Proof of Theorem tz7.44-3
Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) |
2 | | reseq2 5875 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝐹 ↾ 𝑦) = (𝐹 ↾ 𝐵)) |
3 | 2 | fveq2d 6760 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝐺‘(𝐹 ↾ 𝑦)) = (𝐺‘(𝐹 ↾ 𝐵))) |
4 | 1, 3 | eqeq12d 2754 |
. . . . 5
⊢ (𝑦 = 𝐵 → ((𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦)) ↔ (𝐹‘𝐵) = (𝐺‘(𝐹 ↾ 𝐵)))) |
5 | | tz7.44.2 |
. . . . 5
⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = (𝐺‘(𝐹 ↾ 𝑦))) |
6 | 4, 5 | vtoclga 3503 |
. . . 4
⊢ (𝐵 ∈ 𝑋 → (𝐹‘𝐵) = (𝐺‘(𝐹 ↾ 𝐵))) |
7 | 6 | adantr 480 |
. . 3
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → (𝐹‘𝐵) = (𝐺‘(𝐹 ↾ 𝐵))) |
8 | 2 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → ((𝐹 ↾ 𝑦) ∈ V ↔ (𝐹 ↾ 𝐵) ∈ V)) |
9 | | tz7.44.3 |
. . . . . . 7
⊢ (𝑦 ∈ 𝑋 → (𝐹 ↾ 𝑦) ∈ V) |
10 | 8, 9 | vtoclga 3503 |
. . . . . 6
⊢ (𝐵 ∈ 𝑋 → (𝐹 ↾ 𝐵) ∈ V) |
11 | 10 | adantr 480 |
. . . . 5
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → (𝐹 ↾ 𝐵) ∈ V) |
12 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → Lim 𝐵) |
13 | | nlim0 6309 |
. . . . . . . . . . 11
⊢ ¬
Lim ∅ |
14 | | dmres 5902 |
. . . . . . . . . . . . . 14
⊢ dom
(𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) |
15 | | tz7.44.5 |
. . . . . . . . . . . . . . . . . 18
⊢ Ord 𝑋 |
16 | | ordelss 6267 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Ord
𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ⊆ 𝑋) |
17 | 15, 16 | mpan 686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈ 𝑋 → 𝐵 ⊆ 𝑋) |
18 | 17 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → 𝐵 ⊆ 𝑋) |
19 | | tz7.44.4 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐹 Fn 𝑋 |
20 | | fndm 6520 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋) |
21 | 19, 20 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ dom 𝐹 = 𝑋 |
22 | 18, 21 | sseqtrrdi 3968 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → 𝐵 ⊆ dom 𝐹) |
23 | | df-ss 3900 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ⊆ dom 𝐹 ↔ (𝐵 ∩ dom 𝐹) = 𝐵) |
24 | 22, 23 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → (𝐵 ∩ dom 𝐹) = 𝐵) |
25 | 14, 24 | eqtrid 2790 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → dom (𝐹 ↾ 𝐵) = 𝐵) |
26 | | dmeq 5801 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ↾ 𝐵) = ∅ → dom (𝐹 ↾ 𝐵) = dom ∅) |
27 | | dm0 5818 |
. . . . . . . . . . . . . 14
⊢ dom
∅ = ∅ |
28 | 26, 27 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ↾ 𝐵) = ∅ → dom (𝐹 ↾ 𝐵) = ∅) |
29 | 25, 28 | sylan9req 2800 |
. . . . . . . . . . . 12
⊢ (((𝐵 ∈ 𝑋 ∧ Lim 𝐵) ∧ (𝐹 ↾ 𝐵) = ∅) → 𝐵 = ∅) |
30 | | limeq 6263 |
. . . . . . . . . . . 12
⊢ (𝐵 = ∅ → (Lim 𝐵 ↔ Lim
∅)) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ 𝑋 ∧ Lim 𝐵) ∧ (𝐹 ↾ 𝐵) = ∅) → (Lim 𝐵 ↔ Lim ∅)) |
32 | 13, 31 | mtbiri 326 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ 𝑋 ∧ Lim 𝐵) ∧ (𝐹 ↾ 𝐵) = ∅) → ¬ Lim 𝐵) |
33 | 32 | ex 412 |
. . . . . . . . 9
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → ((𝐹 ↾ 𝐵) = ∅ → ¬ Lim 𝐵)) |
34 | 12, 33 | mt2d 136 |
. . . . . . . 8
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → ¬ (𝐹 ↾ 𝐵) = ∅) |
35 | 34 | iffalsed 4467 |
. . . . . . 7
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → if((𝐹 ↾ 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ 𝐵), ∪ ran (𝐹 ↾ 𝐵), (𝐻‘((𝐹 ↾ 𝐵)‘∪ dom
(𝐹 ↾ 𝐵))))) = if(Lim dom (𝐹 ↾ 𝐵), ∪ ran (𝐹 ↾ 𝐵), (𝐻‘((𝐹 ↾ 𝐵)‘∪ dom
(𝐹 ↾ 𝐵))))) |
36 | | limeq 6263 |
. . . . . . . . . 10
⊢ (dom
(𝐹 ↾ 𝐵) = 𝐵 → (Lim dom (𝐹 ↾ 𝐵) ↔ Lim 𝐵)) |
37 | 25, 36 | syl 17 |
. . . . . . . . 9
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → (Lim dom (𝐹 ↾ 𝐵) ↔ Lim 𝐵)) |
38 | 12, 37 | mpbird 256 |
. . . . . . . 8
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → Lim dom (𝐹 ↾ 𝐵)) |
39 | 38 | iftrued 4464 |
. . . . . . 7
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → if(Lim dom (𝐹 ↾ 𝐵), ∪ ran (𝐹 ↾ 𝐵), (𝐻‘((𝐹 ↾ 𝐵)‘∪ dom
(𝐹 ↾ 𝐵)))) = ∪ ran (𝐹 ↾ 𝐵)) |
40 | 35, 39 | eqtrd 2778 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → if((𝐹 ↾ 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ 𝐵), ∪ ran (𝐹 ↾ 𝐵), (𝐻‘((𝐹 ↾ 𝐵)‘∪ dom
(𝐹 ↾ 𝐵))))) = ∪ ran (𝐹 ↾ 𝐵)) |
41 | | rnexg 7725 |
. . . . . . 7
⊢ ((𝐹 ↾ 𝐵) ∈ V → ran (𝐹 ↾ 𝐵) ∈ V) |
42 | | uniexg 7571 |
. . . . . . 7
⊢ (ran
(𝐹 ↾ 𝐵) ∈ V → ∪ ran (𝐹 ↾ 𝐵) ∈ V) |
43 | 11, 41, 42 | 3syl 18 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → ∪ ran
(𝐹 ↾ 𝐵) ∈ V) |
44 | 40, 43 | eqeltrd 2839 |
. . . . 5
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → if((𝐹 ↾ 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ 𝐵), ∪ ran (𝐹 ↾ 𝐵), (𝐻‘((𝐹 ↾ 𝐵)‘∪ dom
(𝐹 ↾ 𝐵))))) ∈ V) |
45 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑥 = (𝐹 ↾ 𝐵) → (𝑥 = ∅ ↔ (𝐹 ↾ 𝐵) = ∅)) |
46 | | dmeq 5801 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹 ↾ 𝐵) → dom 𝑥 = dom (𝐹 ↾ 𝐵)) |
47 | | limeq 6263 |
. . . . . . . . 9
⊢ (dom
