Step | Hyp | Ref
| Expression |
1 | | mon1psubm.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
2 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘𝑃) |
3 | | mon1psubm.m |
. . . . 5
⊢ 𝑀 =
(Monic1p‘𝑅) |
4 | 1, 2, 3 | mon1pcl 25309 |
. . . 4
⊢ (𝑥 ∈ 𝑀 → 𝑥 ∈ (Base‘𝑃)) |
5 | 4 | ssriv 3925 |
. . 3
⊢ 𝑀 ⊆ (Base‘𝑃) |
6 | 5 | a1i 11 |
. 2
⊢ (𝑅 ∈ NzRing → 𝑀 ⊆ (Base‘𝑃)) |
7 | | eqid 2738 |
. . . 4
⊢
(1r‘𝑃) = (1r‘𝑃) |
8 | | eqid 2738 |
. . . 4
⊢ (
deg1 ‘𝑅) =
( deg1 ‘𝑅) |
9 | 1, 7, 3, 8 | mon1pid 41030 |
. . 3
⊢ (𝑅 ∈ NzRing →
((1r‘𝑃)
∈ 𝑀 ∧ ((
deg1 ‘𝑅)‘(1r‘𝑃)) = 0)) |
10 | 9 | simpld 495 |
. 2
⊢ (𝑅 ∈ NzRing →
(1r‘𝑃)
∈ 𝑀) |
11 | 1 | ply1nz 25286 |
. . . . . . 7
⊢ (𝑅 ∈ NzRing → 𝑃 ∈ NzRing) |
12 | | nzrring 20532 |
. . . . . . 7
⊢ (𝑃 ∈ NzRing → 𝑃 ∈ Ring) |
13 | 11, 12 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ NzRing → 𝑃 ∈ Ring) |
14 | 13 | adantr 481 |
. . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑃 ∈ Ring) |
15 | 4 | ad2antrl 725 |
. . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑥 ∈ (Base‘𝑃)) |
16 | | simprr 770 |
. . . . . 6
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑦 ∈ 𝑀) |
17 | 5, 16 | sselid 3919 |
. . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑦 ∈ (Base‘𝑃)) |
18 | | eqid 2738 |
. . . . . 6
⊢
(.r‘𝑃) = (.r‘𝑃) |
19 | 2, 18 | ringcl 19800 |
. . . . 5
⊢ ((𝑃 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃)) → (𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃)) |
20 | 14, 15, 17, 19 | syl3anc 1370 |
. . . 4
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃)) |
21 | | eqid 2738 |
. . . . . . 7
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) |
22 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑃) = (0g‘𝑃) |
23 | | nzrring 20532 |
. . . . . . . 8
⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
24 | 23 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑅 ∈ Ring) |
25 | 1, 22, 3 | mon1pn0 25311 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑀 → 𝑥 ≠ (0g‘𝑃)) |
26 | 25 | ad2antrl 725 |
. . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑥 ≠ (0g‘𝑃)) |
27 | | eqid 2738 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
28 | 8, 27, 3 | mon1pldg 25314 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑀 → ((coe1‘𝑥)‘(( deg1
‘𝑅)‘𝑥)) = (1r‘𝑅)) |
29 | 28 | ad2antrl 725 |
. . . . . . . 8
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘𝑥)‘(( deg1
‘𝑅)‘𝑥)) = (1r‘𝑅)) |
30 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
31 | 21, 30 | unitrrg 20564 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(Unit‘𝑅) ⊆
(RLReg‘𝑅)) |
32 | 23, 31 | syl 17 |
. . . . . . . . . 10
⊢ (𝑅 ∈ NzRing →
(Unit‘𝑅) ⊆
(RLReg‘𝑅)) |
33 | 30, 27 | 1unit 19900 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Unit‘𝑅)) |
34 | 23, 33 | syl 17 |
. . . . . . . . . 10
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
∈ (Unit‘𝑅)) |
35 | 32, 34 | sseldd 3922 |
. . . . . . . . 9
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
∈ (RLReg‘𝑅)) |
36 | 35 | adantr 481 |
. . . . . . . 8
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (1r‘𝑅) ∈ (RLReg‘𝑅)) |
37 | 29, 36 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘𝑥)‘(( deg1
‘𝑅)‘𝑥)) ∈ (RLReg‘𝑅)) |
38 | 1, 22, 3 | mon1pn0 25311 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑀 → 𝑦 ≠ (0g‘𝑃)) |
39 | 38 | ad2antll 726 |
. . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑦 ≠ (0g‘𝑃)) |
40 | 8, 1, 21, 2, 18, 22, 24, 15, 26, 37, 17, 39 | deg1mul2 25279 |
. . . . . 6
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (( deg1 ‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) = ((( deg1 ‘𝑅)‘𝑥) + (( deg1 ‘𝑅)‘𝑦))) |
41 | 8, 1, 22, 2 | deg1nn0cl 25253 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑥 ≠ (0g‘𝑃)) → (( deg1 ‘𝑅)‘𝑥) ∈
ℕ0) |
42 | 24, 15, 26, 41 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (( deg1 ‘𝑅)‘𝑥) ∈
ℕ0) |
43 | 8, 1, 22, 2 | deg1nn0cl 25253 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃)) → (( deg1 ‘𝑅)‘𝑦) ∈
ℕ0) |
44 | 24, 17, 39, 43 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (( deg1 ‘𝑅)‘𝑦) ∈
ℕ0) |
45 | 42, 44 | nn0addcld 12297 |
. . . . . 6
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((( deg1 ‘𝑅)‘𝑥) + (( deg1 ‘𝑅)‘𝑦)) ∈
ℕ0) |
46 | 40, 45 | eqeltrd 2839 |
. . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (( deg1 ‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) ∈
ℕ0) |
47 | 8, 1, 22, 2 | deg1nn0clb 25255 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃)) → ((𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃) ↔ (( deg1 ‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) ∈
ℕ0)) |
48 | 24, 20, 47 | syl2anc 584 |
. . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃) ↔ (( deg1 ‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) ∈
ℕ0)) |
49 | 46, 48 | mpbird 256 |
. . . 4
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃)) |
50 | 40 | fveq2d 6778 |
. . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘(𝑥(.r‘𝑃)𝑦))‘(( deg1 ‘𝑅)‘(𝑥(.r‘𝑃)𝑦))) = ((coe1‘(𝑥(.r‘𝑃)𝑦))‘((( deg1 ‘𝑅)‘𝑥) + (( deg1 ‘𝑅)‘𝑦)))) |
51 | | eqid 2738 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
52 | 1, 18, 51, 2, 8, 22, 24, 15, 26, 17, 39 | coe1mul4 25265 |
. . . . . 6
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘(𝑥(.r‘𝑃)𝑦))‘((( deg1 ‘𝑅)‘𝑥) + (( deg1 ‘𝑅)‘𝑦))) = (((coe1‘𝑥)‘(( deg1
‘𝑅)‘𝑥))(.r‘𝑅)((coe1‘𝑦)‘(( deg1
‘𝑅)‘𝑦)))) |
53 | 8, 27, 3 | mon1pldg 25314 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑀 → ((coe1‘𝑦)‘(( deg1
‘𝑅)‘𝑦)) = (1r‘𝑅)) |
54 | 53 | ad2antll 726 |
. . . . . . . 8
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘𝑦)‘(( deg1
‘𝑅)‘𝑦)) = (1r‘𝑅)) |
55 | 29, 54 | oveq12d 7293 |
. . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (((coe1‘𝑥)‘(( deg1
‘𝑅)‘𝑥))(.r‘𝑅)((coe1‘𝑦)‘(( deg1
‘𝑅)‘𝑦))) =
((1r‘𝑅)(.r‘𝑅)(1r‘𝑅))) |
56 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
57 | 56, 27 | ringidcl 19807 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
58 | 56, 51, 27 | ringlidm 19810 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ (Base‘𝑅))
→ ((1r‘𝑅)(.r‘𝑅)(1r‘𝑅)) = (1r‘𝑅)) |
59 | 23, 57, 58 | syl2anc2 585 |
. . . . . . . 8
⊢ (𝑅 ∈ NzRing →
((1r‘𝑅)(.r‘𝑅)(1r‘𝑅)) = (1r‘𝑅)) |
60 | 59 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((1r‘𝑅)(.r‘𝑅)(1r‘𝑅)) = (1r‘𝑅)) |
61 | 55, 60 | eqtrd 2778 |
. . . . . 6
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (((coe1‘𝑥)‘(( deg1
‘𝑅)‘𝑥))(.r‘𝑅)((coe1‘𝑦)‘(( deg1
‘𝑅)‘𝑦))) = (1r‘𝑅)) |
62 | 52, 61 | eqtrd 2778 |
. . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘(𝑥(.r‘𝑃)𝑦))‘((( deg1 ‘𝑅)‘𝑥) + (( deg1 ‘𝑅)‘𝑦))) = (1r‘𝑅)) |
63 | 50, 62 | eqtrd 2778 |
. . . 4
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘(𝑥(.r‘𝑃)𝑦))‘(( deg1 ‘𝑅)‘(𝑥(.r‘𝑃)𝑦))) = (1r‘𝑅)) |
64 | 1, 2, 22, 8, 3, 27 | ismon1p 25307 |
. . . 4
⊢ ((𝑥(.r‘𝑃)𝑦) ∈ 𝑀 ↔ ((𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃) ∧ (𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃) ∧ ((coe1‘(𝑥(.r‘𝑃)𝑦))‘(( deg1 ‘𝑅)‘(𝑥(.r‘𝑃)𝑦))) = (1r‘𝑅))) |
65 | 20, 49, 63, 64 | syl3anbrc 1342 |
. . 3
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (𝑥(.r‘𝑃)𝑦) ∈ 𝑀) |
66 | 65 | ralrimivva 3123 |
. 2
⊢ (𝑅 ∈ NzRing →
∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥(.r‘𝑃)𝑦) ∈ 𝑀) |
67 | | mon1psubm.u |
. . . . 5
⊢ 𝑈 = (mulGrp‘𝑃) |
68 | 67 | ringmgp 19789 |
. . . 4
⊢ (𝑃 ∈ Ring → 𝑈 ∈ Mnd) |
69 | 13, 68 | syl 17 |
. . 3
⊢ (𝑅 ∈ NzRing → 𝑈 ∈ Mnd) |
70 | 67, 2 | mgpbas 19726 |
. . . 4
⊢
(Base‘𝑃) =
(Base‘𝑈) |
71 | 67, 7 | ringidval 19739 |
. . . 4
⊢
(1r‘𝑃) = (0g‘𝑈) |
72 | 67, 18 | mgpplusg 19724 |
. . . 4
⊢
(.r‘𝑃) = (+g‘𝑈) |
73 | 70, 71, 72 | issubm 18442 |
. . 3
⊢ (𝑈 ∈ Mnd → (𝑀 ∈ (SubMnd‘𝑈) ↔ (𝑀 ⊆ (Base‘𝑃) ∧ (1r‘𝑃) ∈ 𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥(.r‘𝑃)𝑦) ∈ 𝑀))) |
74 | 69, 73 | syl 17 |
. 2
⊢ (𝑅 ∈ NzRing → (𝑀 ∈ (SubMnd‘𝑈) ↔ (𝑀 ⊆ (Base‘𝑃) ∧ (1r‘𝑃) ∈ 𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥(.r‘𝑃)𝑦) ∈ 𝑀))) |
75 | 6, 10, 66, 74 | mpbir3and 1341 |
1
⊢ (𝑅 ∈ NzRing → 𝑀 ∈ (SubMnd‘𝑈)) |