MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1remlem Structured version   Visualization version   GIF version

Theorem ply1remlem 25327
Description: A term of the form 𝑥𝑁 is linear, monic, and has exactly one zero. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ply1rem.p 𝑃 = (Poly1𝑅)
ply1rem.b 𝐵 = (Base‘𝑃)
ply1rem.k 𝐾 = (Base‘𝑅)
ply1rem.x 𝑋 = (var1𝑅)
ply1rem.m = (-g𝑃)
ply1rem.a 𝐴 = (algSc‘𝑃)
ply1rem.g 𝐺 = (𝑋 (𝐴𝑁))
ply1rem.o 𝑂 = (eval1𝑅)
ply1rem.1 (𝜑𝑅 ∈ NzRing)
ply1rem.2 (𝜑𝑅 ∈ CRing)
ply1rem.3 (𝜑𝑁𝐾)
ply1rem.u 𝑈 = (Monic1p𝑅)
ply1rem.d 𝐷 = ( deg1𝑅)
ply1rem.z 0 = (0g𝑅)
Assertion
Ref Expression
ply1remlem (𝜑 → (𝐺𝑈 ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ { 0 }) = {𝑁}))

Proof of Theorem ply1remlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ply1rem.g . . . 4 𝐺 = (𝑋 (𝐴𝑁))
2 ply1rem.1 . . . . . . . 8 (𝜑𝑅 ∈ NzRing)
3 nzrring 20532 . . . . . . . 8 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
42, 3syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
5 ply1rem.p . . . . . . . 8 𝑃 = (Poly1𝑅)
65ply1ring 21419 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
74, 6syl 17 . . . . . 6 (𝜑𝑃 ∈ Ring)
8 ringgrp 19788 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
97, 8syl 17 . . . . 5 (𝜑𝑃 ∈ Grp)
10 ply1rem.x . . . . . . 7 𝑋 = (var1𝑅)
11 ply1rem.b . . . . . . 7 𝐵 = (Base‘𝑃)
1210, 5, 11vr1cl 21388 . . . . . 6 (𝑅 ∈ Ring → 𝑋𝐵)
134, 12syl 17 . . . . 5 (𝜑𝑋𝐵)
14 ply1rem.a . . . . . . . 8 𝐴 = (algSc‘𝑃)
15 ply1rem.k . . . . . . . 8 𝐾 = (Base‘𝑅)
165, 14, 15, 11ply1sclf 21456 . . . . . . 7 (𝑅 ∈ Ring → 𝐴:𝐾𝐵)
174, 16syl 17 . . . . . 6 (𝜑𝐴:𝐾𝐵)
18 ply1rem.3 . . . . . 6 (𝜑𝑁𝐾)
1917, 18ffvelrnd 6962 . . . . 5 (𝜑 → (𝐴𝑁) ∈ 𝐵)
20 ply1rem.m . . . . . 6 = (-g𝑃)
2111, 20grpsubcl 18655 . . . . 5 ((𝑃 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐴𝑁) ∈ 𝐵) → (𝑋 (𝐴𝑁)) ∈ 𝐵)
229, 13, 19, 21syl3anc 1370 . . . 4 (𝜑 → (𝑋 (𝐴𝑁)) ∈ 𝐵)
231, 22eqeltrid 2843 . . 3 (𝜑𝐺𝐵)
241fveq2i 6777 . . . . . . 7 (𝐷𝐺) = (𝐷‘(𝑋 (𝐴𝑁)))
25 ply1rem.d . . . . . . . 8 𝐷 = ( deg1𝑅)
2625, 5, 11deg1xrcl 25247 . . . . . . . . . . 11 ((𝐴𝑁) ∈ 𝐵 → (𝐷‘(𝐴𝑁)) ∈ ℝ*)
2719, 26syl 17 . . . . . . . . . 10 (𝜑 → (𝐷‘(𝐴𝑁)) ∈ ℝ*)
28 0xr 11022 . . . . . . . . . . 11 0 ∈ ℝ*
2928a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ*)
30 1re 10975 . . . . . . . . . . 11 1 ∈ ℝ
31 rexr 11021 . . . . . . . . . . 11 (1 ∈ ℝ → 1 ∈ ℝ*)
3230, 31mp1i 13 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ*)
3325, 5, 15, 14deg1sclle 25277 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑁𝐾) → (𝐷‘(𝐴𝑁)) ≤ 0)
344, 18, 33syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐷‘(𝐴𝑁)) ≤ 0)
35 0lt1 11497 . . . . . . . . . . 11 0 < 1
3635a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 1)
3727, 29, 32, 34, 36xrlelttrd 12894 . . . . . . . . 9 (𝜑 → (𝐷‘(𝐴𝑁)) < 1)
38 eqid 2738 . . . . . . . . . . . . . 14 (mulGrp‘𝑃) = (mulGrp‘𝑃)
3938, 11mgpbas 19726 . . . . . . . . . . . . 13 𝐵 = (Base‘(mulGrp‘𝑃))
40 eqid 2738 . . . . . . . . . . . . 13 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
4139, 40mulg1 18711 . . . . . . . . . . . 12 (𝑋𝐵 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4213, 41syl 17 . . . . . . . . . . 11 (𝜑 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4342fveq2d 6778 . . . . . . . . . 10 (𝜑 → (𝐷‘(1(.g‘(mulGrp‘𝑃))𝑋)) = (𝐷𝑋))
44 1nn0 12249 . . . . . . . . . . 11 1 ∈ ℕ0
4525, 5, 10, 38, 40deg1pw 25285 . . . . . . . . . . 11 ((𝑅 ∈ NzRing ∧ 1 ∈ ℕ0) → (𝐷‘(1(.g‘(mulGrp‘𝑃))𝑋)) = 1)
462, 44, 45sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐷‘(1(.g‘(mulGrp‘𝑃))𝑋)) = 1)
4743, 46eqtr3d 2780 . . . . . . . . 9 (𝜑 → (𝐷𝑋) = 1)
4837, 47breqtrrd 5102 . . . . . . . 8 (𝜑 → (𝐷‘(𝐴𝑁)) < (𝐷𝑋))
495, 25, 4, 11, 20, 13, 19, 48deg1sub 25273 . . . . . . 7 (𝜑 → (𝐷‘(𝑋 (𝐴𝑁))) = (𝐷𝑋))
5024, 49eqtrid 2790 . . . . . 6 (𝜑 → (𝐷𝐺) = (𝐷𝑋))
5150, 47eqtrd 2778 . . . . 5 (𝜑 → (𝐷𝐺) = 1)
5251, 44eqeltrdi 2847 . . . 4 (𝜑 → (𝐷𝐺) ∈ ℕ0)
53 eqid 2738 . . . . . 6 (0g𝑃) = (0g𝑃)
5425, 5, 53, 11deg1nn0clb 25255 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐺 ≠ (0g𝑃) ↔ (𝐷𝐺) ∈ ℕ0))
554, 23, 54syl2anc 584 . . . 4 (𝜑 → (𝐺 ≠ (0g𝑃) ↔ (𝐷𝐺) ∈ ℕ0))
5652, 55mpbird 256 . . 3 (𝜑𝐺 ≠ (0g𝑃))
5751fveq2d 6778 . . . 4 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) = ((coe1𝐺)‘1))
581fveq2i 6777 . . . . . 6 (coe1𝐺) = (coe1‘(𝑋 (𝐴𝑁)))
5958fveq1i 6775 . . . . 5 ((coe1𝐺)‘1) = ((coe1‘(𝑋 (𝐴𝑁)))‘1)
6044a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℕ0)
61 eqid 2738 . . . . . . 7 (-g𝑅) = (-g𝑅)
625, 11, 20, 61coe1subfv 21437 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐴𝑁) ∈ 𝐵) ∧ 1 ∈ ℕ0) → ((coe1‘(𝑋 (𝐴𝑁)))‘1) = (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)))
634, 13, 19, 60, 62syl31anc 1372 . . . . 5 (𝜑 → ((coe1‘(𝑋 (𝐴𝑁)))‘1) = (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)))
6459, 63eqtrid 2790 . . . 4 (𝜑 → ((coe1𝐺)‘1) = (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)))
6542oveq2d 7291 . . . . . . . . . 10 (𝜑 → ((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)) = ((1r𝑅)( ·𝑠𝑃)𝑋))
665ply1sca 21424 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → 𝑅 = (Scalar‘𝑃))
672, 66syl 17 . . . . . . . . . . . 12 (𝜑𝑅 = (Scalar‘𝑃))
6867fveq2d 6778 . . . . . . . . . . 11 (𝜑 → (1r𝑅) = (1r‘(Scalar‘𝑃)))
6968oveq1d 7290 . . . . . . . . . 10 (𝜑 → ((1r𝑅)( ·𝑠𝑃)𝑋) = ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)𝑋))
705ply1lmod 21423 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
714, 70syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ LMod)
72 eqid 2738 . . . . . . . . . . . 12 (Scalar‘𝑃) = (Scalar‘𝑃)
73 eqid 2738 . . . . . . . . . . . 12 ( ·𝑠𝑃) = ( ·𝑠𝑃)
74 eqid 2738 . . . . . . . . . . . 12 (1r‘(Scalar‘𝑃)) = (1r‘(Scalar‘𝑃))
7511, 72, 73, 74lmodvs1 20151 . . . . . . . . . . 11 ((𝑃 ∈ LMod ∧ 𝑋𝐵) → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)𝑋) = 𝑋)
7671, 13, 75syl2anc 584 . . . . . . . . . 10 (𝜑 → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)𝑋) = 𝑋)
7765, 69, 763eqtrd 2782 . . . . . . . . 9 (𝜑 → ((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)) = 𝑋)
7877fveq2d 6778 . . . . . . . 8 (𝜑 → (coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋))) = (coe1𝑋))
7978fveq1d 6776 . . . . . . 7 (𝜑 → ((coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = ((coe1𝑋)‘1))
80 eqid 2738 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
8115, 80ringidcl 19807 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
824, 81syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ 𝐾)
83 ply1rem.z . . . . . . . . 9 0 = (0g𝑅)
8483, 15, 5, 10, 73, 38, 40coe1tmfv1 21445 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐾 ∧ 1 ∈ ℕ0) → ((coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = (1r𝑅))
854, 82, 60, 84syl3anc 1370 . . . . . . 7 (𝜑 → ((coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = (1r𝑅))
8679, 85eqtr3d 2780 . . . . . 6 (𝜑 → ((coe1𝑋)‘1) = (1r𝑅))
87 eqid 2738 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
885, 14, 15, 87coe1scl 21458 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑁𝐾) → (coe1‘(𝐴𝑁)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅))))
894, 18, 88syl2anc 584 . . . . . . . 8 (𝜑 → (coe1‘(𝐴𝑁)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅))))
9089fveq1d 6776 . . . . . . 7 (𝜑 → ((coe1‘(𝐴𝑁))‘1) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))‘1))
91 ax-1ne0 10940 . . . . . . . . . . 11 1 ≠ 0
92 neeq1 3006 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 ≠ 0 ↔ 1 ≠ 0))
9391, 92mpbiri 257 . . . . . . . . . 10 (𝑥 = 1 → 𝑥 ≠ 0)
94 ifnefalse 4471 . . . . . . . . . 10 (𝑥 ≠ 0 → if(𝑥 = 0, 𝑁, (0g𝑅)) = (0g𝑅))
9593, 94syl 17 . . . . . . . . 9 (𝑥 = 1 → if(𝑥 = 0, 𝑁, (0g𝑅)) = (0g𝑅))
96 eqid 2738 . . . . . . . . 9 (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))
97 fvex 6787 . . . . . . . . 9 (0g𝑅) ∈ V
9895, 96, 97fvmpt 6875 . . . . . . . 8 (1 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))‘1) = (0g𝑅))
9944, 98ax-mp 5 . . . . . . 7 ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))‘1) = (0g𝑅)
10090, 99eqtrdi 2794 . . . . . 6 (𝜑 → ((coe1‘(𝐴𝑁))‘1) = (0g𝑅))
10186, 100oveq12d 7293 . . . . 5 (𝜑 → (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)) = ((1r𝑅)(-g𝑅)(0g𝑅)))
102 ringgrp 19788 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1034, 102syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
10415, 87, 61grpsubid1 18660 . . . . . 6 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐾) → ((1r𝑅)(-g𝑅)(0g𝑅)) = (1r𝑅))
105103, 82, 104syl2anc 584 . . . . 5 (𝜑 → ((1r𝑅)(-g𝑅)(0g𝑅)) = (1r𝑅))
106101, 105eqtrd 2778 . . . 4 (𝜑 → (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)) = (1r𝑅))
10757, 64, 1063eqtrd 2782 . . 3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) = (1r𝑅))
108 ply1rem.u . . . 4 𝑈 = (Monic1p𝑅)
1095, 11, 53, 25, 108, 80ismon1p 25307 . . 3 (𝐺𝑈 ↔ (𝐺𝐵𝐺 ≠ (0g𝑃) ∧ ((coe1𝐺)‘(𝐷𝐺)) = (1r𝑅)))
11023, 56, 107, 109syl3anbrc 1342 . 2 (𝜑𝐺𝑈)
1111fveq2i 6777 . . . . . . . . . 10 (𝑂𝐺) = (𝑂‘(𝑋 (𝐴𝑁)))
112111fveq1i 6775 . . . . . . . . 9 ((𝑂𝐺)‘𝑥) = ((𝑂‘(𝑋 (𝐴𝑁)))‘𝑥)
113 ply1rem.o . . . . . . . . . . 11 𝑂 = (eval1𝑅)
114 ply1rem.2 . . . . . . . . . . . 12 (𝜑𝑅 ∈ CRing)
115114adantr 481 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → 𝑅 ∈ CRing)
116 simpr 485 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → 𝑥𝐾)
117113, 10, 15, 5, 11, 115, 116evl1vard 21503 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑥) = 𝑥))
11818adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐾) → 𝑁𝐾)
119113, 5, 15, 14, 11, 115, 118, 116evl1scad 21501 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → ((𝐴𝑁) ∈ 𝐵 ∧ ((𝑂‘(𝐴𝑁))‘𝑥) = 𝑁))
120113, 5, 15, 11, 115, 116, 117, 119, 20, 61evl1subd 21508 . . . . . . . . . 10 ((𝜑𝑥𝐾) → ((𝑋 (𝐴𝑁)) ∈ 𝐵 ∧ ((𝑂‘(𝑋 (𝐴𝑁)))‘𝑥) = (𝑥(-g𝑅)𝑁)))
121120simprd 496 . . . . . . . . 9 ((𝜑𝑥𝐾) → ((𝑂‘(𝑋 (𝐴𝑁)))‘𝑥) = (𝑥(-g𝑅)𝑁))
122112, 121eqtrid 2790 . . . . . . . 8 ((𝜑𝑥𝐾) → ((𝑂𝐺)‘𝑥) = (𝑥(-g𝑅)𝑁))
123122eqeq1d 2740 . . . . . . 7 ((𝜑𝑥𝐾) → (((𝑂𝐺)‘𝑥) = 0 ↔ (𝑥(-g𝑅)𝑁) = 0 ))
124103adantr 481 . . . . . . . 8 ((𝜑𝑥𝐾) → 𝑅 ∈ Grp)
12515, 83, 61grpsubeq0 18661 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐾𝑁𝐾) → ((𝑥(-g𝑅)𝑁) = 0𝑥 = 𝑁))
126124, 116, 118, 125syl3anc 1370 . . . . . . 7 ((𝜑𝑥𝐾) → ((𝑥(-g𝑅)𝑁) = 0𝑥 = 𝑁))
127123, 126bitrd 278 . . . . . 6 ((𝜑𝑥𝐾) → (((𝑂𝐺)‘𝑥) = 0𝑥 = 𝑁))
128 velsn 4577 . . . . . 6 (𝑥 ∈ {𝑁} ↔ 𝑥 = 𝑁)
129127, 128bitr4di 289 . . . . 5 ((𝜑𝑥𝐾) → (((𝑂𝐺)‘𝑥) = 0𝑥 ∈ {𝑁}))
130129pm5.32da 579 . . . 4 (𝜑 → ((𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 0 ) ↔ (𝑥𝐾𝑥 ∈ {𝑁})))
131 eqid 2738 . . . . . . 7 (𝑅s 𝐾) = (𝑅s 𝐾)
132 eqid 2738 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
13315fvexi 6788 . . . . . . . 8 𝐾 ∈ V
134133a1i 11 . . . . . . 7 (𝜑𝐾 ∈ V)
135113, 5, 131, 15evl1rhm 21498 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
136114, 135syl 17 . . . . . . . . 9 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
13711, 132rhmf 19970 . . . . . . . . 9 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
138136, 137syl 17 . . . . . . . 8 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
139138, 23ffvelrnd 6962 . . . . . . 7 (𝜑 → (𝑂𝐺) ∈ (Base‘(𝑅s 𝐾)))
140131, 15, 132, 2, 134, 139pwselbas 17200 . . . . . 6 (𝜑 → (𝑂𝐺):𝐾𝐾)
141140ffnd 6601 . . . . 5 (𝜑 → (𝑂𝐺) Fn 𝐾)
142 fniniseg 6937 . . . . 5 ((𝑂𝐺) Fn 𝐾 → (𝑥 ∈ ((𝑂𝐺) “ { 0 }) ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 0 )))
143141, 142syl 17 . . . 4 (𝜑 → (𝑥 ∈ ((𝑂𝐺) “ { 0 }) ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 0 )))
14418snssd 4742 . . . . . 6 (𝜑 → {𝑁} ⊆ 𝐾)
145144sseld 3920 . . . . 5 (𝜑 → (𝑥 ∈ {𝑁} → 𝑥𝐾))
146145pm4.71rd 563 . . . 4 (𝜑 → (𝑥 ∈ {𝑁} ↔ (𝑥𝐾𝑥 ∈ {𝑁})))
147130, 143, 1463bitr4d 311 . . 3 (𝜑 → (𝑥 ∈ ((𝑂𝐺) “ { 0 }) ↔ 𝑥 ∈ {𝑁}))
148147eqrdv 2736 . 2 (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑁})
149110, 51, 1483jca 1127 1 (𝜑 → (𝐺𝑈 ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ { 0 }) = {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  ifcif 4459  {csn 4561   class class class wbr 5074  cmpt 5157  ccnv 5588  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872  *cxr 11008   < clt 11009  cle 11010  0cn0 12233  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  s cpws 17157  Grpcgrp 18577  -gcsg 18579  .gcmg 18700  mulGrpcmgp 19720  1rcur 19737  Ringcrg 19783  CRingccrg 19784   RingHom crh 19956  LModclmod 20123  NzRingcnzr 20528  algSccascl 21059  var1cv1 21347  Poly1cpl1 21348  coe1cco1 21349  eval1ce1 21480   deg1 cdg1 25216  Monic1pcmn1 25290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-srg 19742  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-rnghom 19959  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-nzr 20529  df-rlreg 20554  df-cnfld 20598  df-assa 21060  df-asp 21061  df-ascl 21062  df-psr 21112  df-mvr 21113  df-mpl 21114  df-opsr 21116  df-evls 21282  df-evl 21283  df-psr1 21351  df-vr1 21352  df-ply1 21353  df-coe1 21354  df-evl1 21482  df-mdeg 25217  df-deg1 25218  df-mon1 25295
This theorem is referenced by:  ply1rem  25328  facth1  25329  fta1glem1  25330  fta1glem2  25331
  Copyright terms: Public domain W3C validator