Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mon1psubm Structured version   Visualization version   GIF version

Theorem mon1psubm 39812
Description: Monic polynomials are a multiplicative submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
mon1psubm.p 𝑃 = (Poly1𝑅)
mon1psubm.m 𝑀 = (Monic1p𝑅)
mon1psubm.u 𝑈 = (mulGrp‘𝑃)
Assertion
Ref Expression
mon1psubm (𝑅 ∈ NzRing → 𝑀 ∈ (SubMnd‘𝑈))

Proof of Theorem mon1psubm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mon1psubm.p . . . . 5 𝑃 = (Poly1𝑅)
2 eqid 2824 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
3 mon1psubm.m . . . . 5 𝑀 = (Monic1p𝑅)
41, 2, 3mon1pcl 24741 . . . 4 (𝑥𝑀𝑥 ∈ (Base‘𝑃))
54ssriv 3974 . . 3 𝑀 ⊆ (Base‘𝑃)
65a1i 11 . 2 (𝑅 ∈ NzRing → 𝑀 ⊆ (Base‘𝑃))
7 eqid 2824 . . . 4 (1r𝑃) = (1r𝑃)
8 eqid 2824 . . . 4 ( deg1𝑅) = ( deg1𝑅)
91, 7, 3, 8mon1pid 39811 . . 3 (𝑅 ∈ NzRing → ((1r𝑃) ∈ 𝑀 ∧ (( deg1𝑅)‘(1r𝑃)) = 0))
109simpld 497 . 2 (𝑅 ∈ NzRing → (1r𝑃) ∈ 𝑀)
111ply1nz 24718 . . . . . . 7 (𝑅 ∈ NzRing → 𝑃 ∈ NzRing)
12 nzrring 20037 . . . . . . 7 (𝑃 ∈ NzRing → 𝑃 ∈ Ring)
1311, 12syl 17 . . . . . 6 (𝑅 ∈ NzRing → 𝑃 ∈ Ring)
1413adantr 483 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑃 ∈ Ring)
154ad2antrl 726 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑥 ∈ (Base‘𝑃))
16 simprr 771 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑦𝑀)
175, 16sseldi 3968 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑦 ∈ (Base‘𝑃))
18 eqid 2824 . . . . . 6 (.r𝑃) = (.r𝑃)
192, 18ringcl 19314 . . . . 5 ((𝑃 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃)) → (𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃))
2014, 15, 17, 19syl3anc 1367 . . . 4 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃))
21 eqid 2824 . . . . . . 7 (RLReg‘𝑅) = (RLReg‘𝑅)
22 eqid 2824 . . . . . . 7 (0g𝑃) = (0g𝑃)
23 nzrring 20037 . . . . . . . 8 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2423adantr 483 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑅 ∈ Ring)
251, 22, 3mon1pn0 24743 . . . . . . . 8 (𝑥𝑀𝑥 ≠ (0g𝑃))
2625ad2antrl 726 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑥 ≠ (0g𝑃))
27 eqid 2824 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
288, 27, 3mon1pldg 24746 . . . . . . . . 9 (𝑥𝑀 → ((coe1𝑥)‘(( deg1𝑅)‘𝑥)) = (1r𝑅))
2928ad2antrl 726 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1𝑥)‘(( deg1𝑅)‘𝑥)) = (1r𝑅))
30 eqid 2824 . . . . . . . . . . . 12 (Unit‘𝑅) = (Unit‘𝑅)
3121, 30unitrrg 20069 . . . . . . . . . . 11 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
3223, 31syl 17 . . . . . . . . . 10 (𝑅 ∈ NzRing → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
3330, 271unit 19411 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Unit‘𝑅))
3423, 33syl 17 . . . . . . . . . 10 (𝑅 ∈ NzRing → (1r𝑅) ∈ (Unit‘𝑅))
3532, 34sseldd 3971 . . . . . . . . 9 (𝑅 ∈ NzRing → (1r𝑅) ∈ (RLReg‘𝑅))
3635adantr 483 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (1r𝑅) ∈ (RLReg‘𝑅))
3729, 36eqeltrd 2916 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1𝑥)‘(( deg1𝑅)‘𝑥)) ∈ (RLReg‘𝑅))
381, 22, 3mon1pn0 24743 . . . . . . . 8 (𝑦𝑀𝑦 ≠ (0g𝑃))
3938ad2antll 727 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑦 ≠ (0g𝑃))
408, 1, 21, 2, 18, 22, 24, 15, 26, 37, 17, 39deg1mul2 24711 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) = ((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦)))
418, 1, 22, 2deg1nn0cl 24685 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑥 ≠ (0g𝑃)) → (( deg1𝑅)‘𝑥) ∈ ℕ0)
4224, 15, 26, 41syl3anc 1367 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘𝑥) ∈ ℕ0)
438, 1, 22, 2deg1nn0cl 24685 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑃) ∧ 𝑦 ≠ (0g𝑃)) → (( deg1𝑅)‘𝑦) ∈ ℕ0)
4424, 17, 39, 43syl3anc 1367 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘𝑦) ∈ ℕ0)
4542, 44nn0addcld 11962 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦)) ∈ ℕ0)
4640, 45eqeltrd 2916 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) ∈ ℕ0)
