Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > noxpordfr | Structured version Visualization version GIF version |
Description: Next we establish the foundedness of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
noxpord.1 | ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} |
noxpord.2 | ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} |
Ref | Expression |
---|---|
noxpordfr | ⊢ 𝑆 Fr ( No × No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noxpord.2 | . . 3 ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} | |
2 | noxpord.1 | . . . . 5 ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} | |
3 | 2 | lrrecfr 34027 | . . . 4 ⊢ 𝑅 Fr No |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝑅 Fr No ) |
5 | 1, 4, 4 | frxp2 33718 | . 2 ⊢ (⊤ → 𝑆 Fr ( No × No )) |
6 | 5 | mptru 1546 | 1 ⊢ 𝑆 Fr ( No × No ) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 843 ∧ w3a 1085 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ≠ wne 2942 ∪ cun 3881 class class class wbr 5070 {copab 5132 Fr wfr 5532 × cxp 5578 ‘cfv 6418 1st c1st 7802 2nd c2nd 7803 No csur 33770 L cleft 33956 R cright 33957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-1o 8267 df-2o 8268 df-no 33773 df-slt 33774 df-bday 33775 df-sslt 33903 df-scut 33905 df-made 33958 df-old 33959 df-left 33961 df-right 33962 |
This theorem is referenced by: norec2fn 34040 norec2ov 34041 |
Copyright terms: Public domain | W3C validator |