Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mon1psubm Structured version   Visualization version   GIF version

Theorem mon1psubm 39961
Description: Monic polynomials are a multiplicative submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
mon1psubm.p 𝑃 = (Poly1𝑅)
mon1psubm.m 𝑀 = (Monic1p𝑅)
mon1psubm.u 𝑈 = (mulGrp‘𝑃)
Assertion
Ref Expression
mon1psubm (𝑅 ∈ NzRing → 𝑀 ∈ (SubMnd‘𝑈))

Proof of Theorem mon1psubm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mon1psubm.p . . . . 5 𝑃 = (Poly1𝑅)
2 eqid 2821 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
3 mon1psubm.m . . . . 5 𝑀 = (Monic1p𝑅)
41, 2, 3mon1pcl 24724 . . . 4 (𝑥𝑀𝑥 ∈ (Base‘𝑃))
54ssriv 3947 . . 3 𝑀 ⊆ (Base‘𝑃)
65a1i 11 . 2 (𝑅 ∈ NzRing → 𝑀 ⊆ (Base‘𝑃))
7 eqid 2821 . . . 4 (1r𝑃) = (1r𝑃)
8 eqid 2821 . . . 4 ( deg1𝑅) = ( deg1𝑅)
91, 7, 3, 8mon1pid 39960 . . 3 (𝑅 ∈ NzRing → ((1r𝑃) ∈ 𝑀 ∧ (( deg1𝑅)‘(1r𝑃)) = 0))
109simpld 498 . 2 (𝑅 ∈ NzRing → (1r𝑃) ∈ 𝑀)
111ply1nz 24701 . . . . . . 7 (𝑅 ∈ NzRing → 𝑃 ∈ NzRing)
12 nzrring 20010 . . . . . . 7 (𝑃 ∈ NzRing → 𝑃 ∈ Ring)
1311, 12syl 17 . . . . . 6 (𝑅 ∈ NzRing → 𝑃 ∈ Ring)
1413adantr 484 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑃 ∈ Ring)
154ad2antrl 727 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑥 ∈ (Base‘𝑃))
16 simprr 772 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑦𝑀)
175, 16sseldi 3941 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑦 ∈ (Base‘𝑃))
18 eqid 2821 . . . . . 6 (.r𝑃) = (.r𝑃)
192, 18ringcl 19290 . . . . 5 ((𝑃 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃)) → (𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃))
2014, 15, 17, 19syl3anc 1368 . . . 4 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃))
21 eqid 2821 . . . . . . 7 (RLReg‘𝑅) = (RLReg‘𝑅)
22 eqid 2821 . . . . . . 7 (0g𝑃) = (0g𝑃)
23 nzrring 20010 . . . . . . . 8 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2423adantr 484 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑅 ∈ Ring)
251, 22, 3mon1pn0 24726 . . . . . . . 8 (𝑥𝑀𝑥 ≠ (0g𝑃))
2625ad2antrl 727 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑥 ≠ (0g𝑃))
27 eqid 2821 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
288, 27, 3mon1pldg 24729 . . . . . . . . 9 (𝑥𝑀 → ((coe1𝑥)‘(( deg1𝑅)‘𝑥)) = (1r𝑅))
2928ad2antrl 727 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1𝑥)‘(( deg1𝑅)‘𝑥)) = (1r𝑅))
30 eqid 2821 . . . . . . . . . . . 12 (Unit‘𝑅) = (Unit‘𝑅)
3121, 30unitrrg 20042 . . . . . . . . . . 11 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
3223, 31syl 17 . . . . . . . . . 10 (𝑅 ∈ NzRing → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
3330, 271unit 19387 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Unit‘𝑅))
3423, 33syl 17 . . . . . . . . . 10 (𝑅 ∈ NzRing → (1r𝑅) ∈ (Unit‘𝑅))
3532, 34sseldd 3944 . . . . . . . . 9 (𝑅 ∈ NzRing → (1r𝑅) ∈ (RLReg‘𝑅))
