Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  facth1 Structured version   Visualization version   GIF version

Theorem facth1 24769
 Description: The factor theorem and its converse. A polynomial 𝐹 has a root at 𝐴 iff 𝐺 = 𝑥 − 𝐴 is a factor of 𝐹. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ply1rem.p 𝑃 = (Poly1𝑅)
ply1rem.b 𝐵 = (Base‘𝑃)
ply1rem.k 𝐾 = (Base‘𝑅)
ply1rem.x 𝑋 = (var1𝑅)
ply1rem.m = (-g𝑃)
ply1rem.a 𝐴 = (algSc‘𝑃)
ply1rem.g 𝐺 = (𝑋 (𝐴𝑁))
ply1rem.o 𝑂 = (eval1𝑅)
ply1rem.1 (𝜑𝑅 ∈ NzRing)
ply1rem.2 (𝜑𝑅 ∈ CRing)
ply1rem.3 (𝜑𝑁𝐾)
ply1rem.4 (𝜑𝐹𝐵)
facth1.z 0 = (0g𝑅)
facth1.d = (∥r𝑃)
Assertion
Ref Expression
facth1 (𝜑 → (𝐺 𝐹 ↔ ((𝑂𝐹)‘𝑁) = 0 ))

Proof of Theorem facth1
StepHypRef Expression
1 ply1rem.1 . . . 4 (𝜑𝑅 ∈ NzRing)
2 nzrring 20031 . . . 4 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 . . 3 (𝜑𝑅 ∈ Ring)
4 ply1rem.4 . . 3 (𝜑𝐹𝐵)
5 ply1rem.p . . . . . 6 𝑃 = (Poly1𝑅)
6 ply1rem.b . . . . . 6 𝐵 = (Base‘𝑃)
7 ply1rem.k . . . . . 6 𝐾 = (Base‘𝑅)
8 ply1rem.x . . . . . 6 𝑋 = (var1𝑅)
9 ply1rem.m . . . . . 6 = (-g𝑃)
10 ply1rem.a . . . . . 6 𝐴 = (algSc‘𝑃)
11 ply1rem.g . . . . . 6 𝐺 = (𝑋 (𝐴𝑁))
12 ply1rem.o . . . . . 6 𝑂 = (eval1𝑅)
13 ply1rem.2 . . . . . 6 (𝜑𝑅 ∈ CRing)
14 ply1rem.3 . . . . . 6 (𝜑𝑁𝐾)
15 eqid 2801 . . . . . 6 (Monic1p𝑅) = (Monic1p𝑅)
16 eqid 2801 . . . . . 6 ( deg1𝑅) = ( deg1𝑅)
17 facth1.z . . . . . 6 0 = (0g𝑅)
185, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15, 16, 17ply1remlem 24767 . . . . 5 (𝜑 → (𝐺 ∈ (Monic1p𝑅) ∧ (( deg1𝑅)‘𝐺) = 1 ∧ ((𝑂𝐺) “ { 0 }) = {𝑁}))
1918simp1d 1139 . . . 4 (𝜑𝐺 ∈ (Monic1p𝑅))
20 eqid 2801 . . . . 5 (Unic1p𝑅) = (Unic1p𝑅)
2120, 15mon1puc1p 24755 . . . 4 ((𝑅 ∈ Ring ∧ 𝐺 ∈ (Monic1p𝑅)) → 𝐺 ∈ (Unic1p𝑅))
223, 19, 21syl2anc 587 . . 3 (𝜑𝐺 ∈ (Unic1p𝑅))
23 facth1.d . . . 4 = (∥r𝑃)
24 eqid 2801 . . . 4 (0g𝑃) = (0g𝑃)
25 eqid 2801 . . . 4 (rem1p𝑅) = (rem1p𝑅)
265, 23, 6, 20, 24, 25dvdsr1p 24766 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐺 𝐹 ↔ (𝐹(rem1p𝑅)𝐺) = (0g𝑃)))
273, 4, 22, 26syl3anc 1368 . 2 (𝜑 → (𝐺 𝐹 ↔ (𝐹(rem1p𝑅)𝐺) = (0g𝑃)))
285, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 4, 25ply1rem 24768 . . 3 (𝜑 → (𝐹(rem1p𝑅)𝐺) = (𝐴‘((𝑂𝐹)‘𝑁)))
