MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1remlem Structured version   Visualization version   GIF version

Theorem ply1remlem 25527
Description: A term of the form 𝑥𝑁 is linear, monic, and has exactly one zero. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ply1rem.p 𝑃 = (Poly1𝑅)
ply1rem.b 𝐵 = (Base‘𝑃)
ply1rem.k 𝐾 = (Base‘𝑅)
ply1rem.x 𝑋 = (var1𝑅)
ply1rem.m = (-g𝑃)
ply1rem.a 𝐴 = (algSc‘𝑃)
ply1rem.g 𝐺 = (𝑋 (𝐴𝑁))
ply1rem.o 𝑂 = (eval1𝑅)
ply1rem.1 (𝜑𝑅 ∈ NzRing)
ply1rem.2 (𝜑𝑅 ∈ CRing)
ply1rem.3 (𝜑𝑁𝐾)
ply1rem.u 𝑈 = (Monic1p𝑅)
ply1rem.d 𝐷 = ( deg1𝑅)
ply1rem.z 0 = (0g𝑅)
Assertion
Ref Expression
ply1remlem (𝜑 → (𝐺𝑈 ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ { 0 }) = {𝑁}))

Proof of Theorem ply1remlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ply1rem.g . . . 4 𝐺 = (𝑋 (𝐴𝑁))
2 ply1rem.1 . . . . . . . 8 (𝜑𝑅 ∈ NzRing)
3 nzrring 20731 . . . . . . . 8 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
42, 3syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
5 ply1rem.p . . . . . . . 8 𝑃 = (Poly1𝑅)
65ply1ring 21619 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
74, 6syl 17 . . . . . 6 (𝜑𝑃 ∈ Ring)
8 ringgrp 19969 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
97, 8syl 17 . . . . 5 (𝜑𝑃 ∈ Grp)
10 ply1rem.x . . . . . . 7 𝑋 = (var1𝑅)
11 ply1rem.b . . . . . . 7 𝐵 = (Base‘𝑃)
1210, 5, 11vr1cl 21588 . . . . . 6 (𝑅 ∈ Ring → 𝑋𝐵)
134, 12syl 17 . . . . 5 (𝜑𝑋𝐵)
14 ply1rem.a . . . . . . . 8 𝐴 = (algSc‘𝑃)
15 ply1rem.k . . . . . . . 8 𝐾 = (Base‘𝑅)
165, 14, 15, 11ply1sclf 21656 . . . . . . 7 (𝑅 ∈ Ring → 𝐴:𝐾𝐵)
174, 16syl 17 . . . . . 6 (𝜑𝐴:𝐾𝐵)
18 ply1rem.3 . . . . . 6 (𝜑𝑁𝐾)
1917, 18ffvelcdmd 7036 . . . . 5 (𝜑 → (𝐴𝑁) ∈ 𝐵)
20 ply1rem.m . . . . . 6 = (-g𝑃)
2111, 20grpsubcl 18827 . . . . 5 ((𝑃 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐴𝑁) ∈ 𝐵) → (𝑋 (𝐴𝑁)) ∈ 𝐵)
229, 13, 19, 21syl3anc 1371 . . . 4 (𝜑 → (𝑋 (𝐴𝑁)) ∈ 𝐵)
231, 22eqeltrid 2842 . . 3 (𝜑𝐺𝐵)
241fveq2i 6845 . . . . . . 7 (𝐷𝐺) = (𝐷‘(𝑋 (𝐴𝑁)))
25 ply1rem.d . . . . . . . 8 𝐷 = ( deg1𝑅)
2625, 5, 11deg1xrcl 25447 . . . . . . . . . . 11 ((𝐴𝑁) ∈ 𝐵 → (𝐷‘(𝐴𝑁)) ∈ ℝ*)
2719, 26syl 17 . . . . . . . . . 10 (𝜑 → (𝐷‘(𝐴𝑁)) ∈ ℝ*)
28 0xr 11202 . . . . . . . . . . 11 0 ∈ ℝ*
2928a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ*)
30 1re 11155 . . . . . . . . . . 11 1 ∈ ℝ
31 rexr 11201 . . . . . . . . . . 11 (1 ∈ ℝ → 1 ∈ ℝ*)
3230, 31mp1i 13 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ*)
3325, 5, 15, 14deg1sclle 25477 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑁𝐾) → (𝐷‘(𝐴𝑁)) ≤ 0)
344, 18, 33syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐷‘(𝐴𝑁)) ≤ 0)
35 0lt1 11677 . . . . . . . . . . 11 0 < 1
3635a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 1)
3727, 29, 32, 34, 36xrlelttrd 13079 . . . . . . . . 9 (𝜑 → (𝐷‘(𝐴𝑁)) < 1)
38 eqid 2736 . . . . . . . . . . . . . 14 (mulGrp‘𝑃) = (mulGrp‘𝑃)
3938, 11mgpbas 19902 . . . . . . . . . . . . 13 𝐵 = (Base‘(mulGrp‘𝑃))
40 eqid 2736 . . . . . . . . . . . . 13 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
4139, 40mulg1 18883 . . . . . . . . . . . 12 (𝑋𝐵 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4213, 41syl 17 . . . . . . . . . . 11 (𝜑 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4342fveq2d 6846 . . . . . . . . . 10 (𝜑 → (𝐷‘(1(.g‘(mulGrp‘𝑃))𝑋)) = (𝐷𝑋))
44 1nn0 12429 . . . . . . . . . . 11 1 ∈ ℕ0
4525, 5, 10, 38, 40deg1pw 25485 . . . . . . . . . . 11 ((𝑅 ∈ NzRing ∧ 1 ∈ ℕ0) → (𝐷‘(1(.g‘(mulGrp‘𝑃))𝑋)) = 1)
462, 44, 45sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐷‘(1(.g‘(mulGrp‘𝑃))𝑋)) = 1)
4743, 46eqtr3d 2778 . . . . . . . . 9 (𝜑 → (𝐷𝑋) = 1)
4837, 47breqtrrd 5133 . . . . . . . 8 (𝜑 → (𝐷‘(𝐴𝑁)) < (𝐷𝑋))
495, 25, 4, 11, 20, 13, 19, 48deg1sub 25473 . . . . . . 7 (𝜑 → (𝐷‘(𝑋 (𝐴𝑁))) = (𝐷𝑋))
5024, 49eqtrid 2788 . . . . . 6 (𝜑 → (𝐷𝐺) = (𝐷𝑋))
5150, 47eqtrd 2776 . . . . 5 (𝜑 → (𝐷𝐺) = 1)
5251, 44eqeltrdi 2846 . . . 4 (𝜑 → (𝐷𝐺) ∈ ℕ0)
53 eqid 2736 . . . . . 6 (0g𝑃) = (0g𝑃)
5425, 5, 53, 11deg1nn0clb 25455 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐺 ≠ (0g𝑃) ↔ (𝐷𝐺) ∈ ℕ0))
554, 23, 54syl2anc 584 . . . 4 (𝜑 → (𝐺 ≠ (0g𝑃) ↔ (𝐷𝐺) ∈ ℕ0))
5652, 55mpbird 256 . . 3 (𝜑𝐺 ≠ (0g𝑃))
5751fveq2d 6846 . . . 4 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) = ((coe1𝐺)‘1))
581fveq2i 6845 . . . . . 6 (coe1𝐺) = (coe1‘(𝑋 (𝐴𝑁)))
5958fveq1i 6843 . . . . 5 ((coe1𝐺)‘1) = ((coe1‘(𝑋 (𝐴𝑁)))‘1)
6044a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℕ0)
61 eqid 2736 . . . . . . 7 (-g𝑅) = (-g𝑅)
625, 11, 20, 61coe1subfv 21637 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐴𝑁) ∈ 𝐵) ∧ 1 ∈ ℕ0) → ((coe1‘(𝑋 (𝐴𝑁)))‘1) = (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)))
634, 13, 19, 60, 62syl31anc 1373 . . . . 5 (𝜑 → ((coe1‘(𝑋 (𝐴𝑁)))‘1) = (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)))
6459, 63eqtrid 2788 . . . 4 (𝜑 → ((coe1𝐺)‘1) = (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)))
6542oveq2d 7373 . . . . . . . . . 10 (𝜑 → ((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)) = ((1r𝑅)( ·𝑠𝑃)𝑋))
665ply1sca 21624 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → 𝑅 = (Scalar‘𝑃))
672, 66syl 17 . . . . . . . . . . . 12 (𝜑𝑅 = (Scalar‘𝑃))
6867fveq2d 6846 . . . . . . . . . . 11 (𝜑 → (1r𝑅) = (1r‘(Scalar‘𝑃)))
6968oveq1d 7372 . . . . . . . . . 10 (𝜑 → ((1r𝑅)( ·𝑠𝑃)𝑋) = ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)𝑋))
705ply1lmod 21623 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
714, 70syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ LMod)
72 eqid 2736 . . . . . . . . . . . 12 (Scalar‘𝑃) = (Scalar‘𝑃)
73 eqid 2736 . . . . . . . . . . . 12 ( ·𝑠𝑃) = ( ·𝑠𝑃)
74 eqid 2736 . . . . . . . . . . . 12 (1r‘(Scalar‘𝑃)) = (1r‘(Scalar‘𝑃))
7511, 72, 73, 74lmodvs1 20350 . . . . . . . . . . 11 ((𝑃 ∈ LMod ∧ 𝑋𝐵) → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)𝑋) = 𝑋)
7671, 13, 75syl2anc 584 . . . . . . . . . 10 (𝜑 → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)𝑋) = 𝑋)
7765, 69, 763eqtrd 2780 . . . . . . . . 9 (𝜑 → ((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)) = 𝑋)
7877fveq2d 6846 . . . . . . . 8 (𝜑 → (coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋))) = (coe1𝑋))
7978fveq1d 6844 . . . . . . 7 (𝜑 → ((coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = ((coe1𝑋)‘1))
80 eqid 2736 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
8115, 80ringidcl 19989 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
824, 81syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ 𝐾)
83 ply1rem.z . . . . . . . . 9 0 = (0g𝑅)
8483, 15, 5, 10, 73, 38, 40coe1tmfv1 21645 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐾 ∧ 1 ∈ ℕ0) → ((coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = (1r𝑅))
854, 82, 60, 84syl3anc 1371 . . . . . . 7 (𝜑 → ((coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = (1r𝑅))
8679, 85eqtr3d 2778 . . . . . 6 (𝜑 → ((coe1𝑋)‘1) = (1r𝑅))
87 eqid 2736 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
885, 14, 15, 87coe1scl 21658 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑁𝐾) → (coe1‘(𝐴𝑁)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅))))
894, 18, 88syl2anc 584 . . . . . . . 8 (𝜑 → (coe1‘(𝐴𝑁)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅))))
9089fveq1d 6844 . . . . . . 7 (𝜑 → ((coe1‘(𝐴𝑁))‘1) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))‘1))
91 ax-1ne0 11120 . . . . . . . . . . 11 1 ≠ 0
92 neeq1 3006 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 ≠ 0 ↔ 1 ≠ 0))
9391, 92mpbiri 257 . . . . . . . . . 10 (𝑥 = 1 → 𝑥 ≠ 0)
94 ifnefalse 4498 . . . . . . . . . 10 (𝑥 ≠ 0 → if(𝑥 = 0, 𝑁, (0g𝑅)) = (0g𝑅))
9593, 94syl 17 . . . . . . . . 9 (𝑥 = 1 → if(𝑥 = 0, 𝑁, (0g𝑅)) = (0g𝑅))
96 eqid 2736 . . . . . . . . 9 (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))
97 fvex 6855 . . . . . . . . 9 (0g𝑅) ∈ V
9895, 96, 97fvmpt 6948 . . . . . . . 8 (1 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))‘1) = (0g𝑅))
9944, 98ax-mp 5 . . . . . . 7 ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))‘1) = (0g𝑅)
10090, 99eqtrdi 2792 . . . . . 6 (𝜑 → ((coe1‘(𝐴𝑁))‘1) = (0g𝑅))
10186, 100oveq12d 7375 . . . . 5 (𝜑 → (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)) = ((1r𝑅)(-g𝑅)(0g𝑅)))
102 ringgrp 19969 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1034, 102syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
10415, 87, 61grpsubid1 18832 . . . . . 6 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐾) → ((1r𝑅)(-g𝑅)(0g𝑅)) = (1r𝑅))
105103, 82, 104syl2anc 584 . . . . 5 (𝜑 → ((1r𝑅)(-g𝑅)(0g𝑅)) = (1r𝑅))
106101, 105eqtrd 2776 . . . 4 (𝜑 → (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)) = (1r𝑅))
10757, 64, 1063eqtrd 2780 . . 3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) = (1r𝑅))
108 ply1rem.u . . . 4 𝑈 = (Monic1p𝑅)
1095, 11, 53, 25, 108, 80ismon1p 25507 . . 3 (𝐺𝑈 ↔ (𝐺𝐵𝐺 ≠ (0g𝑃) ∧ ((coe1𝐺)‘(𝐷𝐺)) = (1r𝑅)))
11023, 56, 107, 109syl3anbrc 1343 . 2 (𝜑𝐺𝑈)
1111fveq2i 6845 . . . . . . . . . 10 (𝑂𝐺) = (𝑂‘(𝑋 (𝐴𝑁)))
112111fveq1i 6843 . . . . . . . . 9 ((𝑂𝐺)‘𝑥) = ((𝑂‘(𝑋 (𝐴𝑁)))‘𝑥)
113 ply1rem.o . . . . . . . . . . 11 𝑂 = (eval1𝑅)
114 ply1rem.2 . . . . . . . . . . . 12 (𝜑𝑅 ∈ CRing)
115114adantr 481 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → 𝑅 ∈ CRing)
116 simpr 485 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → 𝑥𝐾)
117113, 10, 15, 5, 11, 115, 116evl1vard 21703 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑥) = 𝑥))
11818adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐾) → 𝑁𝐾)
119113, 5, 15, 14, 11, 115, 118, 116evl1scad 21701 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → ((𝐴𝑁) ∈ 𝐵 ∧ ((𝑂‘(𝐴𝑁))‘𝑥) = 𝑁))
120113, 5, 15, 11, 115, 116, 117, 119, 20, 61evl1subd 21708 . . . . . . . . . 10 ((𝜑𝑥𝐾) → ((𝑋 (𝐴𝑁)) ∈ 𝐵 ∧ ((𝑂‘(𝑋 (𝐴𝑁)))‘𝑥) = (𝑥(-g𝑅)𝑁)))
121120simprd 496 . . . . . . . . 9 ((𝜑𝑥𝐾) → ((𝑂‘(𝑋 (𝐴𝑁)))‘𝑥) = (𝑥(-g𝑅)𝑁))
122112, 121eqtrid 2788 . . . . . . . 8 ((𝜑𝑥𝐾) → ((𝑂𝐺)‘𝑥) = (𝑥(-g𝑅)𝑁))
123122eqeq1d 2738 . . . . . . 7 ((𝜑𝑥𝐾) → (((𝑂𝐺)‘𝑥) = 0 ↔ (𝑥(-g𝑅)𝑁) = 0 ))
124103adantr 481 . . . . . . . 8 ((𝜑𝑥𝐾) → 𝑅 ∈ Grp)
12515, 83, 61grpsubeq0 18833 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐾𝑁𝐾) → ((𝑥(-g𝑅)𝑁) = 0𝑥 = 𝑁))
126124, 116, 118, 125syl3anc 1371 . . . . . . 7 ((𝜑𝑥𝐾) → ((𝑥(-g𝑅)𝑁) = 0𝑥 = 𝑁))
127123, 126bitrd 278 . . . . . 6 ((𝜑𝑥𝐾) → (((𝑂𝐺)‘𝑥) = 0𝑥 = 𝑁))
128 velsn 4602 . . . . . 6 (𝑥 ∈ {𝑁} ↔ 𝑥 = 𝑁)
129127, 128bitr4di 288 . . . . 5 ((𝜑𝑥𝐾) → (((𝑂𝐺)‘𝑥) = 0𝑥 ∈ {𝑁}))
130129pm5.32da 579 . . . 4 (𝜑 → ((𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 0 ) ↔ (𝑥𝐾𝑥 ∈ {𝑁})))
131 eqid 2736 . . . . . . 7 (𝑅s 𝐾) = (𝑅s 𝐾)
132 eqid 2736 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
13315fvexi 6856 . . . . . . . 8 𝐾 ∈ V
134133a1i 11 . . . . . . 7 (𝜑𝐾 ∈ V)
135113, 5, 131, 15evl1rhm 21698 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
136114, 135syl 17 . . . . . . . . 9 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
13711, 132rhmf 20158 . . . . . . . . 9 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
138136, 137syl 17 . . . . . . . 8 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
139138, 23ffvelcdmd 7036 . . . . . . 7 (𝜑 → (𝑂𝐺) ∈ (Base‘(𝑅s 𝐾)))
140131, 15, 132, 2, 134, 139pwselbas 17371 . . . . . 6 (𝜑 → (𝑂𝐺):𝐾𝐾)
141140ffnd 6669 . . . . 5 (𝜑 → (𝑂𝐺) Fn 𝐾)
142 fniniseg 7010 . . . . 5 ((𝑂𝐺) Fn 𝐾 → (𝑥 ∈ ((𝑂𝐺) “ { 0 }) ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 0 )))
143141, 142syl 17 . . . 4 (𝜑 → (𝑥 ∈ ((𝑂𝐺) “ { 0 }) ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 0 )))
14418snssd 4769 . . . . . 6 (𝜑 → {𝑁} ⊆ 𝐾)
145144sseld 3943 . . . . 5 (𝜑 → (𝑥 ∈ {𝑁} → 𝑥𝐾))
146145pm4.71rd 563 . . . 4 (𝜑 → (𝑥 ∈ {𝑁} ↔ (𝑥𝐾𝑥 ∈ {𝑁})))
147130, 143, 1463bitr4d 310 . . 3 (𝜑 → (𝑥 ∈ ((𝑂𝐺) “ { 0 }) ↔ 𝑥 ∈ {𝑁}))
148147eqrdv 2734 . 2 (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑁})
149110, 51, 1483jca 1128 1 (𝜑 → (𝐺𝑈 ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ { 0 }) = {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  Vcvv 3445  ifcif 4486  {csn 4586   class class class wbr 5105  cmpt 5188  ccnv 5632  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052  *cxr 11188   < clt 11189  cle 11190  0cn0 12413  Basecbs 17083  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  s cpws 17328  Grpcgrp 18748  -gcsg 18750  .gcmg 18872  mulGrpcmgp 19896  1rcur 19913  Ringcrg 19964  CRingccrg 19965   RingHom crh 20143  LModclmod 20322  NzRingcnzr 20727  algSccascl 21258  var1cv1 21547  Poly1cpl1 21548  coe1cco1 21549  eval1ce1 21680   deg1 cdg1 25416  Monic1pcmn1 25490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-srg 19918  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-rnghom 20146  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-nzr 20728  df-rlreg 20753  df-cnfld 20797  df-assa 21259  df-asp 21260  df-ascl 21261  df-psr 21311  df-mvr 21312  df-mpl 21313  df-opsr 21315  df-evls 21482  df-evl 21483  df-psr1 21551  df-vr1 21552  df-ply1 21553  df-coe1 21554  df-evl1 21682  df-mdeg 25417  df-deg1 25418  df-mon1 25495
This theorem is referenced by:  ply1rem  25528  facth1  25529  fta1glem1  25530  fta1glem2  25531  irngss  32361
  Copyright terms: Public domain W3C validator