Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nregmodel Structured version   Visualization version   GIF version

Theorem nregmodel 45029
Description: The Axiom of Regularity ax-reg 9473 is false in the permutation model defined from 𝐹. Since the other axioms of ZFC hold in all permutation models (permaxext 45017 through permac8prim 45026), we can conclude that Regularity does not follow from those axioms, assuming ZFC is consistent. (If we could prove Regularity from the other axioms, we could prove it in the permutation model and thus obtain a contradiction with this theorem.) Since we also know that Regularity is consistent with the other axioms (wfaxext 45005 through wfac8prim 45014), Regularity is neither provable nor disprovable from the other axioms; i.e., it is independent of them. (Contributed by Eric Schmidt, 16-Nov-2025.)
Hypotheses
Ref Expression
nregmodel.1 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
nregmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
nregmodel ¬ ∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝑅
Allowed substitution hints:   𝑅(𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem nregmodel
StepHypRef Expression
1 0ex 5243 . . 3 ∅ ∈ V
21snid 4613 . 2 ∅ ∈ {∅}
3 eleq1 2817 . . . . 5 (𝑦 = ∅ → (𝑦 ∈ {∅} ↔ ∅ ∈ {∅}))
41, 3, 2ceqsexv2d 3486 . . . 4 𝑦 𝑦 ∈ {∅}
5 breq2 5093 . . . . . . . 8 (𝑥 = ∅ → (𝑦𝑅𝑥𝑦𝑅∅))
6 nregmodel.1 . . . . . . . . 9 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
7 nregmodel.2 . . . . . . . . 9 𝑅 = (𝐹 ∘ E )
86, 7nregmodellem 45028 . . . . . . . 8 (𝑦𝑅∅ ↔ 𝑦 ∈ {∅})
95, 8bitrdi 287 . . . . . . 7 (𝑥 = ∅ → (𝑦𝑅𝑥𝑦 ∈ {∅}))
109exbidv 1922 . . . . . 6 (𝑥 = ∅ → (∃𝑦 𝑦𝑅𝑥 ↔ ∃𝑦 𝑦 ∈ {∅}))
11 breq2 5093 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑧𝑅𝑥𝑧𝑅∅))
126, 7nregmodellem 45028 . . . . . . . . . . . 12 (𝑧𝑅∅ ↔ 𝑧 ∈ {∅})
1311, 12bitrdi 287 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑧𝑅𝑥𝑧 ∈ {∅}))
1413notbid 318 . . . . . . . . . 10 (𝑥 = ∅ → (¬ 𝑧𝑅𝑥 ↔ ¬ 𝑧 ∈ {∅}))
1514imbi2d 340 . . . . . . . . 9 (𝑥 = ∅ → ((𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥) ↔ (𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
1615albidv 1921 . . . . . . . 8 (𝑥 = ∅ → (∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥) ↔ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
179, 16anbi12d 632 . . . . . . 7 (𝑥 = ∅ → ((𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)) ↔ (𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))))
1817exbidv 1922 . . . . . 6 (𝑥 = ∅ → (∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)) ↔ ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))))
1910, 18imbi12d 344 . . . . 5 (𝑥 = ∅ → ((∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) ↔ (∃𝑦 𝑦 ∈ {∅} → ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))))
201, 19spcv 3558 . . . 4 (∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) → (∃𝑦 𝑦 ∈ {∅} → ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))))
214, 20mpi 20 . . 3 (∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) → ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
22 df-ral 3046 . . . . 5 (∀𝑧 ∈ {∅} ¬ 𝑧 ∈ {∅} ↔ ∀𝑧(𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅}))
23 breq2 5093 . . . . . . . . 9 (𝑦 = ∅ → (𝑧𝑅𝑦𝑧𝑅∅))
2423, 12bitrdi 287 . . . . . . . 8 (𝑦 = ∅ → (𝑧𝑅𝑦𝑧 ∈ {∅}))
2524imbi1d 341 . . . . . . 7 (𝑦 = ∅ → ((𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ (𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅})))
2625albidv 1921 . . . . . 6 (𝑦 = ∅ → (∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ ∀𝑧(𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅})))
271, 26rexsn 4633 . . . . 5 (∃𝑦 ∈ {∅}∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ ∀𝑧(𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅}))
28 df-rex 3055 . . . . 5 (∃𝑦 ∈ {∅}∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
2922, 27, 283bitr2ri 300 . . . 4 (∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})) ↔ ∀𝑧 ∈ {∅} ¬ 𝑧 ∈ {∅})
30 eleq1 2817 . . . . . 6 (𝑧 = ∅ → (𝑧 ∈ {∅} ↔ ∅ ∈ {∅}))
3130notbid 318 . . . . 5 (𝑧 = ∅ → (¬ 𝑧 ∈ {∅} ↔ ¬ ∅ ∈ {∅}))
321, 31ralsn 4632 . . . 4 (∀𝑧 ∈ {∅} ¬ 𝑧 ∈ {∅} ↔ ¬ ∅ ∈ {∅})
3329, 32bitri 275 . . 3 (∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})) ↔ ¬ ∅ ∈ {∅})
3421, 33sylib 218 . 2 (∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) → ¬ ∅ ∈ {∅})
352, 34mt2 200 1 ¬ ∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2110  wral 3045  wrex 3054  Vcvv 3434  cdif 3897  cun 3898  c0 4281  {csn 4574  {cpr 4576  cop 4580   class class class wbr 5089   I cid 5508   E cep 5513  ccnv 5613  cres 5616  ccom 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator