| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nregmodelf1o | Structured version Visualization version GIF version | ||
| Description: Define a permutation 𝐹 used to produce a model in which ax-reg 9611 is false. The permutation swaps ∅ and {∅} and leaves the rest of 𝑉 fixed. This is an example given after Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 16-Nov-2025.) |
| Ref | Expression |
|---|---|
| nregmodel.1 | ⊢ 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉}) |
| Ref | Expression |
|---|---|
| nregmodelf1o | ⊢ 𝐹:V–1-1-onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ovi 6862 | . . 3 ⊢ I :V–1-1-onto→V | |
| 2 | 0ex 5282 | . . 3 ⊢ ∅ ∈ V | |
| 3 | snex 5411 | . . 3 ⊢ {∅} ∈ V | |
| 4 | f1ofvswap 7304 | . . 3 ⊢ (( I :V–1-1-onto→V ∧ ∅ ∈ V ∧ {∅} ∈ V) → (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, ( I ‘{∅})〉, 〈{∅}, ( I ‘∅)〉}):V–1-1-onto→V) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | . 2 ⊢ (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, ( I ‘{∅})〉, 〈{∅}, ( I ‘∅)〉}):V–1-1-onto→V |
| 6 | nregmodel.1 | . . . 4 ⊢ 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉}) | |
| 7 | fvi 6960 | . . . . . . . 8 ⊢ ({∅} ∈ V → ( I ‘{∅}) = {∅}) | |
| 8 | 3, 7 | ax-mp 5 | . . . . . . 7 ⊢ ( I ‘{∅}) = {∅} |
| 9 | 8 | opeq2i 4858 | . . . . . 6 ⊢ 〈∅, ( I ‘{∅})〉 = 〈∅, {∅}〉 |
| 10 | fvi 6960 | . . . . . . . 8 ⊢ (∅ ∈ V → ( I ‘∅) = ∅) | |
| 11 | 2, 10 | ax-mp 5 | . . . . . . 7 ⊢ ( I ‘∅) = ∅ |
| 12 | 11 | opeq2i 4858 | . . . . . 6 ⊢ 〈{∅}, ( I ‘∅)〉 = 〈{∅}, ∅〉 |
| 13 | 9, 12 | preq12i 4719 | . . . . 5 ⊢ {〈∅, ( I ‘{∅})〉, 〈{∅}, ( I ‘∅)〉} = {〈∅, {∅}〉, 〈{∅}, ∅〉} |
| 14 | 13 | uneq2i 4145 | . . . 4 ⊢ (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, ( I ‘{∅})〉, 〈{∅}, ( I ‘∅)〉}) = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, {∅}〉, 〈{∅}, ∅〉}) |
| 15 | 6, 14 | eqtr4i 2762 | . . 3 ⊢ 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, ( I ‘{∅})〉, 〈{∅}, ( I ‘∅)〉}) |
| 16 | f1oeq1 6811 | . . 3 ⊢ (𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, ( I ‘{∅})〉, 〈{∅}, ( I ‘∅)〉}) → (𝐹:V–1-1-onto→V ↔ (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, ( I ‘{∅})〉, 〈{∅}, ( I ‘∅)〉}):V–1-1-onto→V)) | |
| 17 | 15, 16 | ax-mp 5 | . 2 ⊢ (𝐹:V–1-1-onto→V ↔ (( I ↾ (V ∖ {∅, {∅}})) ∪ {〈∅, ( I ‘{∅})〉, 〈{∅}, ( I ‘∅)〉}):V–1-1-onto→V) |
| 18 | 5, 17 | mpbir 231 | 1 ⊢ 𝐹:V–1-1-onto→V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 ∪ cun 3929 ∅c0 4313 {csn 4606 {cpr 4608 〈cop 4612 I cid 5552 ↾ cres 5661 –1-1-onto→wf1o 6535 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 |
| This theorem is referenced by: nregmodellem 45016 nregmodelaxext 45018 |
| Copyright terms: Public domain | W3C validator |