MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1remlem Structured version   Visualization version   GIF version

Theorem ply1remlem 26224
Description: A term of the form 𝑥𝑁 is linear, monic, and has exactly one zero. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ply1rem.p 𝑃 = (Poly1𝑅)
ply1rem.b 𝐵 = (Base‘𝑃)
ply1rem.k 𝐾 = (Base‘𝑅)
ply1rem.x 𝑋 = (var1𝑅)
ply1rem.m = (-g𝑃)
ply1rem.a 𝐴 = (algSc‘𝑃)
ply1rem.g 𝐺 = (𝑋 (𝐴𝑁))
ply1rem.o 𝑂 = (eval1𝑅)
ply1rem.1 (𝜑𝑅 ∈ NzRing)
ply1rem.2 (𝜑𝑅 ∈ CRing)
ply1rem.3 (𝜑𝑁𝐾)
ply1rem.u 𝑈 = (Monic1p𝑅)
ply1rem.d 𝐷 = (deg1𝑅)
ply1rem.z 0 = (0g𝑅)
Assertion
Ref Expression
ply1remlem (𝜑 → (𝐺𝑈 ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ { 0 }) = {𝑁}))

Proof of Theorem ply1remlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ply1rem.g . . . 4 𝐺 = (𝑋 (𝐴𝑁))
2 ply1rem.1 . . . . . . . 8 (𝜑𝑅 ∈ NzRing)
3 nzrring 20542 . . . . . . . 8 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
42, 3syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
5 ply1rem.p . . . . . . . 8 𝑃 = (Poly1𝑅)
65ply1ring 22270 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
74, 6syl 17 . . . . . 6 (𝜑𝑃 ∈ Ring)
8 ringgrp 20265 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
97, 8syl 17 . . . . 5 (𝜑𝑃 ∈ Grp)
10 ply1rem.x . . . . . . 7 𝑋 = (var1𝑅)
11 ply1rem.b . . . . . . 7 𝐵 = (Base‘𝑃)
1210, 5, 11vr1cl 22240 . . . . . 6 (𝑅 ∈ Ring → 𝑋𝐵)
134, 12syl 17 . . . . 5 (𝜑𝑋𝐵)
14 ply1rem.a . . . . . . . 8 𝐴 = (algSc‘𝑃)
15 ply1rem.k . . . . . . . 8 𝐾 = (Base‘𝑅)
165, 14, 15, 11ply1sclf 22309 . . . . . . 7 (𝑅 ∈ Ring → 𝐴:𝐾𝐵)
174, 16syl 17 . . . . . 6 (𝜑𝐴:𝐾𝐵)
18 ply1rem.3 . . . . . 6 (𝜑𝑁𝐾)
1917, 18ffvelcdmd 7119 . . . . 5 (𝜑 → (𝐴𝑁) ∈ 𝐵)
20 ply1rem.m . . . . . 6 = (-g𝑃)
2111, 20grpsubcl 19060 . . . . 5 ((𝑃 ∈ Grp ∧ 𝑋𝐵 ∧ (𝐴𝑁) ∈ 𝐵) → (𝑋 (𝐴𝑁)) ∈ 𝐵)
229, 13, 19, 21syl3anc 1371 . . . 4 (𝜑 → (𝑋 (𝐴𝑁)) ∈ 𝐵)
231, 22eqeltrid 2848 . . 3 (𝜑𝐺𝐵)
241fveq2i 6923 . . . . . . 7 (𝐷𝐺) = (𝐷‘(𝑋 (𝐴𝑁)))
25 ply1rem.d . . . . . . . 8 𝐷 = (deg1𝑅)
2625, 5, 11deg1xrcl 26141 . . . . . . . . . . 11 ((𝐴𝑁) ∈ 𝐵 → (𝐷‘(𝐴𝑁)) ∈ ℝ*)
2719, 26syl 17 . . . . . . . . . 10 (𝜑 → (𝐷‘(𝐴𝑁)) ∈ ℝ*)
28 0xr 11337 . . . . . . . . . . 11 0 ∈ ℝ*
2928a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ*)
30 1re 11290 . . . . . . . . . . 11 1 ∈ ℝ
31 rexr 11336 . . . . . . . . . . 11 (1 ∈ ℝ → 1 ∈ ℝ*)
3230, 31mp1i 13 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ*)
3325, 5, 15, 14deg1sclle 26171 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑁𝐾) → (𝐷‘(𝐴𝑁)) ≤ 0)
344, 18, 33syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝐷‘(𝐴𝑁)) ≤ 0)
35 0lt1 11812 . . . . . . . . . . 11 0 < 1
3635a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 1)
3727, 29, 32, 34, 36xrlelttrd 13222 . . . . . . . . 9 (𝜑 → (𝐷‘(𝐴𝑁)) < 1)
38 eqid 2740 . . . . . . . . . . . . . 14 (mulGrp‘𝑃) = (mulGrp‘𝑃)
3938, 11mgpbas 20167 . . . . . . . . . . . . 13 𝐵 = (Base‘(mulGrp‘𝑃))
40 eqid 2740 . . . . . . . . . . . . 13 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
4139, 40mulg1 19121 . . . . . . . . . . . 12 (𝑋𝐵 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4213, 41syl 17 . . . . . . . . . . 11 (𝜑 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4342fveq2d 6924 . . . . . . . . . 10 (𝜑 → (𝐷‘(1(.g‘(mulGrp‘𝑃))𝑋)) = (𝐷𝑋))
44 1nn0 12569 . . . . . . . . . . 11 1 ∈ ℕ0
4525, 5, 10, 38, 40deg1pw 26180 . . . . . . . . . . 11 ((𝑅 ∈ NzRing ∧ 1 ∈ ℕ0) → (𝐷‘(1(.g‘(mulGrp‘𝑃))𝑋)) = 1)
462, 44, 45sylancl 585 . . . . . . . . . 10 (𝜑 → (𝐷‘(1(.g‘(mulGrp‘𝑃))𝑋)) = 1)
4743, 46eqtr3d 2782 . . . . . . . . 9 (𝜑 → (𝐷𝑋) = 1)
4837, 47breqtrrd 5194 . . . . . . . 8 (𝜑 → (𝐷‘(𝐴𝑁)) < (𝐷𝑋))
495, 25, 4, 11, 20, 13, 19, 48deg1sub 26167 . . . . . . 7 (𝜑 → (𝐷‘(𝑋 (𝐴𝑁))) = (𝐷𝑋))
5024, 49eqtrid 2792 . . . . . 6 (𝜑 → (𝐷𝐺) = (𝐷𝑋))
5150, 47eqtrd 2780 . . . . 5 (𝜑 → (𝐷𝐺) = 1)
5251, 44eqeltrdi 2852 . . . 4 (𝜑 → (𝐷𝐺) ∈ ℕ0)
53 eqid 2740 . . . . . 6 (0g𝑃) = (0g𝑃)
5425, 5, 53, 11deg1nn0clb 26149 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐺 ≠ (0g𝑃) ↔ (𝐷𝐺) ∈ ℕ0))
554, 23, 54syl2anc 583 . . . 4 (𝜑 → (𝐺 ≠ (0g𝑃) ↔ (𝐷𝐺) ∈ ℕ0))
5652, 55mpbird 257 . . 3 (𝜑𝐺 ≠ (0g𝑃))
5751fveq2d 6924 . . . 4 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) = ((coe1𝐺)‘1))
581fveq2i 6923 . . . . . 6 (coe1𝐺) = (coe1‘(𝑋 (𝐴𝑁)))
5958fveq1i 6921 . . . . 5 ((coe1𝐺)‘1) = ((coe1‘(𝑋 (𝐴𝑁)))‘1)
6044a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℕ0)
61 eqid 2740 . . . . . . 7 (-g𝑅) = (-g𝑅)
625, 11, 20, 61coe1subfv 22290 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐴𝑁) ∈ 𝐵) ∧ 1 ∈ ℕ0) → ((coe1‘(𝑋 (𝐴𝑁)))‘1) = (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)))
634, 13, 19, 60, 62syl31anc 1373 . . . . 5 (𝜑 → ((coe1‘(𝑋 (𝐴𝑁)))‘1) = (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)))
6459, 63eqtrid 2792 . . . 4 (𝜑 → ((coe1𝐺)‘1) = (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)))
6542oveq2d 7464 . . . . . . . . . 10 (𝜑 → ((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)) = ((1r𝑅)( ·𝑠𝑃)𝑋))
665ply1sca 22275 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → 𝑅 = (Scalar‘𝑃))
672, 66syl 17 . . . . . . . . . . . 12 (𝜑𝑅 = (Scalar‘𝑃))
6867fveq2d 6924 . . . . . . . . . . 11 (𝜑 → (1r𝑅) = (1r‘(Scalar‘𝑃)))
6968oveq1d 7463 . . . . . . . . . 10 (𝜑 → ((1r𝑅)( ·𝑠𝑃)𝑋) = ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)𝑋))
705ply1lmod 22274 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
714, 70syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ LMod)
72 eqid 2740 . . . . . . . . . . . 12 (Scalar‘𝑃) = (Scalar‘𝑃)
73 eqid 2740 . . . . . . . . . . . 12 ( ·𝑠𝑃) = ( ·𝑠𝑃)
74 eqid 2740 . . . . . . . . . . . 12 (1r‘(Scalar‘𝑃)) = (1r‘(Scalar‘𝑃))
7511, 72, 73, 74lmodvs1 20910 . . . . . . . . . . 11 ((𝑃 ∈ LMod ∧ 𝑋𝐵) → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)𝑋) = 𝑋)
7671, 13, 75syl2anc 583 . . . . . . . . . 10 (𝜑 → ((1r‘(Scalar‘𝑃))( ·𝑠𝑃)𝑋) = 𝑋)
7765, 69, 763eqtrd 2784 . . . . . . . . 9 (𝜑 → ((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)) = 𝑋)
7877fveq2d 6924 . . . . . . . 8 (𝜑 → (coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋))) = (coe1𝑋))
7978fveq1d 6922 . . . . . . 7 (𝜑 → ((coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = ((coe1𝑋)‘1))
80 eqid 2740 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
8115, 80ringidcl 20289 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
824, 81syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ 𝐾)
83 ply1rem.z . . . . . . . . 9 0 = (0g𝑅)
8483, 15, 5, 10, 73, 38, 40coe1tmfv1 22298 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐾 ∧ 1 ∈ ℕ0) → ((coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = (1r𝑅))
854, 82, 60, 84syl3anc 1371 . . . . . . 7 (𝜑 → ((coe1‘((1r𝑅)( ·𝑠𝑃)(1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = (1r𝑅))
8679, 85eqtr3d 2782 . . . . . 6 (𝜑 → ((coe1𝑋)‘1) = (1r𝑅))
87 eqid 2740 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
885, 14, 15, 87coe1scl 22311 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑁𝐾) → (coe1‘(𝐴𝑁)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅))))
894, 18, 88syl2anc 583 . . . . . . . 8 (𝜑 → (coe1‘(𝐴𝑁)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅))))
9089fveq1d 6922 . . . . . . 7 (𝜑 → ((coe1‘(𝐴𝑁))‘1) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))‘1))
91 ax-1ne0 11253 . . . . . . . . . . 11 1 ≠ 0
92 neeq1 3009 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 ≠ 0 ↔ 1 ≠ 0))
9391, 92mpbiri 258 . . . . . . . . . 10 (𝑥 = 1 → 𝑥 ≠ 0)
94 ifnefalse 4560 . . . . . . . . . 10 (𝑥 ≠ 0 → if(𝑥 = 0, 𝑁, (0g𝑅)) = (0g𝑅))
9593, 94syl 17 . . . . . . . . 9 (𝑥 = 1 → if(𝑥 = 0, 𝑁, (0g𝑅)) = (0g𝑅))
96 eqid 2740 . . . . . . . . 9 (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))
97 fvex 6933 . . . . . . . . 9 (0g𝑅) ∈ V
