Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mon1psubm Structured version   Visualization version   GIF version

Theorem mon1psubm 41031
Description: Monic polynomials are a multiplicative submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
mon1psubm.p 𝑃 = (Poly1𝑅)
mon1psubm.m 𝑀 = (Monic1p𝑅)
mon1psubm.u 𝑈 = (mulGrp‘𝑃)
Assertion
Ref Expression
mon1psubm (𝑅 ∈ NzRing → 𝑀 ∈ (SubMnd‘𝑈))

Proof of Theorem mon1psubm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mon1psubm.p . . . . 5 𝑃 = (Poly1𝑅)
2 eqid 2738 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
3 mon1psubm.m . . . . 5 𝑀 = (Monic1p𝑅)
41, 2, 3mon1pcl 25309 . . . 4 (𝑥𝑀𝑥 ∈ (Base‘𝑃))
54ssriv 3925 . . 3 𝑀 ⊆ (Base‘𝑃)
65a1i 11 . 2 (𝑅 ∈ NzRing → 𝑀 ⊆ (Base‘𝑃))
7 eqid 2738 . . . 4 (1r𝑃) = (1r𝑃)
8 eqid 2738 . . . 4 ( deg1𝑅) = ( deg1𝑅)
91, 7, 3, 8mon1pid 41030 . . 3 (𝑅 ∈ NzRing → ((1r𝑃) ∈ 𝑀 ∧ (( deg1𝑅)‘(1r𝑃)) = 0))
109simpld 495 . 2 (𝑅 ∈ NzRing → (1r𝑃) ∈ 𝑀)
111ply1nz 25286 . . . . . . 7 (𝑅 ∈ NzRing → 𝑃 ∈ NzRing)
12 nzrring 20532 . . . . . . 7 (𝑃 ∈ NzRing → 𝑃 ∈ Ring)
1311, 12syl 17 . . . . . 6 (𝑅 ∈ NzRing → 𝑃 ∈ Ring)
1413adantr 481 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑃 ∈ Ring)
154ad2antrl 725 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑥 ∈ (Base‘𝑃))
16 simprr 770 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑦𝑀)
175, 16sselid 3919 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑦 ∈ (Base‘𝑃))
18 eqid 2738 . . . . . 6 (.r𝑃) = (.r𝑃)
192, 18ringcl 19800 . . . . 5 ((𝑃 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃)) → (𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃))
2014, 15, 17, 19syl3anc 1370 . . . 4 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃))
21 eqid 2738 . . . . . . 7 (RLReg‘𝑅) = (RLReg‘𝑅)
22 eqid 2738 . . . . . . 7 (0g𝑃) = (0g𝑃)
23 nzrring 20532 . . . . . . . 8 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2423adantr 481 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑅 ∈ Ring)
251, 22, 3mon1pn0 25311 . . . . . . . 8 (𝑥𝑀𝑥 ≠ (0g𝑃))
2625ad2antrl 725 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑥 ≠ (0g𝑃))
27 eqid 2738 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
288, 27, 3mon1pldg 25314 . . . . . . . . 9 (𝑥𝑀 → ((coe1𝑥)‘(( deg1𝑅)‘𝑥)) = (1r𝑅))
2928ad2antrl 725 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1𝑥)‘(( deg1𝑅)‘𝑥)) = (1r𝑅))
30 eqid 2738 . . . . . . . . . . . 12 (Unit‘𝑅) = (Unit‘𝑅)
3121, 30unitrrg 20564 . . . . . . . . . . 11 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
3223, 31syl 17 . . . . . . . . . 10 (𝑅 ∈ NzRing → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
3330, 271unit 19900 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Unit‘𝑅))
3423, 33syl 17 . . . . . . . . . 10 (𝑅 ∈ NzRing → (1r𝑅) ∈ (Unit‘𝑅))
3532, 34sseldd 3922 . . . . . . . . 9 (𝑅 ∈ NzRing → (1r𝑅) ∈ (RLReg‘𝑅))
3635adantr 481 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (1r𝑅) ∈ (RLReg‘𝑅))
3729, 36eqeltrd 2839 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1𝑥)‘(( deg1𝑅)‘𝑥)) ∈ (RLReg‘𝑅))
381, 22, 3mon1pn0 25311 . . . . . . . 8 (𝑦𝑀𝑦 ≠ (0g𝑃))
3938ad2antll 726 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑦 ≠ (0g𝑃))
408, 1, 21, 2, 18, 22, 24, 15, 26, 37, 17, 39deg1mul2 25279 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) = ((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦)))
418, 1, 22, 2deg1nn0cl 25253 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑥 ≠ (0g𝑃)) → (( deg1𝑅)‘𝑥) ∈ ℕ0)
4224, 15, 26, 41syl3anc 1370 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘𝑥) ∈ ℕ0)
438, 1, 22, 2deg1nn0cl 25253 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑃) ∧ 𝑦 ≠ (0g𝑃)) → (( deg1𝑅)‘𝑦) ∈ ℕ0)
4424, 17, 39, 43syl3anc 1370 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘𝑦) ∈ ℕ0)
4542, 44nn0addcld 12297 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦)) ∈ ℕ0)
4640, 45eqeltrd 2839 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) ∈ ℕ0)
478, 1, 22, 2deg1nn0clb 25255 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃)) → ((𝑥(.r𝑃)𝑦) ≠ (0g𝑃) ↔ (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) ∈ ℕ0))
4824, 20, 47syl2anc 584 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((𝑥(.r𝑃)𝑦) ≠ (0g𝑃) ↔ (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) ∈ ℕ0))
4946, 48mpbird 256 . . . 4 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (𝑥(.r𝑃)𝑦) ≠ (0g𝑃))
5040fveq2d 6778 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘(( deg1𝑅)‘(𝑥(.r𝑃)𝑦))) = ((coe1‘(𝑥(.r𝑃)𝑦))‘((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦))))
51 eqid 2738 . . . . . . 7 (.r𝑅) = (.r𝑅)
521, 18, 51, 2, 8, 22, 24, 15, 26, 17, 39coe1mul4 25265 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦))) = (((coe1𝑥)‘(( deg1𝑅)‘𝑥))(.r𝑅)((coe1𝑦)‘(( deg1𝑅)‘𝑦))))
538, 27, 3mon1pldg 25314 . . . . . . . . 9 (𝑦𝑀 → ((coe1𝑦)‘(( deg1𝑅)‘𝑦)) = (1r𝑅))
5453ad2antll 726 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1𝑦)‘(( deg1𝑅)‘𝑦)) = (1r𝑅))
5529, 54oveq12d 7293 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (((coe1𝑥)‘(( deg1𝑅)‘𝑥))(.r𝑅)((coe1𝑦)‘(( deg1𝑅)‘𝑦))) = ((1r𝑅)(.r𝑅)(1r𝑅)))
56 eqid 2738 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
5756, 27ringidcl 19807 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
5856, 51, 27ringlidm 19810 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
5923, 57, 58syl2anc2 585 . . . . . . . 8 (𝑅 ∈ NzRing → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6059adantr 481 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6155, 60eqtrd 2778 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (((coe1𝑥)‘(( deg1𝑅)‘𝑥))(.r𝑅)((coe1𝑦)‘(( deg1𝑅)‘𝑦))) = (1r𝑅))
6252, 61eqtrd 2778 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦))) = (1r𝑅))
6350, 62eqtrd 2778 . . . 4 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘(( deg1𝑅)‘(𝑥(.r𝑃)𝑦))) = (1r𝑅))
641, 2, 22, 8, 3, 27ismon1p 25307 . . . 4 ((𝑥(.r𝑃)𝑦) ∈ 𝑀 ↔ ((𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃) ∧ (𝑥(.r𝑃)𝑦) ≠ (0g𝑃) ∧ ((coe1‘(𝑥(.r𝑃)𝑦))‘(( deg1𝑅)‘(𝑥(.r𝑃)𝑦))) = (1r𝑅)))
6520, 49, 63, 64syl3anbrc 1342 . . 3 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (𝑥(.r𝑃)𝑦) ∈ 𝑀)
6665ralrimivva 3123 . 2 (𝑅 ∈ NzRing → ∀𝑥𝑀𝑦𝑀 (𝑥(.r𝑃)𝑦) ∈ 𝑀)
67 mon1psubm.u . . . . 5 𝑈 = (mulGrp‘𝑃)
6867ringmgp 19789 . . . 4 (𝑃 ∈ Ring → 𝑈 ∈ Mnd)
6913, 68syl 17 . . 3 (𝑅 ∈ NzRing → 𝑈 ∈ Mnd)
7067, 2mgpbas 19726 . . . 4 (Base‘𝑃) = (Base‘𝑈)
7167, 7ringidval 19739 . . . 4 (1r𝑃) = (0g𝑈)
7267, 18mgpplusg 19724 . . . 4 (.r𝑃) = (+g𝑈)
7370, 71, 72issubm 18442 . . 3 (𝑈 ∈ Mnd → (𝑀 ∈ (SubMnd‘𝑈) ↔ (𝑀 ⊆ (Base‘𝑃) ∧ (1r𝑃) ∈ 𝑀 ∧ ∀𝑥𝑀𝑦𝑀 (𝑥(.r𝑃)𝑦) ∈ 𝑀)))
7469, 73syl 17 . 2 (𝑅 ∈ NzRing → (𝑀 ∈ (SubMnd‘𝑈) ↔ (𝑀 ⊆ (Base‘𝑃) ∧ (1r𝑃) ∈ 𝑀 ∧ ∀𝑥𝑀𝑦𝑀 (𝑥(.r𝑃)𝑦) ∈ 𝑀)))
756, 10, 66, 74mpbir3and 1341 1 (𝑅 ∈ NzRing → 𝑀 ∈ (SubMnd‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wss 3887  cfv 6433  (class class class)co 7275  0cc0 10871   + caddc 10874  0cn0 12233  Basecbs 16912  .rcmulr 16963  0gc0g 17150  Mndcmnd 18385  SubMndcsubmnd 18429  mulGrpcmgp 19720  1rcur 19737  Ringcrg 19783  Unitcui 19881  NzRingcnzr 20528  RLRegcrlreg 20550  Poly1cpl1 21348  coe1cco1 21349   deg1 cdg1 25216  Monic1pcmn1 25290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-subrg 20022  df-lmod 20125  df-lss 20194  df-nzr 20529  df-rlreg 20554  df-cnfld 20598  df-ascl 21062  df-psr 21112  df-mvr 21113  df-mpl 21114  df-opsr 21116  df-psr1 21351  df-vr1 21352  df-ply1 21353  df-coe1 21354  df-mdeg 25217  df-deg1 25218  df-mon1 25295
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator