![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmisfrlm | Structured version Visualization version GIF version |
Description: A free module is isomorphic to a free module over the same (nonzero) ring, with the same cardinality. (Contributed by AV, 10-Mar-2019.) |
Ref | Expression |
---|---|
frlmisfrlm | β’ ((π β NzRing β§ πΌ β π β§ πΌ β π½) β (π freeLMod πΌ) βπ (π freeLMod π½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nzrring 20408 | . . . . 5 β’ (π β NzRing β π β Ring) | |
2 | eqid 2731 | . . . . . 6 β’ (π freeLMod πΌ) = (π freeLMod πΌ) | |
3 | 2 | frlmlmod 21524 | . . . . 5 β’ ((π β Ring β§ πΌ β π) β (π freeLMod πΌ) β LMod) |
4 | 1, 3 | sylan 579 | . . . 4 β’ ((π β NzRing β§ πΌ β π) β (π freeLMod πΌ) β LMod) |
5 | 4 | 3adant3 1131 | . . 3 β’ ((π β NzRing β§ πΌ β π β§ πΌ β π½) β (π freeLMod πΌ) β LMod) |
6 | eqid 2731 | . . . . . 6 β’ (π unitVec πΌ) = (π unitVec πΌ) | |
7 | eqid 2731 | . . . . . 6 β’ (LBasisβ(π freeLMod πΌ)) = (LBasisβ(π freeLMod πΌ)) | |
8 | 2, 6, 7 | frlmlbs 21572 | . . . . 5 β’ ((π β Ring β§ πΌ β π) β ran (π unitVec πΌ) β (LBasisβ(π freeLMod πΌ))) |
9 | 1, 8 | sylan 579 | . . . 4 β’ ((π β NzRing β§ πΌ β π) β ran (π unitVec πΌ) β (LBasisβ(π freeLMod πΌ))) |
10 | 9 | 3adant3 1131 | . . 3 β’ ((π β NzRing β§ πΌ β π β§ πΌ β π½) β ran (π unitVec πΌ) β (LBasisβ(π freeLMod πΌ))) |
11 | simp3 1137 | . . . . 5 β’ ((π β NzRing β§ πΌ β π β§ πΌ β π½) β πΌ β π½) | |
12 | 11 | ensymd 9004 | . . . 4 β’ ((π β NzRing β§ πΌ β π β§ πΌ β π½) β π½ β πΌ) |
13 | 6 | uvcendim 21622 | . . . . 5 β’ ((π β NzRing β§ πΌ β π) β πΌ β ran (π unitVec πΌ)) |
14 | 13 | 3adant3 1131 | . . . 4 β’ ((π β NzRing β§ πΌ β π β§ πΌ β π½) β πΌ β ran (π unitVec πΌ)) |
15 | entr 9005 | . . . 4 β’ ((π½ β πΌ β§ πΌ β ran (π unitVec πΌ)) β π½ β ran (π unitVec πΌ)) | |
16 | 12, 14, 15 | syl2anc 583 | . . 3 β’ ((π β NzRing β§ πΌ β π β§ πΌ β π½) β π½ β ran (π unitVec πΌ)) |
17 | eqid 2731 | . . . 4 β’ (Scalarβ(π freeLMod πΌ)) = (Scalarβ(π freeLMod πΌ)) | |
18 | 17, 7 | lbslcic 21616 | . . 3 β’ (((π freeLMod πΌ) β LMod β§ ran (π unitVec πΌ) β (LBasisβ(π freeLMod πΌ)) β§ π½ β ran (π unitVec πΌ)) β (π freeLMod πΌ) βπ ((Scalarβ(π freeLMod πΌ)) freeLMod π½)) |
19 | 5, 10, 16, 18 | syl3anc 1370 | . 2 β’ ((π β NzRing β§ πΌ β π β§ πΌ β π½) β (π freeLMod πΌ) βπ ((Scalarβ(π freeLMod πΌ)) freeLMod π½)) |
20 | 2 | frlmsca 21528 | . . . 4 β’ ((π β NzRing β§ πΌ β π) β π = (Scalarβ(π freeLMod πΌ))) |
21 | 20 | 3adant3 1131 | . . 3 β’ ((π β NzRing β§ πΌ β π β§ πΌ β π½) β π = (Scalarβ(π freeLMod πΌ))) |
22 | 21 | oveq1d 7427 | . 2 β’ ((π β NzRing β§ πΌ β π β§ πΌ β π½) β (π freeLMod π½) = ((Scalarβ(π freeLMod πΌ)) freeLMod π½)) |
23 | 19, 22 | breqtrrd 5177 | 1 β’ ((π β NzRing β§ πΌ β π β§ πΌ β π½) β (π freeLMod πΌ) βπ (π freeLMod π½)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1086 = wceq 1540 β wcel 2105 class class class wbr 5149 ran crn 5678 βcfv 6544 (class class class)co 7412 β cen 8939 Scalarcsca 17205 Ringcrg 20128 NzRingcnzr 20404 LModclmod 20615 βπ clmic 20777 LBasisclbs 20830 freeLMod cfrlm 21521 unitVec cuvc 21557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-om 7859 df-1st 7978 df-2nd 7979 df-supp 8150 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fsupp 9365 df-sup 9440 df-oi 9508 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-fzo 13633 df-seq 13972 df-hash 14296 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-hom 17226 df-cco 17227 df-0g 17392 df-gsum 17393 df-prds 17398 df-pws 17400 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18988 df-subg 19040 df-ghm 19129 df-cntz 19223 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-nzr 20405 df-subrg 20460 df-lmod 20617 df-lss 20688 df-lsp 20728 df-lmhm 20778 df-lmim 20779 df-lmic 20780 df-lbs 20831 df-sra 20931 df-rgmod 20932 df-dsmm 21507 df-frlm 21522 df-uvc 21558 df-lindf 21581 df-linds 21582 |
This theorem is referenced by: frlmiscvec 21624 |
Copyright terms: Public domain | W3C validator |