9895, 96, 97fvmpt 7029 . . . . . . . 8 (1 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))‘1) = (0g𝑅))
9944, 98ax-mp 5 . . . . . . 7 ((𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑁, (0g𝑅)))‘1) = (0g𝑅)
10090, 99eqtrdi 2796 . . . . . 6 (𝜑 → ((coe1‘(𝐴𝑁))‘1) = (0g𝑅))
10186, 100oveq12d 7466 . . . . 5 (𝜑 → (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)) = ((1r𝑅)(-g𝑅)(0g𝑅)))
102 ringgrp 20265 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1034, 102syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
10415, 87, 61grpsubid1 19065 . . . . . 6 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐾) → ((1r𝑅)(-g𝑅)(0g𝑅)) = (1r𝑅))
105103, 82, 104syl2anc 583 . . . . 5 (𝜑 → ((1r𝑅)(-g𝑅)(0g𝑅)) = (1r𝑅))
106101, 105eqtrd 2780 . . . 4 (𝜑 → (((coe1𝑋)‘1)(-g𝑅)((coe1‘(𝐴𝑁))‘1)) = (1r𝑅))
10757, 64, 1063eqtrd 2784 . . 3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) = (1r𝑅))
108 ply1rem.u . . . 4 𝑈 = (Monic1p𝑅)
1095, 11, 53, 25, 108, 80ismon1p 26202 . . 3 (𝐺𝑈 ↔ (𝐺𝐵𝐺 ≠ (0g𝑃) ∧ ((coe1𝐺)‘(𝐷𝐺)) = (1r𝑅)))
11023, 56, 107, 109syl3anbrc 1343 . 2 (𝜑𝐺𝑈)
1111fveq2i 6923 . . . . . . . . . 10 (𝑂𝐺) = (𝑂‘(𝑋 (𝐴𝑁)))
112111fveq1i 6921 . . . . . . . . 9 ((𝑂𝐺)‘𝑥) = ((𝑂‘(𝑋 (𝐴𝑁)))‘𝑥)
113 ply1rem.o . . . . . . . . . . 11 𝑂 = (eval1𝑅)
114 ply1rem.2 . . . . . . . . . . . 12 (𝜑𝑅 ∈ CRing)
115114adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → 𝑅 ∈ CRing)
116 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → 𝑥𝐾)
117113, 10, 15, 5, 11, 115, 116evl1vard 22362 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑥) = 𝑥))
11818adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐾) → 𝑁𝐾)
119113, 5, 15, 14, 11, 115, 118, 116evl1scad 22360 . . . . . . . . . . 11 ((𝜑𝑥𝐾) → ((𝐴𝑁) ∈ 𝐵 ∧ ((𝑂‘(𝐴𝑁))‘𝑥) = 𝑁))
120113, 5, 15, 11, 115, 116, 117, 119, 20, 61evl1subd 22367 . . . . . . . . . 10 ((𝜑𝑥𝐾) → ((𝑋 (𝐴𝑁)) ∈ 𝐵 ∧ ((𝑂‘(𝑋 (𝐴𝑁)))‘𝑥) = (𝑥(-g𝑅)𝑁)))
121120simprd 495 . . . . . . . . 9 ((𝜑𝑥𝐾) → ((𝑂‘(𝑋 (𝐴𝑁)))‘𝑥) = (𝑥(-g𝑅)𝑁))
122112, 121eqtrid 2792 . . . . . . . 8 ((𝜑𝑥𝐾) → ((𝑂𝐺)‘𝑥) = (𝑥(-g𝑅)𝑁))
123122eqeq1d 2742 . . . . . . 7 ((𝜑𝑥𝐾) → (((𝑂𝐺)‘𝑥) = 0 ↔ (𝑥(-g𝑅)𝑁) = 0 ))
124103adantr 480 . . . . . . . 8 ((𝜑𝑥𝐾) → 𝑅 ∈ Grp)
12515, 83, 61grpsubeq0 19066 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐾𝑁𝐾) → ((𝑥(-g𝑅)𝑁) = 0𝑥 = 𝑁))
126124, 116, 118, 125syl3anc 1371 . . . . . . 7 ((𝜑𝑥𝐾) → ((𝑥(-g𝑅)𝑁) = 0𝑥 = 𝑁))
127123, 126bitrd 279 . . . . . 6 ((𝜑𝑥𝐾) → (((𝑂𝐺)‘𝑥) = 0𝑥 = 𝑁))
128 velsn 4664 . . . . . 6 (𝑥 ∈ {𝑁} ↔ 𝑥 = 𝑁)
129127, 128bitr4di 289 . . . . 5 ((𝜑𝑥𝐾) → (((𝑂𝐺)‘𝑥) = 0𝑥 ∈ {𝑁}))