3635adantr 484 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (1r𝑅) ∈ (RLReg‘𝑅))
3729, 36eqeltrd 2912 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1𝑥)‘(( deg1𝑅)‘𝑥)) ∈ (RLReg‘𝑅))
381, 22, 3mon1pn0 24726 . . . . . . . 8 (𝑦𝑀𝑦 ≠ (0g𝑃))
3938ad2antll 728 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑦 ≠ (0g𝑃))
408, 1, 21, 2, 18, 22, 24, 15, 26, 37, 17, 39deg1mul2 24694 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) = ((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦)))
418, 1, 22, 2deg1nn0cl 24668 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑥 ≠ (0g𝑃)) → (( deg1𝑅)‘𝑥) ∈ ℕ0)
4224, 15, 26, 41syl3anc 1368 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘𝑥) ∈ ℕ0)
438, 1, 22, 2deg1nn0cl 24668 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑃) ∧ 𝑦 ≠ (0g𝑃)) → (( deg1𝑅)‘𝑦) ∈ ℕ0)
4424, 17, 39, 43syl3anc 1368 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘𝑦) ∈ ℕ0)
4542, 44nn0addcld 11937 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦)) ∈ ℕ0)
4640, 45eqeltrd 2912 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) ∈ ℕ0)
478, 1, 22, 2deg1nn0clb 24670 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃)) → ((𝑥(.r𝑃)𝑦) ≠ (0g𝑃) ↔ (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) ∈ ℕ0))
4824, 20, 47syl2anc 587 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((𝑥(.r𝑃)𝑦) ≠ (0g𝑃) ↔ (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) ∈ ℕ0))
4946, 48mpbird 260 . . . 4 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (𝑥(.r𝑃)𝑦) ≠ (0g𝑃))
5040fveq2d 6647 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘(( deg1𝑅)‘(𝑥(.r𝑃)𝑦))) = ((coe1‘(𝑥(.r𝑃)𝑦))‘((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦))))
51 eqid 2821 . . . . . . 7 (.r𝑅) = (.r𝑅)
521, 18, 51, 2, 8, 22, 24, 15, 26, 17, 39coe1mul4 24680 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦))) = (((coe1𝑥)‘(( deg1𝑅)‘𝑥))(.r𝑅)((coe1𝑦)‘(( deg1𝑅)‘𝑦))))
538, 27, 3mon1pldg 24729 . . . . . . . . 9 (𝑦𝑀 → ((coe1𝑦)‘(( deg1𝑅)‘𝑦)) = (1r𝑅))
5453ad2antll 728 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1𝑦)‘(( deg1𝑅)‘𝑦)) = (1r𝑅))
5529, 54oveq12d 7148 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (((coe1𝑥)‘(( deg1𝑅)‘𝑥))(.r𝑅)((coe1𝑦)‘(( deg1𝑅)‘𝑦))) = ((1r𝑅)(.r𝑅)(1r𝑅)))
56 eqid 2821 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
5756, 27ringidcl 19297 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
5856, 51, 27ringlidm 19300 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
5923, 57, 58syl2anc2 588 . . . . . . . 8 (𝑅 ∈ NzRing → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6059adantr 484 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6155, 60eqtrd 2856 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (((coe1𝑥)‘(( deg1𝑅)‘𝑥))(.r𝑅)((coe1𝑦)‘(( deg1𝑅)‘𝑦))) = (1r𝑅))
6252, 61eqtrd 2856 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦))) = (1r𝑅))
6350, 62eqtrd 2856 . . . 4 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘(( deg1𝑅)‘(𝑥(.r𝑃)𝑦))) = (1r𝑅))
641, 2, 22, 8, 3, 27ismon1p 24722 . . . 4 ((𝑥(.r𝑃)𝑦) ∈ 𝑀 ↔ ((𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃) ∧ (𝑥(.r𝑃)𝑦) ≠ (0g𝑃) ∧ ((coe1‘(𝑥(.r𝑃)𝑦))‘(( deg1𝑅)‘(𝑥(.r𝑃)𝑦))) = (1r𝑅)))
6520, 49, 63, 64syl3anbrc 1340 . . 3 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (𝑥(.r𝑃)𝑦) ∈ 𝑀)
6665ralrimivva 3179 . 2 (𝑅 ∈ NzRing → ∀𝑥𝑀𝑦𝑀 (𝑥(.r𝑃)𝑦) ∈ 𝑀)
67 mon1psubm.u . . . . 5 𝑈 = (mulGrp‘𝑃)
6867ringmgp 19282 . . . 4 (𝑃 ∈ Ring → 𝑈 ∈ Mnd)
6913, 68syl 17 . . 3 (𝑅 ∈ NzRing → 𝑈 ∈ Mnd)
7067, 2mgpbas 19224 . . . 4 (Base‘𝑃) = (Base‘𝑈)
7167, 7ringidval 19232 . . . 4 (1r𝑃) = (0g𝑈)
7267, 18mgpplusg 19222 . . . 4 (.r𝑃) = (+g𝑈)
7370, 71, 72issubm 17947 . . 3 (𝑈 ∈ Mnd → (𝑀 ∈ (SubMnd‘𝑈) ↔ (𝑀 ⊆ (Base‘𝑃) ∧ (1r𝑃) ∈ 𝑀 ∧ ∀𝑥𝑀𝑦𝑀 (𝑥(.r𝑃)𝑦) ∈ 𝑀)))
7469, 73syl 17 . 2 (𝑅 ∈ NzRing → (𝑀 ∈ (SubMnd‘𝑈) ↔ (𝑀 ⊆ (Base‘𝑃) ∧ (1r𝑃) ∈ 𝑀 ∧ ∀𝑥𝑀𝑦𝑀 (𝑥(.r𝑃)𝑦) ∈ 𝑀)))
756, 10, 66, 74mpbir3and 1339 1 (𝑅 ∈ NzRing → 𝑀 ∈ (SubMnd‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3007  wral 3126  wss 3910  cfv 6328  (class class class)co 7130  0cc0 10514   + caddc 10517  0cn0 11875  Basecbs 16462  .rcmulr 16545  0gc0g 16692  Mndcmnd 17890  SubMndcsubmnd 17934  mulGrpcmgp 19218  1rcur 19230  Ringcrg 19276  Unitcui 19368  NzRingcnzr 20006  RLRegcrlreg 20028  Poly1cpl1 20321  coe1cco1 20322   deg1 cdg1 24634  Monic1pcmn1 24705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-ofr 7385  df-om 7556  df-1st 7664  df-2nd 7665  df-supp 7806  df-tpos 7867  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-map 8383  df-pm 8384  df-ixp 8437  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fsupp 8810  df-sup 8882  df-oi 8950  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-fz 12876  df-fzo 13017  df-seq 13353  df-hash 13675  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-starv 16559  df-sca 16560  df-vsca 16561  df-tset 16563  df-ple 16564  df-ds 16566  df-unif 16567  df-0g 16694  df-gsum 16695  df-mre 16836  df-mrc 16837  df-acs 16839  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-mhm 17935  df-submnd 17936  df-grp 18085  df-minusg 18086  df-sbg 18087  df-mulg 18204  df-subg 18255  df-ghm 18335  df-cntz 18426  df-cmn 18887  df-abl 18888  df-mgp 19219  df-ur 19231  df-ring 19278  df-cring 19279  df-oppr 19352  df-dvdsr 19370  df-unit 19371  df-invr 19401  df-subrg 19509  df-lmod 19612  df-lss 19680  df-nzr 20007  df-rlreg 20032  df-ascl 20063  df-psr 20112  df-mvr 20113  df-mpl 20114  df-opsr 20116  df-psr1 20324  df-vr1 20325  df-ply1 20326  df-coe1 20327  df-cnfld 20522  df-mdeg 24635  df-deg1 24636  df-mon1 24710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator