MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1remlem Structured version   Visualization version   GIF version

Theorem ply1remlem 26140
Description: A term of the form 𝑥𝑁 is linear, monic, and has exactly one zero. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ply1rem.p 𝑃 = (Poly1𝑅)
ply1rem.b 𝐵 = (Base‘𝑃)
ply1rem.k 𝐾 = (Base‘𝑅)
ply1rem.x 𝑋 = (var1𝑅)
ply1rem.m = (-g𝑃)
ply1rem.a 𝐴 = (algSc‘𝑃)
ply1rem.g 𝐺 = (𝑋 (𝐴𝑁))
ply1rem.o 𝑂 = (eval1𝑅)
ply1rem.1 (𝜑𝑅 ∈ NzRing)
ply1rem.2 (𝜑𝑅 ∈ CRing)
ply1rem.3 (𝜑𝑁𝐾)
ply1rem.u 𝑈 = (Monic1p𝑅)
ply1rem.d 𝐷 = (deg1𝑅)
ply1rem.z 0 = (0g𝑅)
Assertion
Ref Expression
ply1remlem (𝜑 → (𝐺𝑈 ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ { 0 }) = {𝑁}))

Proof of Theorem ply1remlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ply1rem.g . . . 4 𝐺 = (𝑋 (𝐴𝑁))
2 ply1rem.1 . . . . . . . 8 (𝜑𝑅 ∈ NzRing)
3 nzrring 20484 . . . . . . . 8 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
42, 3syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
5 ply1rem.p . . . . . . . 8 𝑃 = (Poly1𝑅)
65ply1ring 22197 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
74, 6syl 17 . . . . . 6 (𝜑𝑃 ∈ Ring)
8 ringgrp 20203 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
97, 8syl 17 . . . . 5 (𝜑𝑃 ∈ Grp)
10 ply1rem.x . . . . . . 7 𝑋 = (var1𝑅)
11 ply1rem.b . . . . . . 7 𝐵 = (Base‘𝑃)
1210, 5, 11vr1cl 22167 . . . . . 6 (𝑅 ∈ Ring → 𝑋𝐵)
134, 12syl 17 . . . . 5 (𝜑𝑋𝐵)
14 ply1rem.a . . . . . . . 8 𝐴 = (algSc‘𝑃)
15 ply1rem.k . . . . . . . 8 𝐾 = (Base‘𝑅)
165, 14, 15, 11ply1sclf 22236 . . . . . . 7 (𝑅 ∈ Ring → 𝐴:𝐾𝐵)
174, 16syl 17 . . . . . 6 (𝜑𝐴:𝐾𝐵)
18 ply1rem.3 . . . . . 6 (𝜑𝑁𝐾)
1917, 18ffvelcdmd 7085 . . . . 5 (𝜑 → (𝐴𝑁) ∈ 𝐵)
20 ply1rem.m . . . . . 6 = (-g𝑃)
2111, 20grpsubcl 19007 . . . . 5 ((𝑃 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐴𝑁) ∈ 𝐵) → (𝑋 (𝐴𝑁)) ∈ 𝐵)
229, 13, 19, 21syl3anc 1372 . . . 4 (𝜑 → (𝑋 (𝐴𝑁)) ∈ 𝐵)
231, 22eqeltrid 2837 . . 3 (𝜑𝐺𝐵)
241fveq2i 6889 . . . . . . 7 (𝐷𝐺) = (𝐷‘(𝑋 (𝐴𝑁)))
25 ply1rem.d . . . . . . . 8 𝐷 = (deg1𝑅)
2625, 5, 11deg1xrcl 26057 . . . . . . . . . . 11 ((𝐴𝑁) ∈ 𝐵 → (𝐷‘(𝐴𝑁)) ∈ ℝ*)
2719, 26syl 17 . . . . . . . . . 10 (𝜑 → (𝐷‘(𝐴𝑁)) ∈ ℝ*)
28 0xr 11290 . . . . . . . . . . 11 0 ∈ ℝ*
2928a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ*)
30 1re 11243 . . . . . . . . . . 11 1 ∈ ℝ
31 rexr 11289 . . . . . . . . . . 11 (1 ∈ ℝ → 1 ∈ ℝ*)
3230, 31mp1i 13 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ*)
3325, 5, 15, 14deg1sclle 26087 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑁𝐾) → (𝐷‘(𝐴𝑁)) ≤ 0)
344, 18, 33syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐷‘(𝐴𝑁)) ≤ 0)
35 0lt1 11767 . . . . . . . . . . 11 0 < 1
3635a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 1)
3727, 29, 32, 34, 36xrlelttrd 13184 . . . . . . . . 9 (𝜑 → (𝐷‘(𝐴𝑁)) < 1)
38 eqid 2734 . . . . . . . . . . . . . 14 (mulGrp‘𝑃) = (mulGrp‘𝑃)
3938, 11mgpbas 20110 . . . . . . . . . . . . 13 𝐵 = (Base‘(mulGrp‘𝑃))
40 eqid 2734 . . . . . . . . . . . . 13 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
4139, 40mulg1 19068 . . . . . . . . . . . 12 (𝑋𝐵 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4213, 41syl 17 . . . . . . . . . . 11 (𝜑 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4342fveq2d 6890 . . . . . . . . . 10 (𝜑 → (𝐷‘(1(.g‘(mulGrp‘𝑃))𝑋)) = (𝐷𝑋))
44 1nn0 12525 . . . . . . . . . . 11 1 ∈ ℕ0
4525, 5, 10, 38, 40deg1pw 26096 . . . . . . . . . . 11 ((𝑅 ∈ NzRing ∧ 1 ∈ ℕ0) → (𝐷‘(1(.g‘(mulGrp‘𝑃))𝑋)) = 1)
462, 44, 45sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐷‘(1(.g‘(mulGrp‘𝑃))𝑋)) = 1)
4743, 46eqtr3d 2771 . . . . . . . . 9 (𝜑 → (𝐷𝑋) = 1)
4837, 47breqtrrd 5151 . . . . . . . 8 (𝜑 → (𝐷‘(𝐴𝑁)) < (𝐷𝑋))
495, 25, 4, 11, 20, 13, 19, 48deg1sub 26083 . . . . . . 7 (𝜑 → (𝐷‘(𝑋 (𝐴𝑁))) = (𝐷𝑋))
5024, 49eqtrid 2781 . . . . . 6 (𝜑 → (𝐷𝐺) = (𝐷𝑋))
5150, 47eqtrd 2769 . . . . 5 (𝜑 → (𝐷𝐺) = 1)
5251, 44eqeltrdi 2841 . . . 4 (𝜑 → (𝐷𝐺) ∈ ℕ0)
53 eqid 2734 . . . . . 6 (0g𝑃) = (0g𝑃)
5425, 5, 53, 11deg1nn0clb 26065 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐺 ≠ (0g𝑃) ↔ (𝐷𝐺) ∈ ℕ0))
554, 23, 54syl2anc 584 . . . 4 (𝜑 → (𝐺 ≠ (0g𝑃) ↔ (𝐷𝐺) ∈ ℕ0))
5652, 55mpbird 257 . . 3 (𝜑𝐺 ≠ (0g𝑃))
5751fveq2d 6890 . . . 4 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) = ((coe1𝐺)‘1))
581fveq2i 6889 . . . . . 6 (coe1𝐺) = (coe1‘(𝑋 (𝐴𝑁)))
5958fveq1i 6887 . . . . 5 ((coe1𝐺)‘1) = ((coe1‘(𝑋 (𝐴𝑁)))‘1)
6044a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℕ0)
61 eqid 2734 . . . . . . 7 (-g𝑅) = (-g𝑅)
625, 11, 20, 61coe1subfv 22217 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐴𝑁) ∈ 𝐵) ∧ 1 ∈ ℕ0) → ((coe1‘(𝑋 (𝐴𝑁)))‘1) = (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)))
634, 13, 19, 60, 62syl31anc 1374 . . . . 5 (𝜑 → ((coe1‘(𝑋 (𝐴𝑁)))‘1) = (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)))
6459, 63eqtrid 2781 . . . 4 (𝜑 → ((coe1𝐺)‘1) = (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)))
6542oveq2d 7429 . . . . . . . . . 10 (𝜑 → ((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)) = ((1r𝑅)( ·𝑠𝑃)𝑋))
665ply1sca 22202 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → 𝑅 = (Scalar‘𝑃))
672, 66syl 17 . . . . . . . . . . . 12 (𝜑𝑅 = (Scalar‘𝑃))
6867fveq2d 6890 . . . . . . . . . . 11 (𝜑 → (1r𝑅) = (1r‘(Scalar‘𝑃)))
6968oveq1d 7428 . . . . . . . . . 10 (𝜑 → ((1r𝑅)( ·𝑠𝑃)𝑋) = ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)𝑋))
705ply1lmod 22201 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
714, 70syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ LMod)
72 eqid 2734 . . . . . . . . . . . 12 (Scalar‘𝑃) = (Scalar‘𝑃)
73 eqid 2734 . . . . . . . . . . . 12 ( ·𝑠𝑃) = ( ·𝑠𝑃)
74 eqid 2734 . . . . . . . . . . . 12 (1r‘(Scalar‘𝑃)) = (1r‘(Scalar‘𝑃))
7511, 72, 73, 74lmodvs1 20856 . . . . . . . . . . 11 ((𝑃 ∈ LMod ∧ 𝑋𝐵) → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)𝑋) = 𝑋)
7671, 13, 75syl2anc 584 . . . . . . . . . 10 (𝜑 → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)𝑋) = 𝑋)
7765, 69, 763eqtrd 2773 . . . . . . . . 9 (𝜑 → ((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)) = 𝑋)
7877fveq2d 6890 . . . . . . . 8 (𝜑 → (coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋))) = (coe1𝑋))
7978fveq1d 6888 . . . . . . 7 (𝜑 → ((coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = ((coe1𝑋)‘1))
80 eqid 2734 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
8115, 80ringidcl 20230 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
824, 81syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ 𝐾)
83 ply1rem.z . . . . . . . . 9 0 = (0g𝑅)
8483, 15, 5, 10, 73, 38, 40coe1tmfv1 22225 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐾 ∧ 1 ∈ ℕ0) → ((coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = (1r𝑅))
854, 82, 60, 84syl3anc 1372 . . . . . . 7 (𝜑 → ((coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = (1r𝑅))
8679, 85eqtr3d 2771 . . . . . 6 (𝜑 → ((coe1𝑋)‘1) = (1r𝑅))
87 eqid 2734 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
885, 14, 15, 87coe1scl 22238 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑁𝐾) → (coe1‘(𝐴𝑁)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅))))
894, 18, 88syl2anc 584 . . . . . . . 8 (𝜑 → (coe1‘(𝐴𝑁)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅))))
9089fveq1d 6888 . . . . . . 7 (𝜑 → ((coe1‘(𝐴𝑁))‘1) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))‘1))
91 ax-1ne0 11206 . . . . . . . . . . 11 1 ≠ 0
92 neeq1 2993 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 ≠ 0 ↔ 1 ≠ 0))
9391, 92mpbiri 258 . . . . . . . . . 10 (𝑥 = 1 → 𝑥 ≠ 0)
94 ifnefalse 4517 . . . . . . . . . 10 (𝑥 ≠ 0 → if(𝑥 = 0, 𝑁, (0g𝑅)) = (0g𝑅))
9593, 94syl 17 . . . . . . . . 9 (𝑥 = 1 → if(𝑥 = 0, 𝑁, (0g𝑅)) = (0g𝑅))
96 eqid 2734 . . . . . . . . 9 (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))
97 fvex 6899 . . . . . . . . 9 (0g𝑅) ∈ V
9895, 96, 97fvmpt 6996 . . . . . . . 8 (1 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))‘1) = (0g𝑅))
9944, 98ax-mp 5 . . . . . . 7 ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))‘1) = (0g𝑅)
10090, 99eqtrdi 2785 . . . . . 6 (𝜑 → ((coe1‘(𝐴𝑁))‘1) = (0g𝑅))
10186, 100oveq12d 7431 . . . . 5 (𝜑 → (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)) = ((1r𝑅)(-g𝑅)(0g𝑅)))
102 ringgrp 20203 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1034, 102syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
10415, 87, 61grpsubid1 19012 . . . . . 6 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐾) → ((1r𝑅)(-g𝑅)(0g𝑅)) = (1r𝑅))
105103, 82, 104syl2anc 584 . . . . 5 (𝜑 → ((1r𝑅)(-g𝑅)(0g𝑅)) = (1r𝑅))
106101, 105eqtrd 2769 . . . 4 (𝜑 → (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)) = (1r𝑅))
10757, 64, 1063eqtrd 2773 . . 3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) = (1r𝑅))
108 ply1rem.u . . . 4 𝑈 = (Monic1p𝑅)
1095, 11, 53, 25, 108, 80ismon1p 26118 . . 3 (𝐺𝑈 ↔ (𝐺𝐵𝐺 ≠ (0g𝑃) ∧ ((coe1𝐺)‘(𝐷𝐺)) = (1r𝑅)))
11023, 56, 107, 109syl3anbrc 1343 . 2 (𝜑𝐺𝑈)
1111fveq2i 6889 . . . . . . . . . 10 (𝑂𝐺) = (𝑂‘(𝑋 (𝐴𝑁)))
112111fveq1i 6887 . . . . . . . . 9 ((𝑂𝐺)‘𝑥) = ((𝑂‘(𝑋 (𝐴𝑁)))‘𝑥)
113 ply1rem.o . . . . . . . . . . 11 𝑂 = (eval1𝑅)
114 ply1rem.2 . . . . . . . . . . . 12 (𝜑𝑅 ∈ CRing)
115114adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → 𝑅 ∈ CRing)
116 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → 𝑥𝐾)
117113, 10, 15, 5, 11, 115, 116evl1vard 22289 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑥) = 𝑥))
11818adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐾) → 𝑁𝐾)
119113, 5, 15, 14, 11, 115, 118, 116evl1scad 22287 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → ((𝐴𝑁) ∈ 𝐵 ∧ ((𝑂‘(𝐴𝑁))‘𝑥) = 𝑁))
120113, 5, 15, 11, 115, 116, 117, 119, 20, 61evl1subd 22294 . . . . . . . . . 10 ((𝜑𝑥𝐾) → ((𝑋 (𝐴𝑁)) ∈ 𝐵 ∧ ((𝑂‘(𝑋 (𝐴𝑁)))‘𝑥) = (𝑥(-g𝑅)𝑁)))
121120simprd 495 . . . . . . . . 9 ((𝜑𝑥𝐾) → ((𝑂‘(𝑋 (𝐴𝑁)))‘𝑥) = (𝑥(-g𝑅)𝑁))
122112, 121eqtrid 2781 . . . . . . . 8 ((𝜑𝑥𝐾) → ((𝑂𝐺)‘𝑥) = (𝑥(-g𝑅)𝑁))
123122eqeq1d 2736 . . . . . . 7 ((𝜑𝑥𝐾) → (((𝑂𝐺)‘𝑥) = 0 ↔ (𝑥(-g𝑅)𝑁) = 0 ))
124103adantr 480 . . . . . . . 8 ((𝜑𝑥𝐾) → 𝑅 ∈ Grp)
12515, 83, 61grpsubeq0 19013 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐾𝑁𝐾) → ((𝑥(-g𝑅)𝑁) = 0𝑥 = 𝑁))
126124, 116, 118, 125syl3anc 1372 . . . . . . 7 ((𝜑𝑥𝐾) → ((𝑥(-g𝑅)𝑁) = 0𝑥 = 𝑁))
127123, 126bitrd 279 . . . . . 6 ((𝜑𝑥𝐾) → (((𝑂𝐺)‘𝑥) = 0𝑥 = 𝑁))
128 velsn 4622 . . . . . 6 (𝑥 ∈ {𝑁} ↔ 𝑥 = 𝑁)
129127, 128bitr4di 289 . . . . 5 ((𝜑𝑥𝐾) → (((𝑂𝐺)‘𝑥) = 0𝑥 ∈ {𝑁}))
130129pm5.32da 579 . . . 4 (𝜑 → ((𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 0 ) ↔ (𝑥𝐾𝑥 ∈ {𝑁})))
131 eqid 2734 . . . . . . 7 (𝑅s 𝐾) = (𝑅s 𝐾)
132 eqid 2734 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
13315fvexi 6900 . . . . . . . 8 𝐾 ∈ V
134133a1i 11 . . . . . . 7 (𝜑𝐾 ∈ V)
135113, 5, 131, 15evl1rhm 22284 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
136114, 135syl 17 . . . . . . . . 9 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
