Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmisfrlm | Structured version Visualization version GIF version |
Description: A free module is isomorphic to a free module over the same (nonzero) ring, with the same cardinality. (Contributed by AV, 10-Mar-2019.) |
Ref | Expression |
---|---|
frlmisfrlm | ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nzrring 20542 | . . . . 5 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
2 | eqid 2738 | . . . . . 6 ⊢ (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼) | |
3 | 2 | frlmlmod 20966 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑌) → (𝑅 freeLMod 𝐼) ∈ LMod) |
4 | 1, 3 | sylan 580 | . . . 4 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌) → (𝑅 freeLMod 𝐼) ∈ LMod) |
5 | 4 | 3adant3 1131 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → (𝑅 freeLMod 𝐼) ∈ LMod) |
6 | eqid 2738 | . . . . . 6 ⊢ (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼) | |
7 | eqid 2738 | . . . . . 6 ⊢ (LBasis‘(𝑅 freeLMod 𝐼)) = (LBasis‘(𝑅 freeLMod 𝐼)) | |
8 | 2, 6, 7 | frlmlbs 21014 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑌) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼))) |
9 | 1, 8 | sylan 580 | . . . 4 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼))) |
10 | 9 | 3adant3 1131 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼))) |
11 | simp3 1137 | . . . . 5 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → 𝐼 ≈ 𝐽) | |
12 | 11 | ensymd 8778 | . . . 4 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → 𝐽 ≈ 𝐼) |
13 | 6 | uvcendim 21064 | . . . . 5 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌) → 𝐼 ≈ ran (𝑅 unitVec 𝐼)) |
14 | 13 | 3adant3 1131 | . . . 4 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → 𝐼 ≈ ran (𝑅 unitVec 𝐼)) |
15 | entr 8779 | . . . 4 ⊢ ((𝐽 ≈ 𝐼 ∧ 𝐼 ≈ ran (𝑅 unitVec 𝐼)) → 𝐽 ≈ ran (𝑅 unitVec 𝐼)) | |
16 | 12, 14, 15 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → 𝐽 ≈ ran (𝑅 unitVec 𝐼)) |
17 | eqid 2738 | . . . 4 ⊢ (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼)) | |
18 | 17, 7 | lbslcic 21058 | . . 3 ⊢ (((𝑅 freeLMod 𝐼) ∈ LMod ∧ ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)) ∧ 𝐽 ≈ ran (𝑅 unitVec 𝐼)) → (𝑅 freeLMod 𝐼) ≃𝑚 ((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐽)) |
19 | 5, 10, 16, 18 | syl3anc 1370 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 ((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐽)) |
20 | 2 | frlmsca 20970 | . . . 4 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼))) |
21 | 20 | 3adant3 1131 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼))) |
22 | 21 | oveq1d 7282 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → (𝑅 freeLMod 𝐽) = ((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐽)) |
23 | 19, 22 | breqtrrd 5101 | 1 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5073 ran crn 5585 ‘cfv 6426 (class class class)co 7267 ≈ cen 8717 Scalarcsca 16975 Ringcrg 19793 LModclmod 20133 ≃𝑚 clmic 20293 LBasisclbs 20346 NzRingcnzr 20538 freeLMod cfrlm 20963 unitVec cuvc 20999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-of 7523 df-om 7703 df-1st 7820 df-2nd 7821 df-supp 7965 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-map 8604 df-ixp 8673 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-fsupp 9116 df-sup 9188 df-oi 9256 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-z 12330 df-dec 12448 df-uz 12593 df-fz 13250 df-fzo 13393 df-seq 13732 df-hash 14055 df-struct 16858 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-ress 16952 df-plusg 16985 df-mulr 16986 df-sca 16988 df-vsca 16989 df-ip 16990 df-tset 16991 df-ple 16992 df-ds 16994 df-hom 16996 df-cco 16997 df-0g 17162 df-gsum 17163 df-prds 17168 df-pws 17170 df-mre 17305 df-mrc 17306 df-acs 17308 df-mgm 18336 df-sgrp 18385 df-mnd 18396 df-mhm 18440 df-submnd 18441 df-grp 18590 df-minusg 18591 df-sbg 18592 df-mulg 18711 df-subg 18762 df-ghm 18842 df-cntz 18933 df-cmn 19398 df-abl 19399 df-mgp 19731 df-ur 19748 df-ring 19795 df-subrg 20032 df-lmod 20135 df-lss 20204 df-lsp 20244 df-lmhm 20294 df-lmim 20295 df-lmic 20296 df-lbs 20347 df-sra 20444 df-rgmod 20445 df-nzr 20539 df-dsmm 20949 df-frlm 20964 df-uvc 21000 df-lindf 21023 df-linds 21024 |
This theorem is referenced by: frlmiscvec 21066 |
Copyright terms: Public domain | W3C validator |