478, 1, 22, 2deg1nn0clb 24687 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃)) → ((𝑥(.r𝑃)𝑦) ≠ (0g𝑃) ↔ (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) ∈ ℕ0))
4824, 20, 47syl2anc 586 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((𝑥(.r𝑃)𝑦) ≠ (0g𝑃) ↔ (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) ∈ ℕ0))
4946, 48mpbird 259 . . . 4 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (𝑥(.r𝑃)𝑦) ≠ (0g𝑃))
5040fveq2d 6677 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘(( deg1𝑅)‘(𝑥(.r𝑃)𝑦))) = ((coe1‘(𝑥(.r𝑃)𝑦))‘((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦))))
51 eqid 2824 . . . . . . 7 (.r𝑅) = (.r𝑅)
521, 18, 51, 2, 8, 22, 24, 15, 26, 17, 39coe1mul4 24697 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦))) = (((coe1𝑥)‘(( deg1𝑅)‘𝑥))(.r𝑅)((coe1𝑦)‘(( deg1𝑅)‘𝑦))))
538, 27, 3mon1pldg 24746 . . . . . . . . 9 (𝑦𝑀 → ((coe1𝑦)‘(( deg1𝑅)‘𝑦)) = (1r𝑅))
5453ad2antll 727 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1𝑦)‘(( deg1𝑅)‘𝑦)) = (1r𝑅))
5529, 54oveq12d 7177 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (((coe1𝑥)‘(( deg1𝑅)‘𝑥))(.r𝑅)((coe1𝑦)‘(( deg1𝑅)‘𝑦))) = ((1r𝑅)(.r𝑅)(1r𝑅)))
56 eqid 2824 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
5756, 27ringidcl 19321 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
5856, 51, 27ringlidm 19324 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
5923, 57, 58syl2anc2 587 . . . . . . . 8 (𝑅 ∈ NzRing → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6059adantr 483 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6155, 60eqtrd 2859 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (((coe1𝑥)‘(( deg1𝑅)‘𝑥))(.r𝑅)((coe1𝑦)‘(( deg1𝑅)‘𝑦))) = (1r𝑅))
6252, 61eqtrd 2859 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦))) = (1r𝑅))
6350, 62eqtrd 2859 . . . 4 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘(( deg1𝑅)‘(𝑥(.r𝑃)𝑦))) = (1r𝑅))
641, 2, 22, 8, 3, 27ismon1p 24739 . . . 4 ((𝑥(.r𝑃)𝑦) ∈ 𝑀 ↔ ((𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃) ∧ (𝑥(.r𝑃)𝑦) ≠ (0g𝑃) ∧ ((coe1‘(𝑥(.r𝑃)𝑦))‘(( deg1𝑅)‘(𝑥(.r𝑃)𝑦))) = (1r𝑅)))
6520, 49, 63, 64syl3anbrc 1339 . . 3 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (𝑥(.r𝑃)𝑦) ∈ 𝑀)
6665ralrimivva 3194 . 2 (𝑅 ∈ NzRing → ∀𝑥𝑀𝑦𝑀 (𝑥(.r𝑃)𝑦) ∈ 𝑀)
67 mon1psubm.u . . . . 5 𝑈 = (mulGrp‘𝑃)
6867ringmgp 19306 . . . 4 (𝑃 ∈ Ring → 𝑈 ∈ Mnd)
6913, 68syl 17 . . 3 (𝑅 ∈ NzRing → 𝑈 ∈ Mnd)
7067, 2mgpbas 19248 . . . 4 (Base‘𝑃) = (Base‘𝑈)
7167, 7ringidval 19256 . . . 4 (1r𝑃) = (0g𝑈)
7267, 18mgpplusg 19246 . . . 4 (.r𝑃) = (+g𝑈)
7370, 71, 72issubm 17971 . . 3 (𝑈 ∈ Mnd → (𝑀 ∈ (SubMnd‘𝑈) ↔ (𝑀 ⊆ (Base‘𝑃) ∧ (1r𝑃) ∈ 𝑀 ∧ ∀𝑥𝑀𝑦𝑀 (𝑥(.r𝑃)𝑦) ∈ 𝑀)))
7469, 73syl 17 . 2 (𝑅 ∈ NzRing → (𝑀 ∈ (SubMnd‘𝑈) ↔ (𝑀 ⊆ (Base‘𝑃) ∧ (1r𝑃) ∈ 𝑀 ∧ ∀𝑥𝑀𝑦𝑀 (𝑥(.r𝑃)𝑦) ∈ 𝑀)))
756, 10, 66, 74mpbir3and 1338 1 (𝑅 ∈ NzRing → 𝑀 ∈ (SubMnd‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  wss 3939  cfv 6358  (class class class)co 7159  0cc0 10540   + caddc 10543  0cn0 11900  Basecbs 16486  .rcmulr 16569  0gc0g 16716  Mndcmnd 17914  SubMndcsubmnd 17958  mulGrpcmgp 19242  1rcur 19254  Ringcrg 19300  Unitcui 19392  NzRingcnzr 20033  RLRegcrlreg 20055  Poly1cpl1 20348  coe1cco1 20349   deg1 cdg1 24651  Monic1pcmn1 24722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-ofr 7413  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-tpos 7895  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-0g 16718  df-gsum 16719  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mhm 17959  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-mulg 18228  df-subg 18279  df-ghm 18359  df-cntz 18450  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-cring 19303  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-subrg 19536  df-lmod 19639  df-lss 19707  df-nzr 20034  df-rlreg 20059  df-ascl 20090  df-psr 20139  df-mvr 20140  df-mpl 20141  df-opsr 20143  df-psr1 20351  df-vr1 20352  df-ply1 20353  df-coe1 20354  df-cnfld 20549  df-mdeg 24652  df-deg1 24653  df-mon1 24727
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator