| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mon1psubm.p | . . . . 5
⊢ 𝑃 = (Poly1‘𝑅) | 
| 2 |  | eqid 2736 | . . . . 5
⊢
(Base‘𝑃) =
(Base‘𝑃) | 
| 3 |  | mon1psubm.m | . . . . 5
⊢ 𝑀 =
(Monic1p‘𝑅) | 
| 4 | 1, 2, 3 | mon1pcl 26185 | . . . 4
⊢ (𝑥 ∈ 𝑀 → 𝑥 ∈ (Base‘𝑃)) | 
| 5 | 4 | ssriv 3986 | . . 3
⊢ 𝑀 ⊆ (Base‘𝑃) | 
| 6 | 5 | a1i 11 | . 2
⊢ (𝑅 ∈ NzRing → 𝑀 ⊆ (Base‘𝑃)) | 
| 7 |  | eqid 2736 | . . . 4
⊢
(1r‘𝑃) = (1r‘𝑃) | 
| 8 |  | eqid 2736 | . . . 4
⊢
(deg1‘𝑅) = (deg1‘𝑅) | 
| 9 | 1, 7, 3, 8 | mon1pid 26194 | . . 3
⊢ (𝑅 ∈ NzRing →
((1r‘𝑃)
∈ 𝑀 ∧
((deg1‘𝑅)‘(1r‘𝑃)) = 0)) | 
| 10 | 9 | simpld 494 | . 2
⊢ (𝑅 ∈ NzRing →
(1r‘𝑃)
∈ 𝑀) | 
| 11 | 1 | ply1nz 26162 | . . . . . . 7
⊢ (𝑅 ∈ NzRing → 𝑃 ∈ NzRing) | 
| 12 |  | nzrring 20517 | . . . . . . 7
⊢ (𝑃 ∈ NzRing → 𝑃 ∈ Ring) | 
| 13 | 11, 12 | syl 17 | . . . . . 6
⊢ (𝑅 ∈ NzRing → 𝑃 ∈ Ring) | 
| 14 | 13 | adantr 480 | . . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑃 ∈ Ring) | 
| 15 | 4 | ad2antrl 728 | . . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑥 ∈ (Base‘𝑃)) | 
| 16 |  | simprr 772 | . . . . . 6
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑦 ∈ 𝑀) | 
| 17 | 5, 16 | sselid 3980 | . . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑦 ∈ (Base‘𝑃)) | 
| 18 |  | eqid 2736 | . . . . . 6
⊢
(.r‘𝑃) = (.r‘𝑃) | 
| 19 | 2, 18 | ringcl 20248 | . . . . 5
⊢ ((𝑃 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃)) → (𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃)) | 
| 20 | 14, 15, 17, 19 | syl3anc 1372 | . . . 4
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃)) | 
| 21 |  | eqid 2736 | . . . . . . 7
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) | 
| 22 |  | eqid 2736 | . . . . . . 7
⊢
(0g‘𝑃) = (0g‘𝑃) | 
| 23 |  | nzrring 20517 | . . . . . . . 8
⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | 
| 24 | 23 | adantr 480 | . . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑅 ∈ Ring) | 
| 25 | 1, 22, 3 | mon1pn0 26187 | . . . . . . . 8
⊢ (𝑥 ∈ 𝑀 → 𝑥 ≠ (0g‘𝑃)) | 
| 26 | 25 | ad2antrl 728 | . . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑥 ≠ (0g‘𝑃)) | 
| 27 |  | eqid 2736 | . . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) | 
| 28 | 8, 27, 3 | mon1pldg 26190 | . . . . . . . . 9
⊢ (𝑥 ∈ 𝑀 → ((coe1‘𝑥)‘((deg1‘𝑅)‘𝑥)) = (1r‘𝑅)) | 
| 29 | 28 | ad2antrl 728 | . . . . . . . 8
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘𝑥)‘((deg1‘𝑅)‘𝑥)) = (1r‘𝑅)) | 
| 30 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(Unit‘𝑅) =
(Unit‘𝑅) | 
| 31 | 21, 30 | unitrrg 20704 | . . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(Unit‘𝑅) ⊆
(RLReg‘𝑅)) | 
| 32 | 23, 31 | syl 17 | . . . . . . . . . 10
⊢ (𝑅 ∈ NzRing →
(Unit‘𝑅) ⊆
(RLReg‘𝑅)) | 
| 33 | 30, 27 | 1unit 20375 | . . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Unit‘𝑅)) | 
| 34 | 23, 33 | syl 17 | . . . . . . . . . 10
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
∈ (Unit‘𝑅)) | 
| 35 | 32, 34 | sseldd 3983 | . . . . . . . . 9
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
∈ (RLReg‘𝑅)) | 
| 36 | 35 | adantr 480 | . . . . . . . 8
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (1r‘𝑅) ∈ (RLReg‘𝑅)) | 
| 37 | 29, 36 | eqeltrd 2840 | . . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘𝑥)‘((deg1‘𝑅)‘𝑥)) ∈ (RLReg‘𝑅)) | 
| 38 | 1, 22, 3 | mon1pn0 26187 | . . . . . . . 8
⊢ (𝑦 ∈ 𝑀 → 𝑦 ≠ (0g‘𝑃)) | 
| 39 | 38 | ad2antll 729 | . . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑦 ≠ (0g‘𝑃)) | 
| 40 | 8, 1, 21, 2, 18, 22, 24, 15, 26, 37, 17, 39 | deg1mul2 26154 | . . . . . 6
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) = (((deg1‘𝑅)‘𝑥) + ((deg1‘𝑅)‘𝑦))) | 
| 41 | 8, 1, 22, 2 | deg1nn0cl 26128 | . . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑥 ≠ (0g‘𝑃)) → ((deg1‘𝑅)‘𝑥) ∈
ℕ0) | 
| 42 | 24, 15, 26, 41 | syl3anc 1372 | . . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((deg1‘𝑅)‘𝑥) ∈
ℕ0) | 
| 43 | 8, 1, 22, 2 | deg1nn0cl 26128 | . . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃)) → ((deg1‘𝑅)‘𝑦) ∈
ℕ0) | 
| 44 | 24, 17, 39, 43 | syl3anc 1372 | . . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((deg1‘𝑅)‘𝑦) ∈
ℕ0) | 
| 45 | 42, 44 | nn0addcld 12593 | . . . . . 6
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (((deg1‘𝑅)‘𝑥) + ((deg1‘𝑅)‘𝑦)) ∈
ℕ0) | 
| 46 | 40, 45 | eqeltrd 2840 | . . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) ∈
ℕ0) | 
| 47 | 8, 1, 22, 2 | deg1nn0clb 26130 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃)) → ((𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃) ↔ ((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) ∈
ℕ0)) | 
| 48 | 24, 20, 47 | syl2anc 584 | . . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃) ↔ ((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) ∈
ℕ0)) | 
| 49 | 46, 48 | mpbird 257 | . . . 4
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃)) | 
| 50 | 40 | fveq2d 6909 | . . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘(𝑥(.r‘𝑃)𝑦))‘((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦))) = ((coe1‘(𝑥(.r‘𝑃)𝑦))‘(((deg1‘𝑅)‘𝑥) + ((deg1‘𝑅)‘𝑦)))) | 
| 51 |  | eqid 2736 | . . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 52 | 1, 18, 51, 2, 8, 22, 24, 15, 26, 17, 39 | coe1mul4 26140 | . . . . . 6
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘(𝑥(.r‘𝑃)𝑦))‘(((deg1‘𝑅)‘𝑥) + ((deg1‘𝑅)‘𝑦))) = (((coe1‘𝑥)‘((deg1‘𝑅)‘𝑥))(.r‘𝑅)((coe1‘𝑦)‘((deg1‘𝑅)‘𝑦)))) | 
| 53 | 8, 27, 3 | mon1pldg 26190 | . . . . . . . . 9
⊢ (𝑦 ∈ 𝑀 → ((coe1‘𝑦)‘((deg1‘𝑅)‘𝑦)) = (1r‘𝑅)) | 
| 54 | 53 | ad2antll 729 | . . . . . . . 8
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘𝑦)‘((deg1‘𝑅)‘𝑦)) = (1r‘𝑅)) | 
| 55 | 29, 54 | oveq12d 7450 | . . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (((coe1‘𝑥)‘((deg1‘𝑅)‘𝑥))(.r‘𝑅)((coe1‘𝑦)‘((deg1‘𝑅)‘𝑦))) = ((1r‘𝑅)(.r‘𝑅)(1r‘𝑅))) | 
| 56 |  | eqid 2736 | . . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 57 | 56, 27 | ringidcl 20263 | . . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) | 
| 58 | 56, 51, 27 | ringlidm 20267 | . . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ (Base‘𝑅))
→ ((1r‘𝑅)(.r‘𝑅)(1r‘𝑅)) = (1r‘𝑅)) | 
| 59 | 23, 57, 58 | syl2anc2 585 | . . . . . . . 8
⊢ (𝑅 ∈ NzRing →
((1r‘𝑅)(.r‘𝑅)(1r‘𝑅)) = (1r‘𝑅)) | 
| 60 | 59 | adantr 480 | . . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((1r‘𝑅)(.r‘𝑅)(1r‘𝑅)) = (1r‘𝑅)) | 
| 61 | 55, 60 | eqtrd 2776 | . . . . . 6
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (((coe1‘𝑥)‘((deg1‘𝑅)‘𝑥))(.r‘𝑅)((coe1‘𝑦)‘((deg1‘𝑅)‘𝑦))) = (1r‘𝑅)) | 
| 62 | 52, 61 | eqtrd 2776 | . . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘(𝑥(.r‘𝑃)𝑦))‘(((deg1‘𝑅)‘𝑥) + ((deg1‘𝑅)‘𝑦))) = (1r‘𝑅)) | 
| 63 | 50, 62 | eqtrd 2776 | . . . 4
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘(𝑥(.r‘𝑃)𝑦))‘((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦))) = (1r‘𝑅)) | 
| 64 | 1, 2, 22, 8, 3, 27 | ismon1p 26183 | . . . 4
⊢ ((𝑥(.r‘𝑃)𝑦) ∈ 𝑀 ↔ ((𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃) ∧ (𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃) ∧ ((coe1‘(𝑥(.r‘𝑃)𝑦))‘((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦))) = (1r‘𝑅))) | 
| 65 | 20, 49, 63, 64 | syl3anbrc 1343 | . . 3
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (𝑥(.r‘𝑃)𝑦) ∈ 𝑀) | 
| 66 | 65 | ralrimivva 3201 | . 2
⊢ (𝑅 ∈ NzRing →
∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥(.r‘𝑃)𝑦) ∈ 𝑀) | 
| 67 |  | mon1psubm.u | . . . . 5
⊢ 𝑈 = (mulGrp‘𝑃) | 
| 68 | 67 | ringmgp 20237 | . . . 4
⊢ (𝑃 ∈ Ring → 𝑈 ∈ Mnd) | 
| 69 | 13, 68 | syl 17 | . . 3
⊢ (𝑅 ∈ NzRing → 𝑈 ∈ Mnd) | 
| 70 | 67, 2 | mgpbas 20143 | . . . 4
⊢
(Base‘𝑃) =
(Base‘𝑈) | 
| 71 | 67, 7 | ringidval 20181 | . . . 4
⊢
(1r‘𝑃) = (0g‘𝑈) | 
| 72 | 67, 18 | mgpplusg 20142 | . . . 4
⊢
(.r‘𝑃) = (+g‘𝑈) | 
| 73 | 70, 71, 72 | issubm 18817 | . . 3
⊢ (𝑈 ∈ Mnd → (𝑀 ∈ (SubMnd‘𝑈) ↔ (𝑀 ⊆ (Base‘𝑃) ∧ (1r‘𝑃) ∈ 𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥(.r‘𝑃)𝑦) ∈ 𝑀))) | 
| 74 | 69, 73 | syl 17 | . 2
⊢ (𝑅 ∈ NzRing → (𝑀 ∈ (SubMnd‘𝑈) ↔ (𝑀 ⊆ (Base‘𝑃) ∧ (1r‘𝑃) ∈ 𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥(.r‘𝑃)𝑦) ∈ 𝑀))) | 
| 75 | 6, 10, 66, 74 | mpbir3and 1342 | 1
⊢ (𝑅 ∈ NzRing → 𝑀 ∈ (SubMnd‘𝑈)) |