| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmisfrlm | Structured version Visualization version GIF version | ||
| Description: A free module is isomorphic to a free module over the same (nonzero) ring, with the same cardinality. (Contributed by AV, 10-Mar-2019.) |
| Ref | Expression |
|---|---|
| frlmisfrlm | ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nzrring 20436 | . . . . 5 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼) | |
| 3 | 2 | frlmlmod 21691 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑌) → (𝑅 freeLMod 𝐼) ∈ LMod) |
| 4 | 1, 3 | sylan 580 | . . . 4 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌) → (𝑅 freeLMod 𝐼) ∈ LMod) |
| 5 | 4 | 3adant3 1132 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → (𝑅 freeLMod 𝐼) ∈ LMod) |
| 6 | eqid 2729 | . . . . . 6 ⊢ (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼) | |
| 7 | eqid 2729 | . . . . . 6 ⊢ (LBasis‘(𝑅 freeLMod 𝐼)) = (LBasis‘(𝑅 freeLMod 𝐼)) | |
| 8 | 2, 6, 7 | frlmlbs 21739 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑌) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼))) |
| 9 | 1, 8 | sylan 580 | . . . 4 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼))) |
| 10 | 9 | 3adant3 1132 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼))) |
| 11 | simp3 1138 | . . . . 5 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → 𝐼 ≈ 𝐽) | |
| 12 | 11 | ensymd 8953 | . . . 4 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → 𝐽 ≈ 𝐼) |
| 13 | 6 | uvcendim 21789 | . . . . 5 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌) → 𝐼 ≈ ran (𝑅 unitVec 𝐼)) |
| 14 | 13 | 3adant3 1132 | . . . 4 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → 𝐼 ≈ ran (𝑅 unitVec 𝐼)) |
| 15 | entr 8954 | . . . 4 ⊢ ((𝐽 ≈ 𝐼 ∧ 𝐼 ≈ ran (𝑅 unitVec 𝐼)) → 𝐽 ≈ ran (𝑅 unitVec 𝐼)) | |
| 16 | 12, 14, 15 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → 𝐽 ≈ ran (𝑅 unitVec 𝐼)) |
| 17 | eqid 2729 | . . . 4 ⊢ (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼)) | |
| 18 | 17, 7 | lbslcic 21783 | . . 3 ⊢ (((𝑅 freeLMod 𝐼) ∈ LMod ∧ ran (𝑅 unitVec 𝐼) ∈ (LBasis‘(𝑅 freeLMod 𝐼)) ∧ 𝐽 ≈ ran (𝑅 unitVec 𝐼)) → (𝑅 freeLMod 𝐼) ≃𝑚 ((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐽)) |
| 19 | 5, 10, 16, 18 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 ((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐽)) |
| 20 | 2 | frlmsca 21695 | . . . 4 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼))) |
| 21 | 20 | 3adant3 1132 | . . 3 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼))) |
| 22 | 21 | oveq1d 7384 | . 2 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → (𝑅 freeLMod 𝐽) = ((Scalar‘(𝑅 freeLMod 𝐼)) freeLMod 𝐽)) |
| 23 | 19, 22 | breqtrrd 5130 | 1 ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ran crn 5632 ‘cfv 6499 (class class class)co 7369 ≈ cen 8892 Scalarcsca 17199 Ringcrg 20153 NzRingcnzr 20432 LModclmod 20798 ≃𝑚 clmic 20960 LBasisclbs 21013 freeLMod cfrlm 21688 unitVec cuvc 21724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-mulg 18982 df-subg 19037 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-nzr 20433 df-subrg 20490 df-lmod 20800 df-lss 20870 df-lsp 20910 df-lmhm 20961 df-lmim 20962 df-lmic 20963 df-lbs 21014 df-sra 21112 df-rgmod 21113 df-dsmm 21674 df-frlm 21689 df-uvc 21725 df-lindf 21748 df-linds 21749 |
| This theorem is referenced by: frlmiscvec 21791 |
| Copyright terms: Public domain | W3C validator |