MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noxpordpred Structured version   Visualization version   GIF version

Theorem noxpordpred 27896
Description: Next we calculate the predecessor class of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypotheses
Ref Expression
noxpord.1 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
noxpord.2 𝑆 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑅(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
Assertion
Ref Expression
noxpordpred ((𝐴 No 𝐵 No ) → Pred(𝑆, ( No × No ), ⟨𝐴, 𝐵⟩) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑎,𝑏,𝐴   𝑥,𝐴,𝑦   𝐵,𝑎,𝑏   𝑥,𝐵,𝑦
Allowed substitution hints:   𝑅(𝑎,𝑏)   𝑆(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem noxpordpred
StepHypRef Expression
1 noxpord.2 . . 3 𝑆 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑅(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
21xpord2pred 8075 . 2 ((𝐴 No 𝐵 No ) → Pred(𝑆, ( No × No ), ⟨𝐴, 𝐵⟩) = (((Pred(𝑅, No , 𝐴) ∪ {𝐴}) × (Pred(𝑅, No , 𝐵) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
3 noxpord.1 . . . . . . 7 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
43lrrecpred 27887 . . . . . 6 (𝐴 No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴)))
54adantr 480 . . . . 5 ((𝐴 No 𝐵 No ) → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴)))
65uneq1d 4114 . . . 4 ((𝐴 No 𝐵 No ) → (Pred(𝑅, No , 𝐴) ∪ {𝐴}) = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}))
73lrrecpred 27887 . . . . . 6 (𝐵 No → Pred(𝑅, No , 𝐵) = (( L ‘𝐵) ∪ ( R ‘𝐵)))
87adantl 481 . . . . 5 ((𝐴 No 𝐵 No ) → Pred(𝑅, No , 𝐵) = (( L ‘𝐵) ∪ ( R ‘𝐵)))
98uneq1d 4114 . . . 4 ((𝐴 No 𝐵 No ) → (Pred(𝑅, No , 𝐵) ∪ {𝐵}) = ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))
106, 9xpeq12d 5645 . . 3 ((𝐴 No 𝐵 No ) → ((Pred(𝑅, No , 𝐴) ∪ {𝐴}) × (Pred(𝑅, No , 𝐵) ∪ {𝐵})) = (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})))
1110difeq1d 4072 . 2 ((𝐴 No 𝐵 No ) → (((Pred(𝑅, No , 𝐴) ∪ {𝐴}) × (Pred(𝑅, No , 𝐵) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
122, 11eqtrd 2766 1 ((𝐴 No 𝐵 No ) → Pred(𝑆, ( No × No ), ⟨𝐴, 𝐵⟩) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cdif 3894  cun 3895  {csn 4573  cop 4579   class class class wbr 5089  {copab 5151   × cxp 5612  Predcpred 6247  cfv 6481  1st c1st 7919  2nd c2nd 7920   No csur 27578   L cleft 27786   R cright 27787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-bday 27583  df-sslt 27721  df-scut 27723  df-made 27788  df-old 27789  df-left 27791  df-right 27792
This theorem is referenced by:  norec2ov  27900
  Copyright terms: Public domain W3C validator