MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmisfrlm Structured version   Visualization version   GIF version

Theorem frlmisfrlm 21757
Description: A free module is isomorphic to a free module over the same (nonzero) ring, with the same cardinality. (Contributed by AV, 10-Mar-2019.)
Assertion
Ref Expression
frlmisfrlm ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod 𝐽))

Proof of Theorem frlmisfrlm
StepHypRef Expression
1 nzrring 20425 . . . . 5 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2 eqid 2729 . . . . . 6 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
32frlmlmod 21658 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑌) → (𝑅 freeLMod 𝐼) ∈ LMod)
41, 3sylan 580 . . . 4 ((𝑅 ∈ NzRing ∧ 𝐼𝑌) → (𝑅 freeLMod 𝐼) ∈ LMod)
543adant3 1132 . . 3 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → (𝑅 freeLMod 𝐼) ∈ LMod)
6 eqid 2729 . . . . . 6 (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼)
7 eqid 2729 . . . . . 6 (LBasis‘(𝑅 freeLMod 𝐼)) = (LBasis‘(𝑅 freeLMod 𝐼))
82, 6, 7frlmlbs 21706 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑌) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
91, 8sylan 580 . . . 4 ((𝑅 ∈ NzRing ∧ 𝐼𝑌) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
1093adant3 1132 . . 3 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
11 simp3 1138 . . . . 5 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → 𝐼𝐽)
1211ensymd 8976 . . . 4 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → 𝐽𝐼)
136uvcendim 21756 . . . . 5 ((𝑅 ∈ NzRing ∧ 𝐼𝑌) → 𝐼 ≈ ran (𝑅 unitVec 𝐼))
14133adant3 1132 . . . 4 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → 𝐼 ≈ ran (𝑅 unitVec 𝐼))
15 entr 8977 . . . 4 ((𝐽𝐼𝐼 ≈ ran (𝑅 unitVec 𝐼)) → 𝐽 ≈ ran (𝑅 unitVec 𝐼))
1612, 14, 15syl2anc 584 . . 3 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → 𝐽 ≈ ran (𝑅 unitVec 𝐼))
17 eqid 2729 . . . 4 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
1817, 7lbslcic 21750 . . 3 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)) ∧ 𝐽 ≈ ran (𝑅 unitVec 𝐼)) → (𝑅 freeLMod 𝐼) ≃𝑚 ((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐽))
195, 10, 16, 18syl3anc 1373 . 2 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 ((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐽))
202frlmsca 21662 . . . 4 ((𝑅 ∈ NzRing ∧ 𝐼𝑌) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
21203adant3 1132 . . 3 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
2221oveq1d 7402 . 2 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → (𝑅 freeLMod 𝐽) = ((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐽))
2319, 22breqtrrd 5135 1 ((𝑅 ∈ NzRing ∧ 𝐼𝑌𝐼𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  ran crn 5639  cfv 6511  (class class class)co 7387  cen 8915  Scalarcsca 17223  Ringcrg 20142  NzRingcnzr 20421  LModclmod 20766  𝑚 clmic 20928  LBasisclbs 20981   freeLMod cfrlm 21655   unitVec cuvc 21691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-nzr 20422  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lmhm 20929  df-lmim 20930  df-lmic 20931  df-lbs 20982  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-uvc 21692  df-lindf 21715  df-linds 21716
This theorem is referenced by:  frlmiscvec  21758
  Copyright terms: Public domain W3C validator