| Step | Hyp | Ref
| Expression |
| 1 | | mon1psubm.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
| 2 | | eqid 2736 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 3 | | mon1psubm.m |
. . . . 5
⊢ 𝑀 =
(Monic1p‘𝑅) |
| 4 | 1, 2, 3 | mon1pcl 26107 |
. . . 4
⊢ (𝑥 ∈ 𝑀 → 𝑥 ∈ (Base‘𝑃)) |
| 5 | 4 | ssriv 3967 |
. . 3
⊢ 𝑀 ⊆ (Base‘𝑃) |
| 6 | 5 | a1i 11 |
. 2
⊢ (𝑅 ∈ NzRing → 𝑀 ⊆ (Base‘𝑃)) |
| 7 | | eqid 2736 |
. . . 4
⊢
(1r‘𝑃) = (1r‘𝑃) |
| 8 | | eqid 2736 |
. . . 4
⊢
(deg1‘𝑅) = (deg1‘𝑅) |
| 9 | 1, 7, 3, 8 | mon1pid 26116 |
. . 3
⊢ (𝑅 ∈ NzRing →
((1r‘𝑃)
∈ 𝑀 ∧
((deg1‘𝑅)‘(1r‘𝑃)) = 0)) |
| 10 | 9 | simpld 494 |
. 2
⊢ (𝑅 ∈ NzRing →
(1r‘𝑃)
∈ 𝑀) |
| 11 | 1 | ply1nz 26084 |
. . . . . . 7
⊢ (𝑅 ∈ NzRing → 𝑃 ∈ NzRing) |
| 12 | | nzrring 20481 |
. . . . . . 7
⊢ (𝑃 ∈ NzRing → 𝑃 ∈ Ring) |
| 13 | 11, 12 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ NzRing → 𝑃 ∈ Ring) |
| 14 | 13 | adantr 480 |
. . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑃 ∈ Ring) |
| 15 | 4 | ad2antrl 728 |
. . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑥 ∈ (Base‘𝑃)) |
| 16 | | simprr 772 |
. . . . . 6
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑦 ∈ 𝑀) |
| 17 | 5, 16 | sselid 3961 |
. . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑦 ∈ (Base‘𝑃)) |
| 18 | | eqid 2736 |
. . . . . 6
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 19 | 2, 18 | ringcl 20215 |
. . . . 5
⊢ ((𝑃 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃)) → (𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃)) |
| 20 | 14, 15, 17, 19 | syl3anc 1373 |
. . . 4
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃)) |
| 21 | | eqid 2736 |
. . . . . . 7
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) |
| 22 | | eqid 2736 |
. . . . . . 7
⊢
(0g‘𝑃) = (0g‘𝑃) |
| 23 | | nzrring 20481 |
. . . . . . . 8
⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| 24 | 23 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑅 ∈ Ring) |
| 25 | 1, 22, 3 | mon1pn0 26109 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑀 → 𝑥 ≠ (0g‘𝑃)) |
| 26 | 25 | ad2antrl 728 |
. . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑥 ≠ (0g‘𝑃)) |
| 27 | | eqid 2736 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 28 | 8, 27, 3 | mon1pldg 26112 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑀 → ((coe1‘𝑥)‘((deg1‘𝑅)‘𝑥)) = (1r‘𝑅)) |
| 29 | 28 | ad2antrl 728 |
. . . . . . . 8
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘𝑥)‘((deg1‘𝑅)‘𝑥)) = (1r‘𝑅)) |
| 30 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
| 31 | 21, 30 | unitrrg 20668 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(Unit‘𝑅) ⊆
(RLReg‘𝑅)) |
| 32 | 23, 31 | syl 17 |
. . . . . . . . . 10
⊢ (𝑅 ∈ NzRing →
(Unit‘𝑅) ⊆
(RLReg‘𝑅)) |
| 33 | 30, 27 | 1unit 20339 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Unit‘𝑅)) |
| 34 | 23, 33 | syl 17 |
. . . . . . . . . 10
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
∈ (Unit‘𝑅)) |
| 35 | 32, 34 | sseldd 3964 |
. . . . . . . . 9
⊢ (𝑅 ∈ NzRing →
(1r‘𝑅)
∈ (RLReg‘𝑅)) |
| 36 | 35 | adantr 480 |
. . . . . . . 8
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (1r‘𝑅) ∈ (RLReg‘𝑅)) |
| 37 | 29, 36 | eqeltrd 2835 |
. . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘𝑥)‘((deg1‘𝑅)‘𝑥)) ∈ (RLReg‘𝑅)) |
| 38 | 1, 22, 3 | mon1pn0 26109 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑀 → 𝑦 ≠ (0g‘𝑃)) |
| 39 | 38 | ad2antll 729 |
. . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → 𝑦 ≠ (0g‘𝑃)) |
| 40 | 8, 1, 21, 2, 18, 22, 24, 15, 26, 37, 17, 39 | deg1mul2 26076 |
. . . . . 6
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) = (((deg1‘𝑅)‘𝑥) + ((deg1‘𝑅)‘𝑦))) |
| 41 | 8, 1, 22, 2 | deg1nn0cl 26050 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃) ∧ 𝑥 ≠ (0g‘𝑃)) → ((deg1‘𝑅)‘𝑥) ∈
ℕ0) |
| 42 | 24, 15, 26, 41 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((deg1‘𝑅)‘𝑥) ∈
ℕ0) |
| 43 | 8, 1, 22, 2 | deg1nn0cl 26050 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑃) ∧ 𝑦 ≠ (0g‘𝑃)) → ((deg1‘𝑅)‘𝑦) ∈
ℕ0) |
| 44 | 24, 17, 39, 43 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((deg1‘𝑅)‘𝑦) ∈
ℕ0) |
| 45 | 42, 44 | nn0addcld 12571 |
. . . . . 6
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (((deg1‘𝑅)‘𝑥) + ((deg1‘𝑅)‘𝑦)) ∈
ℕ0) |
| 46 | 40, 45 | eqeltrd 2835 |
. . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) ∈
ℕ0) |
| 47 | 8, 1, 22, 2 | deg1nn0clb 26052 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃)) → ((𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃) ↔ ((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) ∈
ℕ0)) |
| 48 | 24, 20, 47 | syl2anc 584 |
. . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃) ↔ ((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦)) ∈
ℕ0)) |
| 49 | 46, 48 | mpbird 257 |
. . . 4
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃)) |
| 50 | 40 | fveq2d 6885 |
. . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘(𝑥(.r‘𝑃)𝑦))‘((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦))) = ((coe1‘(𝑥(.r‘𝑃)𝑦))‘(((deg1‘𝑅)‘𝑥) + ((deg1‘𝑅)‘𝑦)))) |
| 51 | | eqid 2736 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 52 | 1, 18, 51, 2, 8, 22, 24, 15, 26, 17, 39 | coe1mul4 26062 |
. . . . . 6
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘(𝑥(.r‘𝑃)𝑦))‘(((deg1‘𝑅)‘𝑥) + ((deg1‘𝑅)‘𝑦))) = (((coe1‘𝑥)‘((deg1‘𝑅)‘𝑥))(.r‘𝑅)((coe1‘𝑦)‘((deg1‘𝑅)‘𝑦)))) |
| 53 | 8, 27, 3 | mon1pldg 26112 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑀 → ((coe1‘𝑦)‘((deg1‘𝑅)‘𝑦)) = (1r‘𝑅)) |
| 54 | 53 | ad2antll 729 |
. . . . . . . 8
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘𝑦)‘((deg1‘𝑅)‘𝑦)) = (1r‘𝑅)) |
| 55 | 29, 54 | oveq12d 7428 |
. . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (((coe1‘𝑥)‘((deg1‘𝑅)‘𝑥))(.r‘𝑅)((coe1‘𝑦)‘((deg1‘𝑅)‘𝑦))) = ((1r‘𝑅)(.r‘𝑅)(1r‘𝑅))) |
| 56 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 57 | 56, 27 | ringidcl 20230 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
| 58 | 56, 51, 27 | ringlidm 20234 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ (Base‘𝑅))
→ ((1r‘𝑅)(.r‘𝑅)(1r‘𝑅)) = (1r‘𝑅)) |
| 59 | 23, 57, 58 | syl2anc2 585 |
. . . . . . . 8
⊢ (𝑅 ∈ NzRing →
((1r‘𝑅)(.r‘𝑅)(1r‘𝑅)) = (1r‘𝑅)) |
| 60 | 59 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((1r‘𝑅)(.r‘𝑅)(1r‘𝑅)) = (1r‘𝑅)) |
| 61 | 55, 60 | eqtrd 2771 |
. . . . . 6
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (((coe1‘𝑥)‘((deg1‘𝑅)‘𝑥))(.r‘𝑅)((coe1‘𝑦)‘((deg1‘𝑅)‘𝑦))) = (1r‘𝑅)) |
| 62 | 52, 61 | eqtrd 2771 |
. . . . 5
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘(𝑥(.r‘𝑃)𝑦))‘(((deg1‘𝑅)‘𝑥) + ((deg1‘𝑅)‘𝑦))) = (1r‘𝑅)) |
| 63 | 50, 62 | eqtrd 2771 |
. . . 4
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → ((coe1‘(𝑥(.r‘𝑃)𝑦))‘((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦))) = (1r‘𝑅)) |
| 64 | 1, 2, 22, 8, 3, 27 | ismon1p 26105 |
. . . 4
⊢ ((𝑥(.r‘𝑃)𝑦) ∈ 𝑀 ↔ ((𝑥(.r‘𝑃)𝑦) ∈ (Base‘𝑃) ∧ (𝑥(.r‘𝑃)𝑦) ≠ (0g‘𝑃) ∧ ((coe1‘(𝑥(.r‘𝑃)𝑦))‘((deg1‘𝑅)‘(𝑥(.r‘𝑃)𝑦))) = (1r‘𝑅))) |
| 65 | 20, 49, 63, 64 | syl3anbrc 1344 |
. . 3
⊢ ((𝑅 ∈ NzRing ∧ (𝑥 ∈ 𝑀 ∧ 𝑦 ∈ 𝑀)) → (𝑥(.r‘𝑃)𝑦) ∈ 𝑀) |
| 66 | 65 | ralrimivva 3188 |
. 2
⊢ (𝑅 ∈ NzRing →
∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥(.r‘𝑃)𝑦) ∈ 𝑀) |
| 67 | | mon1psubm.u |
. . . . 5
⊢ 𝑈 = (mulGrp‘𝑃) |
| 68 | 67 | ringmgp 20204 |
. . . 4
⊢ (𝑃 ∈ Ring → 𝑈 ∈ Mnd) |
| 69 | 13, 68 | syl 17 |
. . 3
⊢ (𝑅 ∈ NzRing → 𝑈 ∈ Mnd) |
| 70 | 67, 2 | mgpbas 20110 |
. . . 4
⊢
(Base‘𝑃) =
(Base‘𝑈) |
| 71 | 67, 7 | ringidval 20148 |
. . . 4
⊢
(1r‘𝑃) = (0g‘𝑈) |
| 72 | 67, 18 | mgpplusg 20109 |
. . . 4
⊢
(.r‘𝑃) = (+g‘𝑈) |
| 73 | 70, 71, 72 | issubm 18786 |
. . 3
⊢ (𝑈 ∈ Mnd → (𝑀 ∈ (SubMnd‘𝑈) ↔ (𝑀 ⊆ (Base‘𝑃) ∧ (1r‘𝑃) ∈ 𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥(.r‘𝑃)𝑦) ∈ 𝑀))) |
| 74 | 69, 73 | syl 17 |
. 2
⊢ (𝑅 ∈ NzRing → (𝑀 ∈ (SubMnd‘𝑈) ↔ (𝑀 ⊆ (Base‘𝑃) ∧ (1r‘𝑃) ∈ 𝑀 ∧ ∀𝑥 ∈ 𝑀 ∀𝑦 ∈ 𝑀 (𝑥(.r‘𝑃)𝑦) ∈ 𝑀))) |
| 75 | 6, 10, 66, 74 | mpbir3and 1343 |
1
⊢ (𝑅 ∈ NzRing → 𝑀 ∈ (SubMnd‘𝑈)) |