Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nregmodelf1o Structured version   Visualization version   GIF version

Theorem nregmodelf1o 45005
Description: Define a permutation 𝐹 used to produce a model in which ax-reg 9545 is false. The permutation swaps and {∅} and leaves the rest of 𝑉 fixed. This is an example given after Exercise II.9.2 of [Kunen2] p. 148. (Contributed by Eric Schmidt, 16-Nov-2025.)
Hypothesis
Ref Expression
nregmodel.1 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
Assertion
Ref Expression
nregmodelf1o 𝐹:V–1-1-onto→V

Proof of Theorem nregmodelf1o
StepHypRef Expression
1 f1ovi 6839 . . 3 I :V–1-1-onto→V
2 0ex 5262 . . 3 ∅ ∈ V
3 snex 5391 . . 3 {∅} ∈ V
4 f1ofvswap 7281 . . 3 (( I :V–1-1-onto→V ∧ ∅ ∈ V ∧ {∅} ∈ V) → (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩}):V–1-1-onto→V)
51, 2, 3, 4mp3an 1463 . 2 (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩}):V–1-1-onto→V
6 nregmodel.1 . . . 4 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
7 fvi 6937 . . . . . . . 8 ({∅} ∈ V → ( I ‘{∅}) = {∅})
83, 7ax-mp 5 . . . . . . 7 ( I ‘{∅}) = {∅}
98opeq2i 4841 . . . . . 6 ⟨∅, ( I ‘{∅})⟩ = ⟨∅, {∅}⟩
10 fvi 6937 . . . . . . . 8 (∅ ∈ V → ( I ‘∅) = ∅)
112, 10ax-mp 5 . . . . . . 7 ( I ‘∅) = ∅
1211opeq2i 4841 . . . . . 6 ⟨{∅}, ( I ‘∅)⟩ = ⟨{∅}, ∅⟩
139, 12preq12i 4702 . . . . 5 {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩} = {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩}
1413uneq2i 4128 . . . 4 (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩}) = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, {∅}⟩, ⟨{∅}, ∅⟩})
156, 14eqtr4i 2755 . . 3 𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩})
16 f1oeq1 6788 . . 3 (𝐹 = (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩}) → (𝐹:V–1-1-onto→V ↔ (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩}):V–1-1-onto→V))
1715, 16ax-mp 5 . 2 (𝐹:V–1-1-onto→V ↔ (( I ↾ (V ∖ {∅, {∅}})) ∪ {⟨∅, ( I ‘{∅})⟩, ⟨{∅}, ( I ‘∅)⟩}):V–1-1-onto→V)
185, 17mpbir 231 1 𝐹:V–1-1-onto→V
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  cun 3912  c0 4296  {csn 4589  {cpr 4591  cop 4595   I cid 5532  cres 5640  1-1-ontowf1o 6510  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519
This theorem is referenced by:  nregmodellem  45006  nregmodelaxext  45008
  Copyright terms: Public domain W3C validator