MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1remlem Structured version   Visualization version   GIF version

Theorem ply1remlem 26068
Description: A term of the form 𝑥𝑁 is linear, monic, and has exactly one zero. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ply1rem.p 𝑃 = (Poly1𝑅)
ply1rem.b 𝐵 = (Base‘𝑃)
ply1rem.k 𝐾 = (Base‘𝑅)
ply1rem.x 𝑋 = (var1𝑅)
ply1rem.m = (-g𝑃)
ply1rem.a 𝐴 = (algSc‘𝑃)
ply1rem.g 𝐺 = (𝑋 (𝐴𝑁))
ply1rem.o 𝑂 = (eval1𝑅)
ply1rem.1 (𝜑𝑅 ∈ NzRing)
ply1rem.2 (𝜑𝑅 ∈ CRing)
ply1rem.3 (𝜑𝑁𝐾)
ply1rem.u 𝑈 = (Monic1p𝑅)
ply1rem.d 𝐷 = (deg1𝑅)
ply1rem.z 0 = (0g𝑅)
Assertion
Ref Expression
ply1remlem (𝜑 → (𝐺𝑈 ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ { 0 }) = {𝑁}))

Proof of Theorem ply1remlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ply1rem.g . . . 4 𝐺 = (𝑋 (𝐴𝑁))
2 ply1rem.1 . . . . . . . 8 (𝜑𝑅 ∈ NzRing)
3 nzrring 20401 . . . . . . . 8 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
42, 3syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
5 ply1rem.p . . . . . . . 8 𝑃 = (Poly1𝑅)
65ply1ring 22130 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
74, 6syl 17 . . . . . 6 (𝜑𝑃 ∈ Ring)
8 ringgrp 20123 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
97, 8syl 17 . . . . 5 (𝜑𝑃 ∈ Grp)
10 ply1rem.x . . . . . . 7 𝑋 = (var1𝑅)
11 ply1rem.b . . . . . . 7 𝐵 = (Base‘𝑃)
1210, 5, 11vr1cl 22100 . . . . . 6 (𝑅 ∈ Ring → 𝑋𝐵)
134, 12syl 17 . . . . 5 (𝜑𝑋𝐵)
14 ply1rem.a . . . . . . . 8 𝐴 = (algSc‘𝑃)
15 ply1rem.k . . . . . . . 8 𝐾 = (Base‘𝑅)
165, 14, 15, 11ply1sclf 22169 . . . . . . 7 (𝑅 ∈ Ring → 𝐴:𝐾𝐵)
174, 16syl 17 . . . . . 6 (𝜑𝐴:𝐾𝐵)
18 ply1rem.3 . . . . . 6 (𝜑𝑁𝐾)
1917, 18ffvelcdmd 7019 . . . . 5 (𝜑 → (𝐴𝑁) ∈ 𝐵)
20 ply1rem.m . . . . . 6 = (-g𝑃)
2111, 20grpsubcl 18899 . . . . 5 ((𝑃 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐴𝑁) ∈ 𝐵) → (𝑋 (𝐴𝑁)) ∈ 𝐵)
229, 13, 19, 21syl3anc 1373 . . . 4 (𝜑 → (𝑋 (𝐴𝑁)) ∈ 𝐵)
231, 22eqeltrid 2832 . . 3 (𝜑𝐺𝐵)
241fveq2i 6825 . . . . . . 7 (𝐷𝐺) = (𝐷‘(𝑋 (𝐴𝑁)))
25 ply1rem.d . . . . . . . 8 𝐷 = (deg1𝑅)
2625, 5, 11deg1xrcl 25985 . . . . . . . . . . 11 ((𝐴𝑁) ∈ 𝐵 → (𝐷‘(𝐴𝑁)) ∈ ℝ*)
2719, 26syl 17 . . . . . . . . . 10 (𝜑 → (𝐷‘(𝐴𝑁)) ∈ ℝ*)
28 0xr 11162 . . . . . . . . . . 11 0 ∈ ℝ*
2928a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ*)
30 1re 11115 . . . . . . . . . . 11 1 ∈ ℝ
31 rexr 11161 . . . . . . . . . . 11 (1 ∈ ℝ → 1 ∈ ℝ*)
3230, 31mp1i 13 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ*)
3325, 5, 15, 14deg1sclle 26015 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑁𝐾) → (𝐷‘(𝐴𝑁)) ≤ 0)