295, 10, 17, 24ply1scl0 20923 . . . . 5 (𝑅 ∈ Ring → (𝐴0 ) = (0g𝑃))
303, 29syl 17 . . . 4 (𝜑 → (𝐴0 ) = (0g𝑃))
3130eqcomd 2807 . . 3 (𝜑 → (0g𝑃) = (𝐴0 ))
3228, 31eqeq12d 2817 . 2 (𝜑 → ((𝐹(rem1p𝑅)𝐺) = (0g𝑃) ↔ (𝐴‘((𝑂𝐹)‘𝑁)) = (𝐴0 )))
335, 10, 7, 6ply1sclf1 20922 . . . 4 (𝑅 ∈ Ring → 𝐴:𝐾1-1𝐵)
343, 33syl 17 . . 3 (𝜑𝐴:𝐾1-1𝐵)
3512, 5, 7, 6, 13, 14, 4fveval1fvcl 20961 . . 3 (𝜑 → ((𝑂𝐹)‘𝑁) ∈ 𝐾)
367, 17ring0cl 19319 . . . 4 (𝑅 ∈ Ring → 0𝐾)
373, 36syl 17 . . 3 (𝜑0𝐾)
38 f1fveq 7002 . . 3 ((𝐴:𝐾1-1𝐵 ∧ (((𝑂𝐹)‘𝑁) ∈ 𝐾0𝐾)) → ((𝐴‘((𝑂𝐹)‘𝑁)) = (𝐴0 ) ↔ ((𝑂𝐹)‘𝑁) = 0 ))
3934, 35, 37, 38syl12anc 835 . 2 (𝜑 → ((𝐴‘((𝑂𝐹)‘𝑁)) = (𝐴0 ) ↔ ((𝑂𝐹)‘𝑁) = 0 ))
4027, 32, 393bitrd 308 1 (𝜑 → (𝐺 𝐹 ↔ ((𝑂𝐹)‘𝑁) = 0 ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2112  {csn 4528   class class class wbr 5033  ◡ccnv 5522   “ cima 5526  –1-1→wf1 6325  ‘cfv 6328  (class class class)co 7139  1c1 10531  Basecbs 16479  0gc0g 16709  -gcsg 18101  Ringcrg 19294  CRingccrg 19295  ∥rcdsr 19388  NzRingcnzr 20027  algSccascl 20545  var1cv1 20809  Poly1cpl1 20810  eval1ce1 20942   deg1 cdg1 24659  Monic1pcmn1 24730  Unic1pcuc1p 24731  rem1pcr1p 24733 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-ofr 7394  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-fzo 13033  df-seq 13369  df-hash 13691  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-0g 16711  df-gsum 16712  df-prds 16717  df-pws 16719  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-mulg 18221  df-subg 18272  df-ghm 18352  df-cntz 18443  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-srg 19253  df-ring 19296  df-cring 19297  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-rnghom 19467  df-subrg 19530  df-lmod 19633  df-lss 19701  df-lsp 19741  df-nzr 20028  df-rlreg 20053  df-cnfld 20096  df-assa 20546  df-asp 20547  df-ascl 20548  df-psr 20598  df-mvr 20599  df-mpl 20600  df-opsr 20602  df-evls 20749  df-evl 20750  df-psr1 20813  df-vr1 20814  df-ply1 20815  df-coe1 20816  df-evl1 20944  df-mdeg 24660  df-deg1 24661  df-mon1 24735  df-uc1p 24736  df-q1p 24737  df-r1p 24738 This theorem is referenced by:  fta1glem1  24770  fta1glem2  24771
 Copyright terms: Public domain W3C validator