑋 ∧ Lim 𝐵) ∧ (𝐹𝐵) = ∅) → 𝐵 = ∅)
30 limeq 6369 . . . . . . . . . . . 12 (𝐵 = ∅ → (Lim 𝐵 ↔ Lim ∅))
3129, 30syl 17 . . . . . . . . . . 11 (((𝐵𝑋 ∧ Lim 𝐵) ∧ (𝐹𝐵) = ∅) → (Lim 𝐵 ↔ Lim ∅))
3213, 31mtbiri 327 . . . . . . . . . 10 (((𝐵𝑋 ∧ Lim 𝐵) ∧ (𝐹𝐵) = ∅) → ¬ Lim 𝐵)
3332ex 412 . . . . . . . . 9 ((𝐵𝑋 ∧ Lim 𝐵) → ((𝐹𝐵) = ∅ → ¬ Lim 𝐵))
3412, 33mt2d 136 . . . . . . . 8 ((𝐵𝑋 ∧ Lim 𝐵) → ¬ (𝐹𝐵) = ∅)
3534iffalsed 4516 . . . . . . 7 ((𝐵𝑋 ∧ Lim 𝐵) → if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) = if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵)))))
36 limeq 6369 . . . . . . . . . 10 (dom (𝐹𝐵) = 𝐵 → (Lim dom (𝐹𝐵) ↔ Lim 𝐵))
3725, 36syl 17 . . . . . . . . 9 ((𝐵𝑋 ∧ Lim 𝐵) → (Lim dom (𝐹𝐵) ↔ Lim 𝐵))
3812, 37mpbird 257 . . . . . . . 8 ((𝐵𝑋 ∧ Lim 𝐵) → Lim dom (𝐹𝐵))
3938iftrued 4513 . . . . . . 7 ((𝐵𝑋 ∧ Lim 𝐵) → if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵)))) = ran (𝐹𝐵))
4035, 39eqtrd 2771 . . . . . 6 ((𝐵𝑋 ∧ Lim 𝐵) → if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) = ran (𝐹𝐵))
41 rnexg 7903 . . . . . . 7 ((𝐹𝐵) ∈ V → ran (𝐹𝐵) ∈ V)
42 uniexg 7739 . . . . . . 7 (ran (𝐹𝐵) ∈ V → ran (𝐹𝐵) ∈ V)
4311, 41, 423syl 18 . . . . . 6 ((𝐵𝑋 ∧ Lim 𝐵) → ran (𝐹𝐵) ∈ V)
4440, 43eqeltrd 2835 . . . . 5 ((𝐵𝑋 ∧ Lim 𝐵) → if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) ∈ V)
45 eqeq1 2740 . . . . . . 7 (𝑥 = (𝐹𝐵) → (𝑥 = ∅ ↔ (𝐹𝐵) = ∅))
46 dmeq 5888 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → dom 𝑥 = dom (𝐹𝐵))
47 limeq 6369 . . . . . . . . 9 (dom 𝑥 = dom (𝐹𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹𝐵)))
4846, 47syl 17 . . . . . . . 8 (𝑥 = (𝐹𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹𝐵)))
49 rneq 5921 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → ran 𝑥 = ran (𝐹𝐵))
5049unieqd 4901 . . . . . . . 8 (𝑥 = (𝐹𝐵) → ran 𝑥 = ran (𝐹𝐵))
51 fveq1 6880 . . . . . . . . . 10 (𝑥 = (𝐹𝐵) → (𝑥 dom 𝑥) = ((𝐹𝐵)‘ dom 𝑥))
5246unieqd 4901 . . . . . . . . . . 11 (𝑥 = (𝐹𝐵) → dom 𝑥 = dom (𝐹𝐵))
5352fveq2d 6885 . . . . . . . . . 10 (𝑥 = (𝐹𝐵) → ((𝐹𝐵)‘ dom 𝑥) = ((𝐹𝐵)‘ dom (𝐹𝐵)))
5451, 53eqtrd 2771 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → (𝑥 dom 𝑥) = ((𝐹𝐵)‘ dom (𝐹𝐵)))
5554fveq2d 6885 . . . . . . . 8 (𝑥 = (𝐹𝐵) → (𝐻‘(𝑥 dom 𝑥)) = (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))
5648, 50, 55ifbieq12d 4534 . . . . . . 7 (𝑥 = (𝐹𝐵) → if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥))) = if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵)))))
5745, 56ifbieq2d 4532 . . . . . 6 (𝑥 = (𝐹𝐵) → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))) = if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))))
58 tz7.44.1 . . . . . 6 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
5957, 58fvmptg 6989 . . . . 5 (((𝐹𝐵) ∈ V ∧ if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))) ∈ V) → (𝐺‘(𝐹𝐵)) = if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))))
6011, 44, 59syl2anc 584 . . . 4 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐺‘(𝐹𝐵)) = if((𝐹𝐵) = ∅, 𝐴, if(Lim dom (𝐹𝐵), ran (𝐹𝐵), (𝐻‘((𝐹𝐵)‘ dom (𝐹𝐵))))))
6160, 40eqtrd 2771 . . 3 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐺‘(𝐹𝐵)) = ran (𝐹𝐵))
627, 61eqtrd 2771 . 2 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = ran (𝐹𝐵))
63 df-ima 5672 . . 3 (𝐹𝐵) = ran (𝐹𝐵)
6463unieqi 4900 . 2 (𝐹𝐵) = ran (𝐹𝐵)
6562, 64eqtr4di 2789 1 ((𝐵𝑋 ∧ Lim 𝐵) → (𝐹𝐵) = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cin 3930  wss 3931  c0 4313  ifcif 4505   cuni 4888  cmpt 5206  dom cdm 5659  ran crn 5660  cres 5661  cima 5662  Ord word 6356  Lim wlim 6358   Fn wfn 6531  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-lim 6362  df-iota 6489  df-fun 6538  df-fn 6539  df-fv 6544
This theorem is referenced by:  rdglimg  8444
  Copyright terms: Public domain W3C validator