130129pm5.32da 578 . . . 4 (𝜑 → ((𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 0 ) ↔ (𝑥𝐾𝑥 ∈ {𝑁})))
131 eqid 2740 . . . . . . 7 (𝑅s 𝐾) = (𝑅s 𝐾)
132 eqid 2740 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
13315fvexi 6934 . . . . . . . 8 𝐾 ∈ V
134133a1i 11 . . . . . . 7 (𝜑𝐾 ∈ V)
135113, 5, 131, 15evl1rhm 22357 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
136114, 135syl 17 . . . . . . . . 9 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
13711, 132rhmf 20511 . . . . . . . . 9 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
138136, 137syl 17 . . . . . . . 8 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
139138, 23ffvelcdmd 7119 . . . . . . 7 (𝜑 → (𝑂𝐺) ∈ (Base‘(𝑅s 𝐾)))
140131, 15, 132, 2, 134, 139pwselbas 17549 . . . . . 6 (𝜑 → (𝑂𝐺):𝐾𝐾)
141140ffnd 6748 . . . . 5 (𝜑 → (𝑂𝐺) Fn 𝐾)
142 fniniseg 7093 . . . . 5 ((𝑂𝐺) Fn 𝐾 → (𝑥 ∈ ((𝑂𝐺) “ { 0 }) ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 0 )))
143141, 142syl 17 . . . 4 (𝜑 → (𝑥 ∈ ((𝑂𝐺) “ { 0 }) ↔ (𝑥𝐾 ∧ ((𝑂𝐺)‘𝑥) = 0 )))
14418snssd 4834 . . . . . 6 (𝜑 → {𝑁} ⊆ 𝐾)
145144sseld 4007 . . . . 5 (𝜑 → (𝑥 ∈ {𝑁} → 𝑥𝐾))
146145pm4.71rd 562 . . . 4 (𝜑 → (𝑥 ∈ {𝑁} ↔ (𝑥𝐾𝑥 ∈ {𝑁})))
147130, 143, 1463bitr4d 311 . . 3 (𝜑 → (𝑥 ∈ ((𝑂𝐺) “ { 0 }) ↔ 𝑥 ∈ {𝑁}))
148147eqrdv 2738 . 2 (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑁})
149110, 51, 1483jca 1128 1 (𝜑 → (𝐺𝑈 ∧ (𝐷𝐺) = 1 ∧ ((𝑂𝐺) “ { 0 }) = {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  ifcif 4548  {csn 4648   class class class wbr 5166  cmpt 5249  ccnv 5699  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185  *cxr 11323   < clt 11324  cle 11325  0cn0 12553  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  s cpws 17506  Grpcgrp 18973  -gcsg 18975  .gcmg 19107  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  CRingccrg 20261   RingHom crh 20495  NzRingcnzr 20538  LModclmod 20880  algSccascl 21895  var1cv1 22198  Poly1cpl1 22199  coe1cco1 22200  eval1ce1 22339  deg1cdg1 26113  Monic1pcmn1 26185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-rhm 20498  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-rlreg 20716  df-lmod 20882  df-lss 20953  df-lsp 20993  df-cnfld 21388  df-assa 21896  df-asp 21897  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-evls 22121  df-evl 22122  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-evl1 22341  df-mdeg 26114  df-deg1 26115  df-mon1 26190
This theorem is referenced by:  ply1rem  26225  facth1  26226  fta1glem1  26227  fta1glem2  26228  irngss  33687
  Copyright terms: Public domain W3C validator