13711, 132rhmf 20453 . . . . . . . . 9 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
138136, 137syl 17 . . . . . . . 8 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
139138, 23ffvelcdmd 7085 . . . . . . 7 (𝜑 → (𝑂𝐺) ∈ (Base‘(𝑅s 𝐾)))
140131, 15, 132, 2, 134, 139pwselbas 17505 . . . . . 6 (𝜑 → (𝑂𝐺):𝐾𝐾)
141140ffnd 6717 . . . . 5 (𝜑 → (𝑂𝐺) Fn 𝐾)
142 fniniseg 7060 . . . . 5 ((𝑂𝐺) Fn 𝐾 → (𝑥 ∈ ((𝑂𝐺) “ { 0 }) ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 0 )))
143141, 142syl 17 . . . 4 (𝜑 → (𝑥 ∈ ((𝑂𝐺) “ { 0 }) ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 0 )))
14418snssd 4789 . . . . . 6 (𝜑 → {𝑁} ⊆ 𝐾)
145144sseld 3962 . . . . 5 (𝜑 → (𝑥 ∈ {𝑁} → 𝑥𝐾))
146145pm4.71rd 562 . . . 4 (𝜑 → (𝑥 ∈ {𝑁} ↔ (𝑥𝐾𝑥 ∈ {𝑁})))
147130, 143, 1463bitr4d 311 . . 3 (𝜑 → (𝑥 ∈ ((𝑂𝐺) “ { 0 }) ↔ 𝑥 ∈ {𝑁}))
148147eqrdv 2732 . 2 (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑁})
149110, 51, 1483jca 1128 1 (𝜑 → (𝐺𝑈 ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ { 0 }) = {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  Vcvv 3463  ifcif 4505  {csn 4606   class class class wbr 5123  cmpt 5205  ccnv 5664  cima 5668   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  cr 11136  0cc0 11137  1c1 11138  *cxr 11276   < clt 11277  cle 11278  0cn0 12509  Basecbs 17229  Scalarcsca 17276   ·𝑠 cvsca 17277  0gc0g 17455  s cpws 17462  Grpcgrp 18920  -gcsg 18922  .gcmg 19054  mulGrpcmgp 20105  1rcur 20146  Ringcrg 20198  CRingccrg 20199   RingHom crh 20437  NzRingcnzr 20480  LModclmod 20826  algSccascl 21826  var1cv1 22125  Poly1cpl1 22126  coe1cco1 22127  eval1ce1 22266  deg1cdg1 26029  Monic1pcmn1 26101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14352  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-0g 17457  df-gsum 17458  df-prds 17463  df-pws 17465  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-mhm 18765  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-mulg 19055  df-subg 19110  df-ghm 19200  df-cntz 19304  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-srg 20152  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-rhm 20440  df-nzr 20481  df-subrng 20514  df-subrg 20538  df-rlreg 20662  df-lmod 20828  df-lss 20898  df-lsp 20938  df-cnfld 21327  df-assa 21827  df-asp 21828  df-ascl 21829  df-psr 21883  df-mvr 21884  df-mpl 21885  df-opsr 21887  df-evls 22046  df-evl 22047  df-psr1 22129  df-vr1 22130  df-ply1 22131  df-coe1 22132  df-evl1 22268  df-mdeg 26030  df-deg1 26031  df-mon1 26106
This theorem is referenced by:  ply1rem  26141  facth1  26142  fta1glem1  26143  fta1glem2  26144  irngss  33674
  Copyright terms: Public domain W3C validator