| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noxpordpred | Structured version Visualization version GIF version | ||
| Description: Next we calculate the predecessor class of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| noxpord.1 | ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} |
| noxpord.2 | ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} |
| Ref | Expression |
|---|---|
| noxpordpred | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred(𝑆, ( No × No ), 〈𝐴, 𝐵〉) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noxpord.2 | . . 3 ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} | |
| 2 | 1 | xpord2pred 8151 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred(𝑆, ( No × No ), 〈𝐴, 𝐵〉) = (((Pred(𝑅, No , 𝐴) ∪ {𝐴}) × (Pred(𝑅, No , 𝐵) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) |
| 3 | noxpord.1 | . . . . . . 7 ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} | |
| 4 | 3 | lrrecpred 27912 | . . . . . 6 ⊢ (𝐴 ∈ No → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred(𝑅, No , 𝐴) = (( L ‘𝐴) ∪ ( R ‘𝐴))) |
| 6 | 5 | uneq1d 4147 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (Pred(𝑅, No , 𝐴) ∪ {𝐴}) = ((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴})) |
| 7 | 3 | lrrecpred 27912 | . . . . . 6 ⊢ (𝐵 ∈ No → Pred(𝑅, No , 𝐵) = (( L ‘𝐵) ∪ ( R ‘𝐵))) |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred(𝑅, No , 𝐵) = (( L ‘𝐵) ∪ ( R ‘𝐵))) |
| 9 | 8 | uneq1d 4147 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (Pred(𝑅, No , 𝐵) ∪ {𝐵}) = ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) |
| 10 | 6, 9 | xpeq12d 5696 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((Pred(𝑅, No , 𝐴) ∪ {𝐴}) × (Pred(𝑅, No , 𝐵) ∪ {𝐵})) = (((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵}))) |
| 11 | 10 | difeq1d 4105 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (((Pred(𝑅, No , 𝐴) ∪ {𝐴}) × (Pred(𝑅, No , 𝐵) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉}) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) |
| 12 | 2, 11 | eqtrd 2769 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred(𝑆, ( No × No ), 〈𝐴, 𝐵〉) = ((((( L ‘𝐴) ∪ ( R ‘𝐴)) ∪ {𝐴}) × ((( L ‘𝐵) ∪ ( R ‘𝐵)) ∪ {𝐵})) ∖ {〈𝐴, 𝐵〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∖ cdif 3928 ∪ cun 3929 {csn 4606 〈cop 4612 class class class wbr 5123 {copab 5185 × cxp 5663 Predcpred 6300 ‘cfv 6540 1st c1st 7993 2nd c2nd 7994 No csur 27619 L cleft 27819 R cright 27820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-1o 8487 df-2o 8488 df-no 27622 df-slt 27623 df-bday 27624 df-sslt 27761 df-scut 27763 df-made 27821 df-old 27822 df-left 27824 df-right 27825 |
| This theorem is referenced by: norec2ov 27925 |
| Copyright terms: Public domain | W3C validator |