344, 18, 33syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐷‘(𝐴𝑁)) ≤ 0)
35 0lt1 11642 . . . . . . . . . . 11 0 < 1
3635a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 1)
3727, 29, 32, 34, 36xrlelttrd 13062 . . . . . . . . 9 (𝜑 → (𝐷‘(𝐴𝑁)) < 1)
38 eqid 2729 . . . . . . . . . . . . . 14 (mulGrp‘𝑃) = (mulGrp‘𝑃)
3938, 11mgpbas 20030 . . . . . . . . . . . . 13 𝐵 = (Base‘(mulGrp‘𝑃))
40 eqid 2729 . . . . . . . . . . . . 13 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
4139, 40mulg1 18960 . . . . . . . . . . . 12 (𝑋𝐵 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4213, 41syl 17 . . . . . . . . . . 11 (𝜑 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4342fveq2d 6826 . . . . . . . . . 10 (𝜑 → (𝐷‘(1(.g‘(mulGrp‘𝑃))𝑋)) = (𝐷𝑋))
44 1nn0 12400 . . . . . . . . . . 11 1 ∈ ℕ0
4525, 5, 10, 38, 40deg1pw 26024 . . . . . . . . . . 11 ((𝑅 ∈ NzRing ∧ 1 ∈ ℕ0) → (𝐷‘(1(.g‘(mulGrp‘𝑃))𝑋)) = 1)
462, 44, 45sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐷‘(1(.g‘(mulGrp‘𝑃))𝑋)) = 1)
4743, 46eqtr3d 2766 . . . . . . . . 9 (𝜑 → (𝐷𝑋) = 1)
4837, 47breqtrrd 5120 . . . . . . . 8 (𝜑 → (𝐷‘(𝐴𝑁)) < (𝐷𝑋))
495, 25, 4, 11, 20, 13, 19, 48deg1sub 26011 . . . . . . 7 (𝜑 → (𝐷‘(𝑋 (𝐴𝑁))) = (𝐷𝑋))
5024, 49eqtrid 2776 . . . . . 6 (𝜑 → (𝐷𝐺) = (𝐷𝑋))
5150, 47eqtrd 2764 . . . . 5 (𝜑 → (𝐷𝐺) = 1)
5251, 44eqeltrdi 2836 . . . 4 (𝜑 → (𝐷𝐺) ∈ ℕ0)
53 eqid 2729 . . . . . 6 (0g𝑃) = (0g𝑃)
5425, 5, 53, 11deg1nn0clb 25993 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐺 ≠ (0g𝑃) ↔ (𝐷𝐺) ∈ ℕ0))
554, 23, 54syl2anc 584 . . . 4 (𝜑 → (𝐺 ≠ (0g𝑃) ↔ (𝐷𝐺) ∈ ℕ0))
5652, 55mpbird 257 . . 3 (𝜑𝐺 ≠ (0g𝑃))
5751fveq2d 6826 . . . 4 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) = ((coe1𝐺)‘1))
581fveq2i 6825 . . . . . 6 (coe1𝐺) = (coe1‘(𝑋 (𝐴𝑁)))
5958fveq1i 6823 . . . . 5 ((coe1𝐺)‘1) = ((coe1‘(𝑋 (𝐴𝑁)))‘1)
6044a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℕ0)
61 eqid 2729 . . . . . . 7 (-g𝑅) = (-g𝑅)
625, 11, 20, 61coe1subfv 22150 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐴𝑁) ∈ 𝐵) ∧ 1 ∈ ℕ0) → ((coe1‘(𝑋 (𝐴𝑁)))‘1) = (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)))
634, 13, 19, 60, 62syl31anc 1375 . . . . 5 (𝜑 → ((coe1‘(𝑋 (𝐴𝑁)))‘1) = (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)))
6459, 63eqtrid 2776 . . . 4 (𝜑 → ((coe1𝐺)‘1) = (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)))
6542oveq2d 7365 . . . . . . . . . 10 (𝜑 → ((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)) = ((1r𝑅)( ·𝑠𝑃)𝑋))
665ply1sca 22135 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → 𝑅 = (Scalar‘𝑃))
