![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noxpordpred | Structured version Visualization version GIF version |
Description: Next we calculate the predecessor class of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
noxpord.1 | ⊢ 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} |
noxpord.2 | ⊢ 𝑆 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} |
Ref | Expression |
---|---|
noxpordpred | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred(𝑆, ( No × No ), ⟨𝐴, 𝐵⟩) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noxpord.2 | . . 3 ⊢ 𝑆 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} | |
2 | 1 | xpord2pred 8131 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred(𝑆, ( No × No ), ⟨𝐴, 𝐵⟩) = (((Pred(𝑅, No , 𝐴) ∪ {𝐴}) × (Pred(𝑅, No , 𝐵) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) |
3 | noxpord.1 | . . . . . . 7 ⊢ 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} | |
4 | 3 | lrrecpred 27428 | . . . . . 6 ⊢ (𝐴 ∈ No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
5 | 4 | adantr 482 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
6 | 5 | uneq1d 4163 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (Pred(𝑅, No , 𝐴) ∪ {𝐴}) = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴})) |
7 | 3 | lrrecpred 27428 | . . . . . 6 ⊢ (𝐵 ∈ No → Pred(𝑅, No , 𝐵) = (( L ‘𝐵) ∪ ( R ‘𝐵))) |
8 | 7 | adantl 483 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred(𝑅, No , 𝐵) = (( L ‘𝐵) ∪ ( R ‘𝐵))) |
9 | 8 | uneq1d 4163 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (Pred(𝑅, No , 𝐵) ∪ {𝐵}) = ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) |
10 | 6, 9 | xpeq12d 5708 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((Pred(𝑅, No , 𝐴) ∪ {𝐴}) × (Pred(𝑅, No , 𝐵) ∪ {𝐵})) = (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))) |
11 | 10 | difeq1d 4122 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (((Pred(𝑅, No , 𝐴) ∪ {𝐴}) × (Pred(𝑅, No , 𝐵) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) |
12 | 2, 11 | eqtrd 2773 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred(𝑆, ( No × No ), ⟨𝐴, 𝐵⟩) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∖ cdif 3946 ∪ cun 3947 {csn 4629 ⟨cop 4635 class class class wbr 5149 {copab 5211 × cxp 5675 Predcpred 6300 ‘cfv 6544 1st c1st 7973 2nd c2nd 7974 No csur 27143 L cleft 27340 R cright 27341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-1o 8466 df-2o 8467 df-no 27146 df-slt 27147 df-bday 27148 df-sslt 27283 df-scut 27285 df-made 27342 df-old 27343 df-left 27345 df-right 27346 |
This theorem is referenced by: norec2ov 27441 |
Copyright terms: Public domain | W3C validator |