Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nregmodel Structured version   Visualization version   GIF version

Theorem nregmodel 45007
Description: The Axiom of Regularity ax-reg 9545 is false in the permutation model defined from 𝐹. Since the other axioms of ZFC hold in all permutation models (permaxext 44995 through permac8prim 45004), we can conclude that Regularity does not follow from those axioms, assuming ZFC is consistent. (If we could prove Regularity from the other axioms, we could prove it in the permutation model and thus obtain a contradiction with this theorem.) Since we also know that Regularity is consistent with the other axioms (wfaxext 44983 through wfac8prim 44992), Regularity is neither provable nor disprovable from the other axioms; i.e., it is independent of them. (Contributed by Eric Schmidt, 16-Nov-2025.)
Hypotheses
Ref Expression
nregmodel.1 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
nregmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
nregmodel ¬ ∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝑅
Allowed substitution hints:   𝑅(𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem nregmodel
StepHypRef Expression
1 0ex 5262 . . 3 ∅ ∈ V
21snid 4626 . 2 ∅ ∈ {∅}
3 eleq1 2816 . . . . 5 (𝑦 = ∅ → (𝑦 ∈ {∅} ↔ ∅ ∈ {∅}))
41, 3, 2ceqsexv2d 3499 . . . 4 𝑦 𝑦 ∈ {∅}
5 breq2 5111 . . . . . . . 8 (𝑥 = ∅ → (𝑦𝑅𝑥𝑦𝑅∅))
6 nregmodel.1 . . . . . . . . 9 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
7 nregmodel.2 . . . . . . . . 9 𝑅 = (𝐹 ∘ E )
86, 7nregmodellem 45006 . . . . . . . 8 (𝑦𝑅∅ ↔ 𝑦 ∈ {∅})
95, 8bitrdi 287 . . . . . . 7 (𝑥 = ∅ → (𝑦𝑅𝑥𝑦 ∈ {∅}))
109exbidv 1921 . . . . . 6 (𝑥 = ∅ → (∃𝑦 𝑦𝑅𝑥 ↔ ∃𝑦 𝑦 ∈ {∅}))
11 breq2 5111 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑧𝑅𝑥𝑧𝑅∅))
126, 7nregmodellem 45006 . . . . . . . . . . . 12 (𝑧𝑅∅ ↔ 𝑧 ∈ {∅})
1311, 12bitrdi 287 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑧𝑅𝑥𝑧 ∈ {∅}))
1413notbid 318 . . . . . . . . . 10 (𝑥 = ∅ → (¬ 𝑧𝑅𝑥 ↔ ¬ 𝑧 ∈ {∅}))
1514imbi2d 340 . . . . . . . . 9 (𝑥 = ∅ → ((𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥) ↔ (𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
1615albidv 1920 . . . . . . . 8 (𝑥 = ∅ → (∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥) ↔ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
179, 16anbi12d 632 . . . . . . 7 (𝑥 = ∅ → ((𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)) ↔ (𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))))
1817exbidv 1921 . . . . . 6 (𝑥 = ∅ → (∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)) ↔ ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))))
1910, 18imbi12d 344 . . . . 5 (𝑥 = ∅ → ((∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) ↔ (∃𝑦 𝑦 ∈ {∅} → ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))))
201, 19spcv 3571 . . . 4 (∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) → (∃𝑦 𝑦 ∈ {∅} → ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))))
214, 20mpi 20 . . 3 (∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) → ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
22 df-ral 3045 . . . . 5 (∀𝑧 ∈ {∅} ¬ 𝑧 ∈ {∅} ↔ ∀𝑧(𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅}))
23 breq2 5111 . . . . . . . . 9 (𝑦 = ∅ → (𝑧𝑅𝑦𝑧𝑅∅))
2423, 12bitrdi 287 . . . . . . . 8 (𝑦 = ∅ → (𝑧𝑅𝑦𝑧 ∈ {∅}))
2524imbi1d 341 . . . . . . 7 (𝑦 = ∅ → ((𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ (𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅})))
2625albidv 1920 . . . . . 6 (𝑦 = ∅ → (∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ ∀𝑧(𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅})))
271, 26rexsn 4646 . . . . 5 (∃𝑦 ∈ {∅}∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ ∀𝑧(𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅}))
28 df-rex 3054 . . . . 5 (∃𝑦 ∈ {∅}∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
2922, 27, 283bitr2ri 300 . . . 4 (∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})) ↔ ∀𝑧 ∈ {∅} ¬ 𝑧 ∈ {∅})
30 eleq1 2816 . . . . . 6 (𝑧 = ∅ → (𝑧 ∈ {∅} ↔ ∅ ∈ {∅}))
3130notbid 318 . . . . 5 (𝑧 = ∅ → (¬ 𝑧 ∈ {∅} ↔ ¬ ∅ ∈ {∅}))
321, 31ralsn 4645 . . . 4 (∀𝑧 ∈ {∅} ¬ 𝑧 ∈ {∅} ↔ ¬ ∅ ∈ {∅})
3329, 32bitri 275 . . 3 (∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})) ↔ ¬ ∅ ∈ {∅})
3421, 33sylib 218 . 2 (∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) → ¬ ∅ ∈ {∅})
352, 34mt2 200 1 ¬ ∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  cdif 3911  cun 3912  c0 4296  {csn 4589  {cpr 4591  cop 4595   class class class wbr 5107   I cid 5532   E cep 5537  ccnv 5637  cres 5640  ccom 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-eprel 5538  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator