Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mon1psubm Structured version   Visualization version   GIF version

Theorem mon1psubm 38743
Description: Monic polynomials are a multiplicative submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
mon1psubm.p 𝑃 = (Poly1𝑅)
mon1psubm.m 𝑀 = (Monic1p𝑅)
mon1psubm.u 𝑈 = (mulGrp‘𝑃)
Assertion
Ref Expression
mon1psubm (𝑅 ∈ NzRing → 𝑀 ∈ (SubMnd‘𝑈))

Proof of Theorem mon1psubm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mon1psubm.p . . . . 5 𝑃 = (Poly1𝑅)
2 eqid 2778 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
3 mon1psubm.m . . . . 5 𝑀 = (Monic1p𝑅)
41, 2, 3mon1pcl 24341 . . . 4 (𝑥𝑀𝑥 ∈ (Base‘𝑃))
54ssriv 3825 . . 3 𝑀 ⊆ (Base‘𝑃)
65a1i 11 . 2 (𝑅 ∈ NzRing → 𝑀 ⊆ (Base‘𝑃))
7 eqid 2778 . . . 4 (1r𝑃) = (1r𝑃)
8 eqid 2778 . . . 4 ( deg1𝑅) = ( deg1𝑅)
91, 7, 3, 8mon1pid 38742 . . 3 (𝑅 ∈ NzRing → ((1r𝑃) ∈ 𝑀 ∧ (( deg1𝑅)‘(1r𝑃)) = 0))
109simpld 490 . 2 (𝑅 ∈ NzRing → (1r𝑃) ∈ 𝑀)
111ply1nz 24318 . . . . . . 7 (𝑅 ∈ NzRing → 𝑃 ∈ NzRing)
12 nzrring 19658 . . . . . . 7 (𝑃 ∈ NzRing → 𝑃 ∈ Ring)
1311, 12syl 17 . . . . . 6 (𝑅 ∈ NzRing → 𝑃 ∈ Ring)
1413adantr 474 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑃 ∈ Ring)
154ad2antrl 718 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑥 ∈ (Base‘𝑃))
16 simprr 763 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑦𝑀)
175, 16sseldi 3819 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑦 ∈ (Base‘𝑃))
18 eqid 2778 . . . . . 6 (.r𝑃) = (.r𝑃)
192, 18ringcl 18948 . . . . 5 ((𝑃 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃)) → (𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃))
2014, 15, 17, 19syl3anc 1439 . . . 4 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃))
21 eqid 2778 . . . . . . 7 (RLReg‘𝑅) = (RLReg‘𝑅)
22 eqid 2778 . . . . . . 7 (0g𝑃) = (0g𝑃)
23 nzrring 19658 . . . . . . . 8 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2423adantr 474 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑅 ∈ Ring)
251, 22, 3mon1pn0 24343 . . . . . . . 8 (𝑥𝑀𝑥 ≠ (0g𝑃))
2625ad2antrl 718 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑥 ≠ (0g𝑃))
27 eqid 2778 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
288, 27, 3mon1pldg 24346 . . . . . . . . 9 (𝑥𝑀 → ((coe1𝑥)‘(( deg1𝑅)‘𝑥)) = (1r𝑅))
2928ad2antrl 718 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1𝑥)‘(( deg1𝑅)‘𝑥)) = (1r𝑅))
30 eqid 2778 . . . . . . . . . . . 12 (Unit‘𝑅) = (Unit‘𝑅)
3121, 30unitrrg 19690 . . . . . . . . . . 11 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
3223, 31syl 17 . . . . . . . . . 10 (𝑅 ∈ NzRing → (Unit‘𝑅) ⊆ (RLReg‘𝑅))
3330, 271unit 19045 . . . . . . . . . . 11 (𝑅 ∈ Ring → (1r𝑅) ∈ (Unit‘𝑅))
3423, 33syl 17 . . . . . . . . . 10 (𝑅 ∈ NzRing → (1r𝑅) ∈ (Unit‘𝑅))
3532, 34sseldd 3822 . . . . . . . . 9 (𝑅 ∈ NzRing → (1r𝑅) ∈ (RLReg‘𝑅))
3635adantr 474 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (1r𝑅) ∈ (RLReg‘𝑅))
3729, 36eqeltrd 2859 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1𝑥)‘(( deg1𝑅)‘𝑥)) ∈ (RLReg‘𝑅))
381, 22, 3mon1pn0 24343 . . . . . . . 8 (𝑦𝑀𝑦 ≠ (0g𝑃))
3938ad2antll 719 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → 𝑦 ≠ (0g𝑃))
408, 1, 21, 2, 18, 22, 24, 15, 26, 37, 17, 39deg1mul2 24311 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) = ((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦)))
418, 1, 22, 2deg1nn0cl 24285 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑥 ≠ (0g𝑃)) → (( deg1𝑅)‘𝑥) ∈ ℕ0)
4224, 15, 26, 41syl3anc 1439 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘𝑥) ∈ ℕ0)
438, 1, 22, 2deg1nn0cl 24285 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑃) ∧ 𝑦 ≠ (0g𝑃)) → (( deg1𝑅)‘𝑦) ∈ ℕ0)
4424, 17, 39, 43syl3anc 1439 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘𝑦) ∈ ℕ0)
4542, 44nn0addcld 11706 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦)) ∈ ℕ0)
4640, 45eqeltrd 2859 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) ∈ ℕ0)
478, 1, 22, 2deg1nn0clb 24287 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃)) → ((𝑥(.r𝑃)𝑦) ≠ (0g𝑃) ↔ (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) ∈ ℕ0))
4824, 20, 47syl2anc 579 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((𝑥(.r𝑃)𝑦) ≠ (0g𝑃) ↔ (( deg1𝑅)‘(𝑥(.r𝑃)𝑦)) ∈ ℕ0))
4946, 48mpbird 249 . . . 4 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (𝑥(.r𝑃)𝑦) ≠ (0g𝑃))
5040fveq2d 6450 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘(( deg1𝑅)‘(𝑥(.r𝑃)𝑦))) = ((coe1‘(𝑥(.r𝑃)𝑦))‘((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦))))
51 eqid 2778 . . . . . . 7 (.r𝑅) = (.r𝑅)
521, 18, 51, 2, 8, 22, 24, 15, 26, 17, 39coe1mul4 24297 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦))) = (((coe1𝑥)‘(( deg1𝑅)‘𝑥))(.r𝑅)((coe1𝑦)‘(( deg1𝑅)‘𝑦))))
538, 27, 3mon1pldg 24346 . . . . . . . . 9 (𝑦𝑀 → ((coe1𝑦)‘(( deg1𝑅)‘𝑦)) = (1r𝑅))
5453ad2antll 719 . . . . . . . 8 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1𝑦)‘(( deg1𝑅)‘𝑦)) = (1r𝑅))
5529, 54oveq12d 6940 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (((coe1𝑥)‘(( deg1𝑅)‘𝑥))(.r𝑅)((coe1𝑦)‘(( deg1𝑅)‘𝑦))) = ((1r𝑅)(.r𝑅)(1r𝑅)))
56 eqid 2778 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
5756, 27ringidcl 18955 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
5823, 57syl 17 . . . . . . . . 9 (𝑅 ∈ NzRing → (1r𝑅) ∈ (Base‘𝑅))
5956, 51, 27ringlidm 18958 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ (Base‘𝑅)) → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6023, 58, 59syl2anc 579 . . . . . . . 8 (𝑅 ∈ NzRing → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6160adantr 474 . . . . . . 7 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((1r𝑅)(.r𝑅)(1r𝑅)) = (1r𝑅))
6255, 61eqtrd 2814 . . . . . 6 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (((coe1𝑥)‘(( deg1𝑅)‘𝑥))(.r𝑅)((coe1𝑦)‘(( deg1𝑅)‘𝑦))) = (1r𝑅))
6352, 62eqtrd 2814 . . . . 5 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘((( deg1𝑅)‘𝑥) + (( deg1𝑅)‘𝑦))) = (1r𝑅))
6450, 63eqtrd 2814 . . . 4 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → ((coe1‘(𝑥(.r𝑃)𝑦))‘(( deg1𝑅)‘(𝑥(.r𝑃)𝑦))) = (1r𝑅))
651, 2, 22, 8, 3, 27ismon1p 24339 . . . 4 ((𝑥(.r𝑃)𝑦) ∈ 𝑀 ↔ ((𝑥(.r𝑃)𝑦) ∈ (Base‘𝑃) ∧ (𝑥(.r𝑃)𝑦) ≠ (0g𝑃) ∧ ((coe1‘(𝑥(.r𝑃)𝑦))‘(( deg1𝑅)‘(𝑥(.r𝑃)𝑦))) = (1r𝑅)))
6620, 49, 64, 65syl3anbrc 1400 . . 3 ((𝑅 ∈ NzRing ∧ (𝑥𝑀𝑦𝑀)) → (𝑥(.r𝑃)𝑦) ∈ 𝑀)
6766ralrimivva 3153 . 2 (𝑅 ∈ NzRing → ∀𝑥𝑀𝑦𝑀 (𝑥(.r𝑃)𝑦) ∈ 𝑀)
68 mon1psubm.u . . . . 5 𝑈 = (mulGrp‘𝑃)
6968ringmgp 18940 . . . 4 (𝑃 ∈ Ring → 𝑈 ∈ Mnd)
7013, 69syl 17 . . 3 (𝑅 ∈ NzRing → 𝑈 ∈ Mnd)
7168, 2mgpbas 18882 . . . 4 (Base‘𝑃) = (Base‘𝑈)
7268, 7ringidval 18890 . . . 4 (1r𝑃) = (0g𝑈)
7368, 18mgpplusg 18880 . . . 4 (.r𝑃) = (+g𝑈)
7471, 72, 73issubm 17733 . . 3 (𝑈 ∈ Mnd → (𝑀 ∈ (SubMnd‘𝑈) ↔ (𝑀 ⊆ (Base‘𝑃) ∧ (1r𝑃) ∈ 𝑀 ∧ ∀𝑥𝑀𝑦𝑀 (𝑥(.r𝑃)𝑦) ∈ 𝑀)))
7570, 74syl 17 . 2 (𝑅 ∈ NzRing → (𝑀 ∈ (SubMnd‘𝑈) ↔ (𝑀 ⊆ (Base‘𝑃) ∧ (1r𝑃) ∈ 𝑀 ∧ ∀𝑥𝑀𝑦𝑀 (𝑥(.r𝑃)𝑦) ∈ 𝑀)))
766, 10, 67, 75mpbir3and 1399 1 (𝑅 ∈ NzRing → 𝑀 ∈ (SubMnd‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  wral 3090  wss 3792  cfv 6135  (class class class)co 6922  0cc0 10272   + caddc 10275  0cn0 11642  Basecbs 16255  .rcmulr 16339  0gc0g 16486  Mndcmnd 17680  SubMndcsubmnd 17720  mulGrpcmgp 18876  1rcur 18888  Ringcrg 18934  Unitcui 19026  NzRingcnzr 19654  RLRegcrlreg 19676  Poly1cpl1 19943  coe1cco1 19944   deg1 cdg1 24251  Monic1pcmn1 24322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-ofr 7175  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-sup 8636  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-fz 12644  df-fzo 12785  df-seq 13120  df-hash 13436  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-0g 16488  df-gsum 16489  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-submnd 17722  df-grp 17812  df-minusg 17813  df-sbg 17814  df-mulg 17928  df-subg 17975  df-ghm 18042  df-cntz 18133  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-cring 18937  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-subrg 19170  df-lmod 19257  df-lss 19325  df-nzr 19655  df-rlreg 19680  df-ascl 19711  df-psr 19753  df-mvr 19754  df-mpl 19755  df-opsr 19757  df-psr1 19946  df-vr1 19947  df-ply1 19948  df-coe1 19949  df-cnfld 20143  df-mdeg 24252  df-deg1 24253  df-mon1 24327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator