MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmisfrlm Structured version   Visualization version   GIF version

Theorem frlmisfrlm 21083
Description: A free module is isomorphic to a free module over the same (nonzero) ring, with the same cardinality. (Contributed by AV, 10-Mar-2019.)
Assertion
Ref Expression
frlmisfrlm ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod 𝐽))

Proof of Theorem frlmisfrlm
StepHypRef Expression
1 nzrring 20560 . . . . 5 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2 eqid 2733 . . . . . 6 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
32frlmlmod 20984 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑌) → (𝑅 freeLMod 𝐼) ∈ LMod)
41, 3sylan 579 . . . 4 ((𝑅 ∈ NzRing ∧ 𝐼𝑌) → (𝑅 freeLMod 𝐼) ∈ LMod)
543adant3 1130 . . 3 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → (𝑅 freeLMod 𝐼) ∈ LMod)
6 eqid 2733 . . . . . 6 (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼)
7 eqid 2733 . . . . . 6 (LBasis‘(𝑅 freeLMod 𝐼)) = (LBasis‘(𝑅 freeLMod 𝐼))
82, 6, 7frlmlbs 21032 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑌) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
91, 8sylan 579 . . . 4 ((𝑅 ∈ NzRing ∧ 𝐼𝑌) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
1093adant3 1130 . . 3 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
11 simp3 1136 . . . . 5 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → 𝐼𝐽)
1211ensymd 8815 . . . 4 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → 𝐽𝐼)
136uvcendim 21082 . . . . 5 ((𝑅 ∈ NzRing ∧ 𝐼𝑌) → 𝐼 ≈ ran (𝑅 unitVec 𝐼))
14133adant3 1130 . . . 4 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → 𝐼 ≈ ran (𝑅 unitVec 𝐼))
15 entr 8816 . . . 4 ((𝐽𝐼𝐼 ≈ ran (𝑅 unitVec 𝐼)) → 𝐽 ≈ ran (𝑅 unitVec 𝐼))
1612, 14, 15syl2anc 583 . . 3 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → 𝐽 ≈ ran (𝑅 unitVec 𝐼))
17 eqid 2733 . . . 4 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
1817, 7lbslcic 21076 . . 3 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)) ∧ 𝐽 ≈ ran (𝑅 unitVec 𝐼)) → (𝑅 freeLMod 𝐼) ≃𝑚 ((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐽))
195, 10, 16, 18syl3anc 1369 . 2 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 ((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐽))
202frlmsca 20988 . . . 4 ((𝑅 ∈ NzRing ∧ 𝐼𝑌) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
21203adant3 1130 . . 3 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
2221oveq1d 7310 . 2 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → (𝑅 freeLMod 𝐽) = ((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐽))
2319, 22breqtrrd 5105 1 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1537  wcel 2101   class class class wbr 5077  ran crn 5592  cfv 6447  (class class class)co 7295  cen 8750  Scalarcsca 16993  Ringcrg 19811  LModclmod 20151  𝑚 clmic 20311  LBasisclbs 20364  NzRingcnzr 20556   freeLMod cfrlm 20981   unitVec cuvc 21017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-iin 4930  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-isom 6456  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-of 7553  df-om 7733  df-1st 7851  df-2nd 7852  df-supp 7998  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-er 8518  df-map 8637  df-ixp 8706  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-fsupp 9157  df-sup 9229  df-oi 9297  df-card 9725  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-nn 12002  df-2 12064  df-3 12065  df-4 12066  df-5 12067  df-6 12068  df-7 12069  df-8 12070  df-9 12071  df-n0 12262  df-z 12348  df-dec 12466  df-uz 12611  df-fz 13268  df-fzo 13411  df-seq 13750  df-hash 14073  df-struct 16876  df-sets 16893  df-slot 16911  df-ndx 16923  df-base 16941  df-ress 16970  df-plusg 17003  df-mulr 17004  df-sca 17006  df-vsca 17007  df-ip 17008  df-tset 17009  df-ple 17010  df-ds 17012  df-hom 17014  df-cco 17015  df-0g 17180  df-gsum 17181  df-prds 17186  df-pws 17188  df-mre 17323  df-mrc 17324  df-acs 17326  df-mgm 18354  df-sgrp 18403  df-mnd 18414  df-mhm 18458  df-submnd 18459  df-grp 18608  df-minusg 18609  df-sbg 18610  df-mulg 18729  df-subg 18780  df-ghm 18860  df-cntz 18951  df-cmn 19416  df-abl 19417  df-mgp 19749  df-ur 19766  df-ring 19813  df-subrg 20050  df-lmod 20153  df-lss 20222  df-lsp 20262  df-lmhm 20312  df-lmim 20313  df-lmic 20314  df-lbs 20365  df-sra 20462  df-rgmod 20463  df-nzr 20557  df-dsmm 20967  df-frlm 20982  df-uvc 21018  df-lindf 21041  df-linds 21042
This theorem is referenced by:  frlmiscvec  21084
  Copyright terms: Public domain W3C validator