𝑥 = dom (𝐹 ↾ 𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹 ↾ 𝐵))) |
48 | 46, 47 | syl 17 |
. . . . . . . 8
⊢ (𝑥 = (𝐹 ↾ 𝐵) → (Lim dom 𝑥 ↔ Lim dom (𝐹 ↾ 𝐵))) |
49 | | rneq 5834 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹 ↾ 𝐵) → ran 𝑥 = ran (𝐹 ↾ 𝐵)) |
50 | 49 | unieqd 4850 |
. . . . . . . 8
⊢ (𝑥 = (𝐹 ↾ 𝐵) → ∪ ran
𝑥 = ∪ ran (𝐹 ↾ 𝐵)) |
51 | | fveq1 6755 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐹 ↾ 𝐵) → (𝑥‘∪ dom 𝑥) = ((𝐹 ↾ 𝐵)‘∪ dom
𝑥)) |
52 | 46 | unieqd 4850 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐹 ↾ 𝐵) → ∪ dom
𝑥 = ∪ dom (𝐹 ↾ 𝐵)) |
53 | 52 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐹 ↾ 𝐵) → ((𝐹 ↾ 𝐵)‘∪ dom
𝑥) = ((𝐹 ↾ 𝐵)‘∪ dom
(𝐹 ↾ 𝐵))) |
54 | 51, 53 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹 ↾ 𝐵) → (𝑥‘∪ dom 𝑥) = ((𝐹 ↾ 𝐵)‘∪ dom
(𝐹 ↾ 𝐵))) |
55 | 54 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑥 = (𝐹 ↾ 𝐵) → (𝐻‘(𝑥‘∪ dom 𝑥)) = (𝐻‘((𝐹 ↾ 𝐵)‘∪ dom
(𝐹 ↾ 𝐵)))) |
56 | 48, 50, 55 | ifbieq12d 4484 |
. . . . . . 7
⊢ (𝑥 = (𝐹 ↾ 𝐵) → if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥))) = if(Lim dom (𝐹 ↾ 𝐵), ∪ ran (𝐹 ↾ 𝐵), (𝐻‘((𝐹 ↾ 𝐵)‘∪ dom
(𝐹 ↾ 𝐵))))) |
57 | 45, 56 | ifbieq2d 4482 |
. . . . . 6
⊢ (𝑥 = (𝐹 ↾ 𝐵) → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥)))) = if((𝐹 ↾ 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ 𝐵), ∪ ran (𝐹 ↾ 𝐵), (𝐻‘((𝐹 ↾ 𝐵)‘∪ dom
(𝐹 ↾ 𝐵)))))) |
58 | | tz7.44.1 |
. . . . . 6
⊢ 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐻‘(𝑥‘∪ dom 𝑥))))) |
59 | 57, 58 | fvmptg 6855 |
. . . . 5
⊢ (((𝐹 ↾ 𝐵) ∈ V ∧ if((𝐹 ↾ 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ 𝐵), ∪ ran (𝐹 ↾ 𝐵), (𝐻‘((𝐹 ↾ 𝐵)‘∪ dom
(𝐹 ↾ 𝐵))))) ∈ V) → (𝐺‘(𝐹 ↾ 𝐵)) = if((𝐹 ↾ 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ 𝐵), ∪ ran (𝐹 ↾ 𝐵), (𝐻‘((𝐹 ↾ 𝐵)‘∪ dom
(𝐹 ↾ 𝐵)))))) |
60 | 11, 44, 59 | syl2anc 583 |
. . . 4
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → (𝐺‘(𝐹 ↾ 𝐵)) = if((𝐹 ↾ 𝐵) = ∅, 𝐴, if(Lim dom (𝐹 ↾ 𝐵), ∪ ran (𝐹 ↾ 𝐵), (𝐻‘((𝐹 ↾ 𝐵)‘∪ dom
(𝐹 ↾ 𝐵)))))) |
61 | 60, 40 | eqtrd 2778 |
. . 3
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → (𝐺‘(𝐹 ↾ 𝐵)) = ∪ ran (𝐹 ↾ 𝐵)) |
62 | 7, 61 | eqtrd 2778 |
. 2
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → (𝐹‘𝐵) = ∪ ran (𝐹 ↾ 𝐵)) |
63 | | df-ima 5593 |
. . 3
⊢ (𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) |
64 | 63 | unieqi 4849 |
. 2
⊢ ∪ (𝐹
“ 𝐵) = ∪ ran (𝐹 ↾ 𝐵) |
65 | 62, 64 | eqtr4di 2797 |
1
⊢ ((𝐵 ∈ 𝑋 ∧ Lim 𝐵) → (𝐹‘𝐵) = ∪ (𝐹 “ 𝐵)) |