Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nregmodel Structured version   Visualization version   GIF version

Theorem nregmodel 45017
Description: The Axiom of Regularity ax-reg 9611 is false in the permutation model defined from 𝐹. Since the other axioms of ZFC hold in all permutation models (permaxext 45005 through permac8prim 45014), we can conclude that Regularity does not follow from those axioms, assuming ZFC is consistent. (If we could prove Regularity from the other axioms, we could prove it in the permutation model and thus obtain a contradiction with this theorem.) Since we also know that Regularity is consistent with the other axioms (wfaxext 44993 through wfac8prim 45002), Regularity is neither provable nor disprovable from the other axioms; i.e., it is independent of them. (Contributed by Eric Schmidt, 16-Nov-2025.)
Hypotheses
Ref Expression
nregmodel.1 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
nregmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
nregmodel ¬ ∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝑅
Allowed substitution hints:   𝑅(𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem nregmodel
StepHypRef Expression
1 0ex 5282 . . 3 ∅ ∈ V
21snid 4643 . 2 ∅ ∈ {∅}
3 eleq1 2823 . . . . 5 (𝑦 = ∅ → (𝑦 ∈ {∅} ↔ ∅ ∈ {∅}))
41, 3, 2ceqsexv2d 3517 . . . 4 𝑦 𝑦 ∈ {∅}
5 breq2 5128 . . . . . . . 8 (𝑥 = ∅ → (𝑦𝑅𝑥𝑦𝑅∅))
6 nregmodel.1 . . . . . . . . 9 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
7 nregmodel.2 . . . . . . . . 9 𝑅 = (𝐹 ∘ E )
86, 7nregmodellem 45016 . . . . . . . 8 (𝑦𝑅∅ ↔ 𝑦 ∈ {∅})
95, 8bitrdi 287 . . . . . . 7 (𝑥 = ∅ → (𝑦𝑅𝑥𝑦 ∈ {∅}))
109exbidv 1921 . . . . . 6 (𝑥 = ∅ → (∃𝑦 𝑦𝑅𝑥 ↔ ∃𝑦 𝑦 ∈ {∅}))
11 breq2 5128 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑧𝑅𝑥𝑧𝑅∅))
126, 7nregmodellem 45016 . . . . . . . . . . . 12 (𝑧𝑅∅ ↔ 𝑧 ∈ {∅})
1311, 12bitrdi 287 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑧𝑅𝑥𝑧 ∈ {∅}))
1413notbid 318 . . . . . . . . . 10 (𝑥 = ∅ → (¬ 𝑧𝑅𝑥 ↔ ¬ 𝑧 ∈ {∅}))
1514imbi2d 340 . . . . . . . . 9 (𝑥 = ∅ → ((𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥) ↔ (𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
1615albidv 1920 . . . . . . . 8 (𝑥 = ∅ → (∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥) ↔ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
179, 16anbi12d 632 . . . . . . 7 (𝑥 = ∅ → ((𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)) ↔ (𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))))
1817exbidv 1921 . . . . . 6 (𝑥 = ∅ → (∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)) ↔ ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))))
1910, 18imbi12d 344 . . . . 5 (𝑥 = ∅ → ((∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) ↔ (∃𝑦 𝑦 ∈ {∅} → ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))))
201, 19spcv 3589 . . . 4 (∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) → (∃𝑦 𝑦 ∈ {∅} → ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))))
214, 20mpi 20 . . 3 (∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) → ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
22 df-ral 3053 . . . . 5 (∀𝑧 ∈ {∅} ¬ 𝑧 ∈ {∅} ↔ ∀𝑧(𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅}))
23 breq2 5128 . . . . . . . . 9 (𝑦 = ∅ → (𝑧𝑅𝑦𝑧𝑅∅))
2423, 12bitrdi 287 . . . . . . . 8 (𝑦 = ∅ → (𝑧𝑅𝑦𝑧 ∈ {∅}))
2524imbi1d 341 . . . . . . 7 (𝑦 = ∅ → ((𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ (𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅})))
2625albidv 1920 . . . . . 6 (𝑦 = ∅ → (∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ ∀𝑧(𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅})))
271, 26rexsn 4663 . . . . 5 (∃𝑦 ∈ {∅}∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ ∀𝑧(𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅}))
28 df-rex 3062 . . . . 5 (∃𝑦 ∈ {∅}∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
2922, 27, 283bitr2ri 300 . . . 4 (∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})) ↔ ∀𝑧 ∈ {∅} ¬ 𝑧 ∈ {∅})
30 eleq1 2823 . . . . . 6 (𝑧 = ∅ → (𝑧 ∈ {∅} ↔ ∅ ∈ {∅}))
3130notbid 318 . . . . 5 (𝑧 = ∅ → (¬ 𝑧 ∈ {∅} ↔ ¬ ∅ ∈ {∅}))
321, 31ralsn 4662 . . . 4 (∀𝑧 ∈ {∅} ¬ 𝑧 ∈ {∅} ↔ ¬ ∅ ∈ {∅})
3329, 32bitri 275 . . 3 (∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})) ↔ ¬ ∅ ∈ {∅})
3421, 33sylib 218 . 2 (∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) → ¬ ∅ ∈ {∅})
352, 34mt2 200 1 ¬ ∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wral 3052  wrex 3061  Vcvv 3464  cdif 3928  cun 3929  c0 4313  {csn 4606  {cpr 4608  cop 4612   class class class wbr 5124   I cid 5552   E cep 5557  ccnv 5658  cres 5661  ccom 5663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-eprel 5558  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator