![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noxpordpred | Structured version Visualization version GIF version |
Description: Next we calculate the predecessor class of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
noxpord.1 | ⊢ 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} |
noxpord.2 | ⊢ 𝑆 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} |
Ref | Expression |
---|---|
noxpordpred | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred(𝑆, ( No × No ), ⟨𝐴, 𝐵⟩) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noxpord.2 | . . 3 ⊢ 𝑆 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} | |
2 | 1 | xpord2pred 8131 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred(𝑆, ( No × No ), ⟨𝐴, 𝐵⟩) = (((Pred(𝑅, No , 𝐴) ∪ {𝐴}) × (Pred(𝑅, No , 𝐵) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) |
3 | noxpord.1 | . . . . . . 7 ⊢ 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} | |
4 | 3 | lrrecpred 27816 | . . . . . 6 ⊢ (𝐴 ∈ No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
6 | 5 | uneq1d 4157 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (Pred(𝑅, No , 𝐴) ∪ {𝐴}) = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴})) |
7 | 3 | lrrecpred 27816 | . . . . . 6 ⊢ (𝐵 ∈ No → Pred(𝑅, No , 𝐵) = (( L ‘𝐵) ∪ ( R ‘𝐵))) |
8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred(𝑅, No , 𝐵) = (( L ‘𝐵) ∪ ( R ‘𝐵))) |
9 | 8 | uneq1d 4157 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (Pred(𝑅, No , 𝐵) ∪ {𝐵}) = ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) |
10 | 6, 9 | xpeq12d 5700 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((Pred(𝑅, No , 𝐴) ∪ {𝐴}) × (Pred(𝑅, No , 𝐵) ∪ {𝐵})) = (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))) |
11 | 10 | difeq1d 4116 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (((Pred(𝑅, No , 𝐴) ∪ {𝐴}) × (Pred(𝑅, No , 𝐵) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩}) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) |
12 | 2, 11 | eqtrd 2766 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred(𝑆, ( No × No ), ⟨𝐴, 𝐵⟩) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {⟨𝐴, 𝐵⟩})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ∖ cdif 3940 ∪ cun 3941 {csn 4623 ⟨cop 4629 class class class wbr 5141 {copab 5203 × cxp 5667 Predcpred 6293 ‘cfv 6537 1st c1st 7972 2nd c2nd 7973 No csur 27528 L cleft 27727 R cright 27728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-1o 8467 df-2o 8468 df-no 27531 df-slt 27532 df-bday 27533 df-sslt 27669 df-scut 27671 df-made 27729 df-old 27730 df-left 27732 df-right 27733 |
This theorem is referenced by: norec2ov 27829 |
Copyright terms: Public domain | W3C validator |