MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noxpordpred Structured version   Visualization version   GIF version

Theorem noxpordpred 27864
Description: Next we calculate the predecessor class of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypotheses
Ref Expression
noxpord.1 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
noxpord.2 𝑆 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑅(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
Assertion
Ref Expression
noxpordpred ((𝐴 No 𝐵 No ) → Pred(𝑆, ( No × No ), ⟨𝐴, 𝐵⟩) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑎,𝑏,𝐴   𝑥,𝐴,𝑦   𝐵,𝑎,𝑏   𝑥,𝐵,𝑦
Allowed substitution hints:   𝑅(𝑎,𝑏)   𝑆(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem noxpordpred
StepHypRef Expression
1 noxpord.2 . . 3 𝑆 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑅(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
21xpord2pred 8145 . 2 ((𝐴 No 𝐵 No ) → Pred(𝑆, ( No × No ), ⟨𝐴, 𝐵⟩) = (((Pred(𝑅, No , 𝐴) ∪ {𝐴}) × (Pred(𝑅, No , 𝐵) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
3 noxpord.1 . . . . . . 7 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
43lrrecpred 27855 . . . . . 6 (𝐴 No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴)))
54adantr 480 . . . . 5 ((𝐴 No 𝐵 No ) → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴)))
65uneq1d 4159 . . . 4 ((𝐴 No 𝐵 No ) → (Pred(𝑅, No , 𝐴) ∪ {𝐴}) = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
73lrrecpred 27855 . . . . . 6 (𝐵 No → Pred(𝑅, No , 𝐵) = (( L ‘𝐵) ∪ ( R ‘𝐵)))
87adantl 481 . . . . 5 ((𝐴 No 𝐵 No ) → Pred(𝑅, No , 𝐵) = (( L ‘𝐵) ∪ ( R ‘𝐵)))
98uneq1d 4159 . . . 4 ((𝐴 No 𝐵 No ) → (Pred(𝑅, No , 𝐵) ∪ {𝐵}) = ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
106, 9xpeq12d 5704 . . 3 ((𝐴 No 𝐵 No ) → ((Pred(𝑅, No , 𝐴) ∪ {𝐴}) × (Pred(𝑅, No , 𝐵) ∪ {𝐵})) = (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})))
1110difeq1d 4118 . 2 ((𝐴 No 𝐵 No ) → (((Pred(𝑅, No , 𝐴) ∪ {𝐴}) × (Pred(𝑅, No , 𝐵) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
122, 11eqtrd 2768 1 ((𝐴 No 𝐵 No ) → Pred(𝑆, ( No × No ), ⟨𝐴, 𝐵⟩) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1085   = wceq 1534  wcel 2099  wne 2936  cdif 3942  cun 3943  {csn 4625  cop 4631   class class class wbr 5143  {copab 5205   × cxp 5671  Predcpred 6299  cfv 6543  1st c1st 7986  2nd c2nd 7987   No csur 27567   L cleft 27766   R cright 27767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-1o 8481  df-2o 8482  df-no 27570  df-slt 27571  df-bday 27572  df-sslt 27708  df-scut 27710  df-made 27768  df-old 27769  df-left 27771  df-right 27772
This theorem is referenced by:  norec2ov  27868
  Copyright terms: Public domain W3C validator