| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noxpordfr | Structured version Visualization version GIF version | ||
| Description: Next we establish the foundedness of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| noxpord.1 | ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} |
| noxpord.2 | ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} |
| Ref | Expression |
|---|---|
| noxpordfr | ⊢ 𝑆 Fr ( No × No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noxpord.2 | . . 3 ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} | |
| 2 | noxpord.1 | . . . . 5 ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} | |
| 3 | 2 | lrrecfr 27850 | . . . 4 ⊢ 𝑅 Fr No |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝑅 Fr No ) |
| 5 | 1, 4, 4 | frxp2 8123 | . 2 ⊢ (⊤ → 𝑆 Fr ( No × No )) |
| 6 | 5 | mptru 1547 | 1 ⊢ 𝑆 Fr ( No × No ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 ∪ cun 3912 class class class wbr 5107 {copab 5169 Fr wfr 5588 × cxp 5636 ‘cfv 6511 1st c1st 7966 2nd c2nd 7967 No csur 27551 L cleft 27753 R cright 27754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-bday 27556 df-sslt 27693 df-scut 27695 df-made 27755 df-old 27756 df-left 27758 df-right 27759 |
| This theorem is referenced by: norec2fn 27863 norec2ov 27864 |
| Copyright terms: Public domain | W3C validator |