Proof of Theorem nregmodel
| Step | Hyp | Ref
| Expression |
| 1 | | 0ex 5282 |
. . 3
⊢ ∅
∈ V |
| 2 | 1 | snid 4643 |
. 2
⊢ ∅
∈ {∅} |
| 3 | | eleq1 2823 |
. . . . 5
⊢ (𝑦 = ∅ → (𝑦 ∈ {∅} ↔ ∅
∈ {∅})) |
| 4 | 1, 3, 2 | ceqsexv2d 3517 |
. . . 4
⊢
∃𝑦 𝑦 ∈
{∅} |
| 5 | | breq2 5128 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (𝑦𝑅𝑥 ↔ 𝑦𝑅∅)) |
| 6 | | nregmodel.1 |
. . . . . . . . 9
⊢ 𝐹 = (( I ↾ (V ∖
{∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅},
∅〉}) |
| 7 | | nregmodel.2 |
. . . . . . . . 9
⊢ 𝑅 = (◡𝐹 ∘ E ) |
| 8 | 6, 7 | nregmodellem 45016 |
. . . . . . . 8
⊢ (𝑦𝑅∅ ↔ 𝑦 ∈ {∅}) |
| 9 | 5, 8 | bitrdi 287 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝑦𝑅𝑥 ↔ 𝑦 ∈ {∅})) |
| 10 | 9 | exbidv 1921 |
. . . . . 6
⊢ (𝑥 = ∅ → (∃𝑦 𝑦𝑅𝑥 ↔ ∃𝑦 𝑦 ∈ {∅})) |
| 11 | | breq2 5128 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → (𝑧𝑅𝑥 ↔ 𝑧𝑅∅)) |
| 12 | 6, 7 | nregmodellem 45016 |
. . . . . . . . . . . 12
⊢ (𝑧𝑅∅ ↔ 𝑧 ∈ {∅}) |
| 13 | 11, 12 | bitrdi 287 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → (𝑧𝑅𝑥 ↔ 𝑧 ∈ {∅})) |
| 14 | 13 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → (¬ 𝑧𝑅𝑥 ↔ ¬ 𝑧 ∈ {∅})) |
| 15 | 14 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → ((𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥) ↔ (𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))) |
| 16 | 15 | albidv 1920 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥) ↔ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))) |
| 17 | 9, 16 | anbi12d 632 |
. . . . . . 7
⊢ (𝑥 = ∅ → ((𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)) ↔ (𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))) |
| 18 | 17 | exbidv 1921 |
. . . . . 6
⊢ (𝑥 = ∅ → (∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)) ↔ ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))) |
| 19 | 10, 18 | imbi12d 344 |
. . . . 5
⊢ (𝑥 = ∅ → ((∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) ↔ (∃𝑦 𝑦 ∈ {∅} → ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))))) |
| 20 | 1, 19 | spcv 3589 |
. . . 4
⊢
(∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) → (∃𝑦 𝑦 ∈ {∅} → ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))) |
| 21 | 4, 20 | mpi 20 |
. . 3
⊢
(∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) → ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))) |
| 22 | | df-ral 3053 |
. . . . 5
⊢
(∀𝑧 ∈
{∅} ¬ 𝑧 ∈
{∅} ↔ ∀𝑧(𝑧 ∈ {∅} → ¬ 𝑧 ∈
{∅})) |
| 23 | | breq2 5128 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → (𝑧𝑅𝑦 ↔ 𝑧𝑅∅)) |
| 24 | 23, 12 | bitrdi 287 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝑧𝑅𝑦 ↔ 𝑧 ∈ {∅})) |
| 25 | 24 | imbi1d 341 |
. . . . . . 7
⊢ (𝑦 = ∅ → ((𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ (𝑧 ∈ {∅} → ¬ 𝑧 ∈
{∅}))) |
| 26 | 25 | albidv 1920 |
. . . . . 6
⊢ (𝑦 = ∅ → (∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ ∀𝑧(𝑧 ∈ {∅} → ¬ 𝑧 ∈
{∅}))) |
| 27 | 1, 26 | rexsn 4663 |
. . . . 5
⊢
(∃𝑦 ∈
{∅}∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ ∀𝑧(𝑧 ∈ {∅} → ¬ 𝑧 ∈
{∅})) |
| 28 | | df-rex 3062 |
. . . . 5
⊢
(∃𝑦 ∈
{∅}∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))) |
| 29 | 22, 27, 28 | 3bitr2ri 300 |
. . . 4
⊢
(∃𝑦(𝑦 ∈ {∅} ∧
∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})) ↔ ∀𝑧 ∈ {∅} ¬ 𝑧 ∈
{∅}) |
| 30 | | eleq1 2823 |
. . . . . 6
⊢ (𝑧 = ∅ → (𝑧 ∈ {∅} ↔ ∅
∈ {∅})) |
| 31 | 30 | notbid 318 |
. . . . 5
⊢ (𝑧 = ∅ → (¬ 𝑧 ∈ {∅} ↔ ¬
∅ ∈ {∅})) |
| 32 | 1, 31 | ralsn 4662 |
. . . 4
⊢
(∀𝑧 ∈
{∅} ¬ 𝑧 ∈
{∅} ↔ ¬ ∅ ∈ {∅}) |
| 33 | 29, 32 | bitri 275 |
. . 3
⊢
(∃𝑦(𝑦 ∈ {∅} ∧
∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})) ↔ ¬ ∅
∈ {∅}) |
| 34 | 21, 33 | sylib 218 |
. 2
⊢
(∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) → ¬ ∅ ∈
{∅}) |
| 35 | 2, 34 | mt2 200 |
1
⊢ ¬
∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) |