Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nregmodelf1o Structured version   Visualization version   GIF version

Theorem nregmodelf1o 45113
Description: Define a permutation 𝐹 used to produce a model in which ax-reg 9484 is false. The permutation swaps and {∅} and leaves the rest of 𝑉 fixed. This is an example given after Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 16-Nov-2025.)
Hypothesis
Ref Expression
nregmodel.1 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
Assertion
Ref Expression
nregmodelf1o 𝐹:V–1-1-onto→V

Proof of Theorem nregmodelf1o
StepHypRef Expression
1 f1ovi 6808 . . 3 I :V–1-1-onto→V
2 0ex 5247 . . 3 ∅ ∈ V
3 snex 5376 . . 3 {∅} ∈ V
4 f1ofvswap 7246 . . 3 (( I :V–1-1-onto→V ∧ ∅ ∈ V ∧ {∅} ∈ V) → (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩}):V–1-1-onto→V)
51, 2, 3, 4mp3an 1463 . 2 (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩}):V–1-1-onto→V
6 nregmodel.1 . . . 4 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
7 fvi 6904 . . . . . . . 8 ({∅} ∈ V → ( I ‘{∅}) = {∅})
83, 7ax-mp 5 . . . . . . 7 ( I ‘{∅}) = {∅}
98opeq2i 4828 . . . . . 6 ⟨∅, ( I ‘{∅})⟩ = ⟨∅, {∅}⟩
10 fvi 6904 . . . . . . . 8 (∅ ∈ V → ( I ‘∅) = ∅)
112, 10ax-mp 5 . . . . . . 7 ( I ‘∅) = ∅
1211opeq2i 4828 . . . . . 6 ⟨{∅}, ( I ‘∅)⟩ = ⟨{∅}, ∅⟩
139, 12preq12i 4690 . . . . 5 {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩} = {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩}
1413uneq2i 4114 . . . 4 (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩}) = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
156, 14eqtr4i 2757 . . 3 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩})
16 f1oeq1 6757 . . 3 (𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩}) → (𝐹:V–1-1-onto→V ↔ (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩}):V–1-1-onto→V))
1715, 16ax-mp 5 . 2 (𝐹:V–1-1-onto→V ↔ (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩}):V–1-1-onto→V)
185, 17mpbir 231 1 𝐹:V–1-1-onto→V
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  cun 3895  c0 4282  {csn 4575  {cpr 4577  cop 4581   I cid 5513  cres 5621  1-1-ontowf1o 6486  cfv 6487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495
This theorem is referenced by:  nregmodellem  45114  nregmodelaxext  45116
  Copyright terms: Public domain W3C validator