Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nregmodelf1o Structured version   Visualization version   GIF version

Theorem nregmodelf1o 45015
Description: Define a permutation 𝐹 used to produce a model in which ax-reg 9611 is false. The permutation swaps and {∅} and leaves the rest of 𝑉 fixed. This is an example given after Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 16-Nov-2025.)
Hypothesis
Ref Expression
nregmodel.1 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
Assertion
Ref Expression
nregmodelf1o 𝐹:V–1-1-onto→V

Proof of Theorem nregmodelf1o
StepHypRef Expression
1 f1ovi 6862 . . 3 I :V–1-1-onto→V
2 0ex 5282 . . 3 ∅ ∈ V
3 snex 5411 . . 3 {∅} ∈ V
4 f1ofvswap 7304 . . 3 (( I :V–1-1-onto→V ∧ ∅ ∈ V ∧ {∅} ∈ V) → (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩}):V–1-1-onto→V)
51, 2, 3, 4mp3an 1463 . 2 (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩}):V–1-1-onto→V
6 nregmodel.1 . . . 4 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
7 fvi 6960 . . . . . . . 8 ({∅} ∈ V → ( I ‘{∅}) = {∅})
83, 7ax-mp 5 . . . . . . 7 ( I ‘{∅}) = {∅}
98opeq2i 4858 . . . . . 6 ⟨∅, ( I ‘{∅})⟩ = ⟨∅, {∅}⟩
10 fvi 6960 . . . . . . . 8 (∅ ∈ V → ( I ‘∅) = ∅)
112, 10ax-mp 5 . . . . . . 7 ( I ‘∅) = ∅
1211opeq2i 4858 . . . . . 6 ⟨{∅}, ( I ‘∅)⟩ = ⟨{∅}, ∅⟩
139, 12preq12i 4719 . . . . 5 {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩} = {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩}
1413uneq2i 4145 . . . 4 (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩}) = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
156, 14eqtr4i 2762 . . 3 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩})
16 f1oeq1 6811 . . 3 (𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩}) → (𝐹:V–1-1-onto→V ↔ (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩}):V–1-1-onto→V))
1715, 16ax-mp 5 . 2 (𝐹:V–1-1-onto→V ↔ (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩}):V–1-1-onto→V)
185, 17mpbir 231 1 𝐹:V–1-1-onto→V
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  Vcvv 3464  cdif 3928  cun 3929  c0 4313  {csn 4606  {cpr 4608  cop 4612   I cid 5552  cres 5661  1-1-ontowf1o 6535  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544
This theorem is referenced by:  nregmodellem  45016  nregmodelaxext  45018
  Copyright terms: Public domain W3C validator