Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nregmodel Structured version   Visualization version   GIF version

Theorem nregmodel 44991
Description: The Axiom of Regularity ax-reg 9503 is false in the permutation model defined from 𝐹. Since the other axioms of ZFC hold in all permutation models (permaxext 44979 through permac8prim 44988), we can conclude that Regularity does not follow from those axioms, assuming ZFC is consistent. (If we could prove Regularity from the other axioms, we could prove it in the permutation model and thus obtain a contradiction with this theorem.) Since we also know that Regularity is consistent with the other axioms (wfaxext 44967 through wfac8prim 44976), Regularity is neither provable nor disprovable from the other axioms; i.e., it is independent of them. (Contributed by Eric Schmidt, 16-Nov-2025.)
Hypotheses
Ref Expression
nregmodel.1 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
nregmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
nregmodel ¬ ∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝑅
Allowed substitution hints:   𝑅(𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem nregmodel
StepHypRef Expression
1 0ex 5249 . . 3 ∅ ∈ V
21snid 4616 . 2 ∅ ∈ {∅}
3 eleq1 2816 . . . . 5 (𝑦 = ∅ → (𝑦 ∈ {∅} ↔ ∅ ∈ {∅}))
41, 3, 2ceqsexv2d 3490 . . . 4 𝑦 𝑦 ∈ {∅}
5 breq2 5099 . . . . . . . 8 (𝑥 = ∅ → (𝑦𝑅𝑥𝑦𝑅∅))
6 nregmodel.1 . . . . . . . . 9 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
7 nregmodel.2 . . . . . . . . 9 𝑅 = (𝐹 ∘ E )
86, 7nregmodellem 44990 . . . . . . . 8 (𝑦𝑅∅ ↔ 𝑦 ∈ {∅})
95, 8bitrdi 287 . . . . . . 7 (𝑥 = ∅ → (𝑦𝑅𝑥𝑦 ∈ {∅}))
109exbidv 1921 . . . . . 6 (𝑥 = ∅ → (∃𝑦 𝑦𝑅𝑥 ↔ ∃𝑦 𝑦 ∈ {∅}))
11 breq2 5099 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑧𝑅𝑥𝑧𝑅∅))
126, 7nregmodellem 44990 . . . . . . . . . . . 12 (𝑧𝑅∅ ↔ 𝑧 ∈ {∅})
1311, 12bitrdi 287 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑧𝑅𝑥𝑧 ∈ {∅}))
1413notbid 318 . . . . . . . . . 10 (𝑥 = ∅ → (¬ 𝑧𝑅𝑥 ↔ ¬ 𝑧 ∈ {∅}))
1514imbi2d 340 . . . . . . . . 9 (𝑥 = ∅ → ((𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥) ↔ (𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
1615albidv 1920 . . . . . . . 8 (𝑥 = ∅ → (∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥) ↔ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
179, 16anbi12d 632 . . . . . . 7 (𝑥 = ∅ → ((𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)) ↔ (𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))))
1817exbidv 1921 . . . . . 6 (𝑥 = ∅ → (∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)) ↔ ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))))
1910, 18imbi12d 344 . . . . 5 (𝑥 = ∅ → ((∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) ↔ (∃𝑦 𝑦 ∈ {∅} → ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))))
201, 19spcv 3562 . . . 4 (∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) → (∃𝑦 𝑦 ∈ {∅} → ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))))
214, 20mpi 20 . . 3 (∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) → ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
22 df-ral 3045 . . . . 5 (∀𝑧 ∈ {∅} ¬ 𝑧 ∈ {∅} ↔ ∀𝑧(𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅}))
23 breq2 5099 . . . . . . . . 9 (𝑦 = ∅ → (𝑧𝑅𝑦𝑧𝑅∅))
2423, 12bitrdi 287 . . . . . . . 8 (𝑦 = ∅ → (𝑧𝑅𝑦𝑧 ∈ {∅}))
2524imbi1d 341 . . . . . . 7 (𝑦 = ∅ → ((𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ (𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅})))
2625albidv 1920 . . . . . 6 (𝑦 = ∅ → (∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ ∀𝑧(𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅})))
271, 26rexsn 4636 . . . . 5 (∃𝑦 ∈ {∅}∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ ∀𝑧(𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅}))
28 df-rex 3054 . . . . 5 (∃𝑦 ∈ {∅}∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
2922, 27, 283bitr2ri 300 . . . 4 (∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})) ↔ ∀𝑧 ∈ {∅} ¬ 𝑧 ∈ {∅})
30 eleq1 2816 . . . . . 6 (𝑧 = ∅ → (𝑧 ∈ {∅} ↔ ∅ ∈ {∅}))
3130notbid 318 . . . . 5 (𝑧 = ∅ → (¬ 𝑧 ∈ {∅} ↔ ¬ ∅ ∈ {∅}))
321, 31ralsn 4635 . . . 4 (∀𝑧 ∈ {∅} ¬ 𝑧 ∈ {∅} ↔ ¬ ∅ ∈ {∅})
3329, 32bitri 275 . . 3 (∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})) ↔ ¬ ∅ ∈ {∅})
3421, 33sylib 218 . 2 (∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) → ¬ ∅ ∈ {∅})
352, 34mt2 200 1 ¬ ∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  cdif 3902  cun 3903  c0 4286  {csn 4579  {cpr 4581  cop 4585   class class class wbr 5095   I cid 5517   E cep 5522  ccnv 5622  cres 5625  ccom 5627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-eprel 5523  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator