Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nregmodel Structured version   Visualization version   GIF version

Theorem nregmodel 45115
Description: The Axiom of Regularity ax-reg 9484 is false in the permutation model defined from 𝐹. Since the other axioms of ZFC hold in all permutation models (permaxext 45103 through permac8prim 45112), we can conclude that Regularity does not follow from those axioms, assuming ZFC is consistent. (If we could prove Regularity from the other axioms, we could prove it in the permutation model and thus obtain a contradiction with this theorem.) Since we also know that Regularity is consistent with the other axioms (wfaxext 45091 through wfac8prim 45100), Regularity is neither provable nor disprovable from the other axioms; i.e., it is independent of them. (Contributed by Eric Schmidt, 16-Nov-2025.)
Hypotheses
Ref Expression
nregmodel.1 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
nregmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
nregmodel ¬ ∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝑅
Allowed substitution hints:   𝑅(𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem nregmodel
StepHypRef Expression
1 0ex 5247 . . 3 ∅ ∈ V
21snid 4614 . 2 ∅ ∈ {∅}
3 eleq1 2819 . . . . 5 (𝑦 = ∅ → (𝑦 ∈ {∅} ↔ ∅ ∈ {∅}))
41, 3, 2ceqsexv2d 3487 . . . 4 𝑦 𝑦 ∈ {∅}
5 breq2 5097 . . . . . . . 8 (𝑥 = ∅ → (𝑦𝑅𝑥𝑦𝑅∅))
6 nregmodel.1 . . . . . . . . 9 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
7 nregmodel.2 . . . . . . . . 9 𝑅 = (𝐹 ∘ E )
86, 7nregmodellem 45114 . . . . . . . 8 (𝑦𝑅∅ ↔ 𝑦 ∈ {∅})
95, 8bitrdi 287 . . . . . . 7 (𝑥 = ∅ → (𝑦𝑅𝑥𝑦 ∈ {∅}))
109exbidv 1922 . . . . . 6 (𝑥 = ∅ → (∃𝑦 𝑦𝑅𝑥 ↔ ∃𝑦 𝑦 ∈ {∅}))
11 breq2 5097 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑧𝑅𝑥𝑧𝑅∅))
126, 7nregmodellem 45114 . . . . . . . . . . . 12 (𝑧𝑅∅ ↔ 𝑧 ∈ {∅})
1311, 12bitrdi 287 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑧𝑅𝑥𝑧 ∈ {∅}))
1413notbid 318 . . . . . . . . . 10 (𝑥 = ∅ → (¬ 𝑧𝑅𝑥 ↔ ¬ 𝑧 ∈ {∅}))
1514imbi2d 340 . . . . . . . . 9 (𝑥 = ∅ → ((𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥) ↔ (𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
1615albidv 1921 . . . . . . . 8 (𝑥 = ∅ → (∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥) ↔ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
179, 16anbi12d 632 . . . . . . 7 (𝑥 = ∅ → ((𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)) ↔ (𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))))
1817exbidv 1922 . . . . . 6 (𝑥 = ∅ → (∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)) ↔ ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))))
1910, 18imbi12d 344 . . . . 5 (𝑥 = ∅ → ((∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) ↔ (∃𝑦 𝑦 ∈ {∅} → ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))))
201, 19spcv 3555 . . . 4 (∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) → (∃𝑦 𝑦 ∈ {∅} → ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}))))
214, 20mpi 20 . . 3 (∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) → ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
22 df-ral 3048 . . . . 5 (∀𝑧 ∈ {∅} ¬ 𝑧 ∈ {∅} ↔ ∀𝑧(𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅}))
23 breq2 5097 . . . . . . . . 9 (𝑦 = ∅ → (𝑧𝑅𝑦𝑧𝑅∅))
2423, 12bitrdi 287 . . . . . . . 8 (𝑦 = ∅ → (𝑧𝑅𝑦𝑧 ∈ {∅}))
2524imbi1d 341 . . . . . . 7 (𝑦 = ∅ → ((𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ (𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅})))
2625albidv 1921 . . . . . 6 (𝑦 = ∅ → (∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ ∀𝑧(𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅})))
271, 26rexsn 4634 . . . . 5 (∃𝑦 ∈ {∅}∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ ∀𝑧(𝑧 ∈ {∅} → ¬ 𝑧 ∈ {∅}))
28 df-rex 3057 . . . . 5 (∃𝑦 ∈ {∅}∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅}) ↔ ∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})))
2922, 27, 283bitr2ri 300 . . . 4 (∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})) ↔ ∀𝑧 ∈ {∅} ¬ 𝑧 ∈ {∅})
30 eleq1 2819 . . . . . 6 (𝑧 = ∅ → (𝑧 ∈ {∅} ↔ ∅ ∈ {∅}))
3130notbid 318 . . . . 5 (𝑧 = ∅ → (¬ 𝑧 ∈ {∅} ↔ ¬ ∅ ∈ {∅}))
321, 31ralsn 4633 . . . 4 (∀𝑧 ∈ {∅} ¬ 𝑧 ∈ {∅} ↔ ¬ ∅ ∈ {∅})
3329, 32bitri 275 . . 3 (∃𝑦(𝑦 ∈ {∅} ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧 ∈ {∅})) ↔ ¬ ∅ ∈ {∅})
3421, 33sylib 218 . 2 (∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥))) → ¬ ∅ ∈ {∅})
352, 34mt2 200 1 ¬ ∀𝑥(∃𝑦 𝑦𝑅𝑥 → ∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧(𝑧𝑅𝑦 → ¬ 𝑧𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cdif 3894  cun 3895  c0 4282  {csn 4575  {cpr 4577  cop 4581   class class class wbr 5093   I cid 5513   E cep 5518  ccnv 5618  cres 5621  ccom 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator