MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmisfrlm Structured version   Visualization version   GIF version

Theorem frlmisfrlm 21065
Description: A free module is isomorphic to a free module over the same (nonzero) ring, with the same cardinality. (Contributed by AV, 10-Mar-2019.)
Assertion
Ref Expression
frlmisfrlm ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod 𝐽))

Proof of Theorem frlmisfrlm
StepHypRef Expression
1 nzrring 20542 . . . . 5 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2 eqid 2738 . . . . . 6 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
32frlmlmod 20966 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑌) → (𝑅 freeLMod 𝐼) ∈ LMod)
41, 3sylan 580 . . . 4 ((𝑅 ∈ NzRing ∧ 𝐼𝑌) → (𝑅 freeLMod 𝐼) ∈ LMod)
543adant3 1131 . . 3 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → (𝑅 freeLMod 𝐼) ∈ LMod)
6 eqid 2738 . . . . . 6 (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼)
7 eqid 2738 . . . . . 6 (LBasis‘(𝑅 freeLMod 𝐼)) = (LBasis‘(𝑅 freeLMod 𝐼))
82, 6, 7frlmlbs 21014 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑌) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
91, 8sylan 580 . . . 4 ((𝑅 ∈ NzRing ∧ 𝐼𝑌) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
1093adant3 1131 . . 3 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
11 simp3 1137 . . . . 5 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → 𝐼𝐽)
1211ensymd 8778 . . . 4 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → 𝐽𝐼)
136uvcendim 21064 . . . . 5 ((𝑅 ∈ NzRing ∧ 𝐼𝑌) → 𝐼 ≈ ran (𝑅 unitVec 𝐼))
14133adant3 1131 . . . 4 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → 𝐼 ≈ ran (𝑅 unitVec 𝐼))
15 entr 8779 . . . 4 ((𝐽𝐼𝐼 ≈ ran (𝑅 unitVec 𝐼)) → 𝐽 ≈ ran (𝑅 unitVec 𝐼))
1612, 14, 15syl2anc 584 . . 3 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → 𝐽 ≈ ran (𝑅 unitVec 𝐼))
17 eqid 2738 . . . 4 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
1817, 7lbslcic 21058 . . 3 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)) ∧ 𝐽 ≈ ran (𝑅 unitVec 𝐼)) → (𝑅 freeLMod 𝐼) ≃𝑚 ((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐽))
195, 10, 16, 18syl3anc 1370 . 2 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 ((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐽))
202frlmsca 20970 . . . 4 ((𝑅 ∈ NzRing ∧ 𝐼𝑌) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
21203adant3 1131 . . 3 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
2221oveq1d 7282 . 2 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → (𝑅 freeLMod 𝐽) = ((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐽))
2319, 22breqtrrd 5101 1 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5073  ran crn 5585  cfv 6426  (class class class)co 7267  cen 8717  Scalarcsca 16975  Ringcrg 19793  LModclmod 20133  𝑚 clmic 20293  LBasisclbs 20346  NzRingcnzr 20538   freeLMod cfrlm 20963   unitVec cuvc 20999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-of 7523  df-om 7703  df-1st 7820  df-2nd 7821  df-supp 7965  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-er 8485  df-map 8604  df-ixp 8673  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-fsupp 9116  df-sup 9188  df-oi 9256  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-z 12330  df-dec 12448  df-uz 12593  df-fz 13250  df-fzo 13393  df-seq 13732  df-hash 14055  df-struct 16858  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-ress 16952  df-plusg 16985  df-mulr 16986  df-sca 16988  df-vsca 16989  df-ip 16990  df-tset 16991  df-ple 16992  df-ds 16994  df-hom 16996  df-cco 16997  df-0g 17162  df-gsum 17163  df-prds 17168  df-pws 17170  df-mre 17305  df-mrc 17306  df-acs 17308  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-mhm 18440  df-submnd 18441  df-grp 18590  df-minusg 18591  df-sbg 18592  df-mulg 18711  df-subg 18762  df-ghm 18842  df-cntz 18933  df-cmn 19398  df-abl 19399  df-mgp 19731  df-ur 19748  df-ring 19795  df-subrg 20032  df-lmod 20135  df-lss 20204  df-lsp 20244  df-lmhm 20294  df-lmim 20295  df-lmic 20296  df-lbs 20347  df-sra 20444  df-rgmod 20445  df-nzr 20539  df-dsmm 20949  df-frlm 20964  df-uvc 21000  df-lindf 21023  df-linds 21024
This theorem is referenced by:  frlmiscvec  21066
  Copyright terms: Public domain W3C validator