672, 66syl 17 . . . . . . . . . . . 12 (𝜑𝑅 = (Scalar‘𝑃))
6867fveq2d 6826 . . . . . . . . . . 11 (𝜑 → (1r𝑅) = (1r‘(Scalar‘𝑃)))
6968oveq1d 7364 . . . . . . . . . 10 (𝜑 → ((1r𝑅)( ·𝑠𝑃)𝑋) = ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)𝑋))
705ply1lmod 22134 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
714, 70syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ LMod)
72 eqid 2729 . . . . . . . . . . . 12 (Scalar‘𝑃) = (Scalar‘𝑃)
73 eqid 2729 . . . . . . . . . . . 12 ( ·𝑠𝑃) = ( ·𝑠𝑃)
74 eqid 2729 . . . . . . . . . . . 12 (1r‘(Scalar‘𝑃)) = (1r‘(Scalar‘𝑃))
7511, 72, 73, 74lmodvs1 20793 . . . . . . . . . . 11 ((𝑃 ∈ LMod ∧ 𝑋𝐵) → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)𝑋) = 𝑋)
7671, 13, 75syl2anc 584 . . . . . . . . . 10 (𝜑 → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)𝑋) = 𝑋)
7765, 69, 763eqtrd 2768 . . . . . . . . 9 (𝜑 → ((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)) = 𝑋)
7877fveq2d 6826 . . . . . . . 8 (𝜑 → (coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋))) = (coe1𝑋))
7978fveq1d 6824 . . . . . . 7 (𝜑 → ((coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = ((coe1𝑋)‘1))
80 eqid 2729 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
8115, 80ringidcl 20150 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
824, 81syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ 𝐾)
83 ply1rem.z . . . . . . . . 9 0 = (0g𝑅)
8483, 15, 5, 10, 73, 38, 40coe1tmfv1 22158 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐾 ∧ 1 ∈ ℕ0) → ((coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = (1r𝑅))
854, 82, 60, 84syl3anc 1373 . . . . . . 7 (𝜑 → ((coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = (1r𝑅))
8679, 85eqtr3d 2766 . . . . . 6 (𝜑 → ((coe1𝑋)‘1) = (1r𝑅))
87 eqid 2729 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
885, 14, 15, 87coe1scl 22171 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑁𝐾) → (coe1‘(𝐴𝑁)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅))))
894, 18, 88syl2anc 584 . . . . . . . 8 (𝜑 → (coe1‘(𝐴𝑁)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅))))
9089fveq1d 6824 . . . . . . 7 (𝜑 → ((coe1‘(𝐴𝑁))‘1) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))‘1))
91 ax-1ne0 11078 . . . . . . . . . . 11 1 ≠ 0
92 neeq1 2987 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 ≠ 0 ↔ 1 ≠ 0))
9391, 92mpbiri 258 . . . . . . . . . 10 (𝑥 = 1 → 𝑥 ≠ 0)
94 ifnefalse 4488 . . . . . . . . . 10 (𝑥 ≠ 0 → if(𝑥 = 0, 𝑁, (0g𝑅)) = (0g𝑅))
9593, 94syl 17 . . . . . . . . 9 (𝑥 = 1 → if(𝑥 = 0, 𝑁, (0g𝑅)) = (0g𝑅))
96 eqid 2729 . . . . . . . . 9 (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))
97 fvex 6835 . . . . . . . . 9 (0g𝑅) ∈ V
9895, 96, 97fvmpt 6930 . . . . . . . 8 (1 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))‘1) = (0g𝑅))
9944, 98ax-mp 5 . . . . . . 7 ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))‘1) = (0g𝑅)
10090, 99eqtrdi 2780 . . . . . 6 (𝜑 → ((coe1‘(𝐴𝑁))‘1) = (0g𝑅))
10186, 100oveq12d 7367 . . . . 5 (𝜑 → (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)) = ((1r𝑅)(-g𝑅)(0g𝑅)))
102 ringgrp 20123 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1034, 102syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
10415, 87, 61grpsubid1 18904 . . . . . 6 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐾) → ((1r𝑅)(-g𝑅)(0g𝑅)) = (1r𝑅))
105103, 82, 104syl2anc 584 . . . . 5 (𝜑 → ((1r𝑅)(-g𝑅)(0g𝑅)) = (1r𝑅))
106101, 105eqtrd 2764 . . . 4 (𝜑 → (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)) = (1r𝑅))
10757, 64, 1063eqtrd 2768 . . 3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) = (1r𝑅))
108 ply1rem.u . . . 4 𝑈 = (Monic1p𝑅)
1095, 11, 53, 25, 108, 80ismon1p 26046 . . 3 (𝐺𝑈 ↔ (𝐺𝐵𝐺 ≠ (0g𝑃) ∧ ((coe1𝐺)‘(𝐷𝐺)) = (1r𝑅)))
11023, 56, 107, 109syl3anbrc 1344 . 2 (𝜑𝐺𝑈)
1111fveq2i 6825 . . . . . . . . . 10 (𝑂𝐺) = (𝑂‘(𝑋 (𝐴𝑁)))
112111fveq1i 6823 . . . . . . . . 9 ((𝑂𝐺)‘𝑥) = ((𝑂‘(𝑋 (𝐴𝑁)))‘𝑥)
113 ply1rem.o . . . . . . . . . . 11 𝑂 = (eval1𝑅)
114 ply1rem.2 . . . . . . . . . . . 12 (𝜑𝑅 ∈ CRing)
115114adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → 𝑅 ∈ CRing)
116 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → 𝑥𝐾)
117113, 10, 15, 5, 11, 115, 116evl1vard 22222 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑥) = 𝑥))
11818adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐾) → 𝑁𝐾)
119113, 5, 15, 14, 11, 115, 118, 116evl1scad 22220 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → ((𝐴𝑁) ∈ 𝐵 ∧ ((𝑂‘(𝐴𝑁))‘𝑥) = 𝑁))
120113, 5, 15, 11, 115, 116, 117, 119, 20, 61evl1subd 22227 . . . . . . . . . 10 ((𝜑𝑥𝐾) → ((𝑋 (𝐴𝑁)) ∈ 𝐵 ∧ ((𝑂‘(𝑋 (𝐴𝑁)))‘𝑥) = (𝑥(-g𝑅)𝑁)))
121120simprd 495 . . . . . . . . 9 ((𝜑𝑥𝐾) → ((𝑂‘(𝑋 (𝐴𝑁)))‘𝑥) = (𝑥(-g𝑅)𝑁))
122112, 121eqtrid 2776 . . . . . . . 8 ((𝜑𝑥𝐾) → ((𝑂𝐺)‘𝑥) = (𝑥(-g𝑅)𝑁))
123122eqeq1d 2731 . . . . . . 7 ((𝜑𝑥𝐾) → (((𝑂𝐺)‘𝑥) = 0 ↔ (𝑥(-g𝑅)𝑁) = 0 ))
124103adantr 480 . . . . . . . 8 ((𝜑𝑥𝐾) → 𝑅 ∈ Grp)
12515, 83, 61grpsubeq0 18905 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐾𝑁𝐾) → ((𝑥(-g𝑅)𝑁) = 0𝑥 = 𝑁))
126124, 116, 118, 125syl3anc 1373 . . . . . . 7 ((𝜑𝑥𝐾) → ((𝑥(-g𝑅)𝑁) = 0𝑥 = 𝑁))
127123, 126bitrd 279 . . . . . 6 ((𝜑𝑥𝐾) → (((𝑂𝐺)‘𝑥) = 0𝑥 = 𝑁))
128 velsn 4593 . . . . . 6 (𝑥 ∈ {𝑁} ↔ 𝑥 = 𝑁)
129127, 128bitr4di 289 . . . . 5 ((𝜑𝑥𝐾) → (((𝑂𝐺)‘𝑥) = 0𝑥 ∈ {𝑁}))
130129pm5.32da 579 . . . 4 (𝜑 → ((𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 0 ) ↔ (𝑥𝐾𝑥 ∈ {𝑁})))
131 eqid 2729 . . . . . . 7 (𝑅s 𝐾) = (𝑅s 𝐾)
132 eqid 2729 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
13315fvexi 6836 . . . . . . . 8 𝐾 ∈ V
134133a1i 11 . . . . . . 7 (𝜑𝐾 ∈ V)
135113, 5, 131, 15evl1rhm 22217 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
136114, 135syl 17 . . . . . . . . 9 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
13711, 132rhmf 20370 . . . . . . . . 9 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
138136, 137syl 17 . . . . . . . 8 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
139138, 23ffvelcdmd 7019 . . . . . . 7 (𝜑 → (𝑂𝐺) ∈ (Base‘(𝑅s 𝐾)))
140131, 15, 132, 2, 134, 139pwselbas 17393 . . . . . 6 (𝜑 → (𝑂𝐺):𝐾𝐾)
141140ffnd 6653 . . . . 5 (𝜑 → (𝑂𝐺) Fn 𝐾)
142 fniniseg 6994 . . . . 5 ((𝑂𝐺) Fn 𝐾 → (𝑥 ∈ ((𝑂𝐺) “ { 0 }) ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 0 )))
143141, 142syl 17 . . . 4 (𝜑 → (𝑥 ∈ ((𝑂𝐺) “ { 0 }) ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 0 )))
14418snssd 4760 . . . . . 6 (𝜑 → {𝑁} ⊆ 𝐾)
145144sseld 3934 . . . . 5 (𝜑 → (𝑥 ∈ {𝑁} → 𝑥𝐾))
146145pm4.71rd 562 . . . 4 (𝜑 → (𝑥 ∈ {𝑁} ↔ (𝑥𝐾𝑥 ∈ {𝑁})))
147130, 143, 1463bitr4d 311 . . 3 (𝜑 → (𝑥 ∈ ((𝑂𝐺) “ { 0 }) ↔ 𝑥 ∈ {𝑁}))
148147eqrdv 2727 . 2 (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑁})
149110, 51, 1483jca 1128 1 (𝜑 → (𝐺𝑈 ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ { 0 }) = {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  ifcif 4476  {csn 4577   class class class wbr 5092  cmpt 5173  ccnv 5618  cima 5622   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010  *cxr 11148   < clt 11149  cle 11150  0cn0 12384  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  s cpws 17350  Grpcgrp 18812  -gcsg 18814  .gcmg 18946  mulGrpcmgp 20025  1rcur 20066  Ringcrg 20118  CRingccrg 20119   RingHom crh 20354  NzRingcnzr 20397  LModclmod 20763  algSccascl 21759  var1cv1 22058  Poly1cpl1 22059  coe1cco1 22060  eval1ce1 22199  deg1cdg1 25957  Monic1pcmn1 26029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-lmod 20765  df-lss 20835  df-lsp 20875  df-cnfld 21262  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-evl1 22201  df-mdeg 25958  df-deg1 25959  df-mon1 26034
This theorem is referenced by:  ply1rem  26069  facth1  26070  fta1glem1  26071  fta1glem2  26072  irngss  33670
  Copyright terms: Public domain W3C validator