![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > facth1 | Structured version Visualization version GIF version |
Description: The factor theorem and its converse. A polynomial πΉ has a root at π΄ iff πΊ = π₯ β π΄ is a factor of πΉ. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
ply1rem.p | β’ π = (Poly1βπ ) |
ply1rem.b | β’ π΅ = (Baseβπ) |
ply1rem.k | β’ πΎ = (Baseβπ ) |
ply1rem.x | β’ π = (var1βπ ) |
ply1rem.m | β’ β = (-gβπ) |
ply1rem.a | β’ π΄ = (algScβπ) |
ply1rem.g | β’ πΊ = (π β (π΄βπ)) |
ply1rem.o | β’ π = (eval1βπ ) |
ply1rem.1 | β’ (π β π β NzRing) |
ply1rem.2 | β’ (π β π β CRing) |
ply1rem.3 | β’ (π β π β πΎ) |
ply1rem.4 | β’ (π β πΉ β π΅) |
facth1.z | β’ 0 = (0gβπ ) |
facth1.d | β’ β₯ = (β₯rβπ) |
Ref | Expression |
---|---|
facth1 | β’ (π β (πΊ β₯ πΉ β ((πβπΉ)βπ) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1rem.1 | . . . 4 β’ (π β π β NzRing) | |
2 | nzrring 20294 | . . . 4 β’ (π β NzRing β π β Ring) | |
3 | 1, 2 | syl 17 | . . 3 β’ (π β π β Ring) |
4 | ply1rem.4 | . . 3 β’ (π β πΉ β π΅) | |
5 | ply1rem.p | . . . . . 6 β’ π = (Poly1βπ ) | |
6 | ply1rem.b | . . . . . 6 β’ π΅ = (Baseβπ) | |
7 | ply1rem.k | . . . . . 6 β’ πΎ = (Baseβπ ) | |
8 | ply1rem.x | . . . . . 6 β’ π = (var1βπ ) | |
9 | ply1rem.m | . . . . . 6 β’ β = (-gβπ) | |
10 | ply1rem.a | . . . . . 6 β’ π΄ = (algScβπ) | |
11 | ply1rem.g | . . . . . 6 β’ πΊ = (π β (π΄βπ)) | |
12 | ply1rem.o | . . . . . 6 β’ π = (eval1βπ ) | |
13 | ply1rem.2 | . . . . . 6 β’ (π β π β CRing) | |
14 | ply1rem.3 | . . . . . 6 β’ (π β π β πΎ) | |
15 | eqid 2732 | . . . . . 6 β’ (Monic1pβπ ) = (Monic1pβπ ) | |
16 | eqid 2732 | . . . . . 6 β’ ( deg1 βπ ) = ( deg1 βπ ) | |
17 | facth1.z | . . . . . 6 β’ 0 = (0gβπ ) | |
18 | 5, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15, 16, 17 | ply1remlem 25679 | . . . . 5 β’ (π β (πΊ β (Monic1pβπ ) β§ (( deg1 βπ )βπΊ) = 1 β§ (β‘(πβπΊ) β { 0 }) = {π})) |
19 | 18 | simp1d 1142 | . . . 4 β’ (π β πΊ β (Monic1pβπ )) |
20 | eqid 2732 | . . . . 5 β’ (Unic1pβπ ) = (Unic1pβπ ) | |
21 | 20, 15 | mon1puc1p 25667 | . . . 4 β’ ((π β Ring β§ πΊ β (Monic1pβπ )) β πΊ β (Unic1pβπ )) |
22 | 3, 19, 21 | syl2anc 584 | . . 3 β’ (π β πΊ β (Unic1pβπ )) |
23 | facth1.d | . . . 4 β’ β₯ = (β₯rβπ) | |
24 | eqid 2732 | . . . 4 β’ (0gβπ) = (0gβπ) | |
25 | eqid 2732 | . . . 4 β’ (rem1pβπ ) = (rem1pβπ ) | |
26 | 5, 23, 6, 20, 24, 25 | dvdsr1p 25678 | . . 3 β’ ((π β Ring β§ πΉ β π΅ β§ πΊ β (Unic1pβπ )) β (πΊ β₯ πΉ β (πΉ(rem1pβπ )πΊ) = (0gβπ))) |
27 | 3, 4, 22, 26 | syl3anc 1371 | . 2 β’ (π β (πΊ β₯ πΉ β (πΉ(rem1pβπ )πΊ) = (0gβπ))) |
28 | 5, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 4, 25 | ply1rem 25680 | . . 3 β’ (π β (πΉ(rem1pβπ )πΊ) = (π΄β((πβπΉ)βπ))) |
29 | 5, 10, 17, 24 | ply1scl0 21811 | . . . . 5 β’ (π β Ring β (π΄β 0 ) = (0gβπ)) |
30 | 3, 29 | syl 17 | . . . 4 β’ (π β (π΄β 0 ) = (0gβπ)) |
31 | 30 | eqcomd 2738 | . . 3 β’ (π β (0gβπ) = (π΄β 0 )) |
32 | 28, 31 | eqeq12d 2748 | . 2 β’ (π β ((πΉ(rem1pβπ )πΊ) = (0gβπ) β (π΄β((πβπΉ)βπ)) = (π΄β 0 ))) |
33 | 5, 10, 7, 6 | ply1sclf1 21810 | . . . 4 β’ (π β Ring β π΄:πΎβ1-1βπ΅) |
34 | 3, 33 | syl 17 | . . 3 β’ (π β π΄:πΎβ1-1βπ΅) |
35 | 12, 5, 7, 6, 13, 14, 4 | fveval1fvcl 21851 | . . 3 β’ (π β ((πβπΉ)βπ) β πΎ) |
36 | 7, 17 | ring0cl 20083 | . . . 4 β’ (π β Ring β 0 β πΎ) |
37 | 3, 36 | syl 17 | . . 3 β’ (π β 0 β πΎ) |
38 | f1fveq 7260 | . . 3 β’ ((π΄:πΎβ1-1βπ΅ β§ (((πβπΉ)βπ) β πΎ β§ 0 β πΎ)) β ((π΄β((πβπΉ)βπ)) = (π΄β 0 ) β ((πβπΉ)βπ) = 0 )) | |
39 | 34, 35, 37, 38 | syl12anc 835 | . 2 β’ (π β ((π΄β((πβπΉ)βπ)) = (π΄β 0 ) β ((πβπΉ)βπ) = 0 )) |
40 | 27, 32, 39 | 3bitrd 304 | 1 β’ (π β (πΊ β₯ πΉ β ((πβπΉ)βπ) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 {csn 4628 class class class wbr 5148 β‘ccnv 5675 β cima 5679 β1-1βwf1 6540 βcfv 6543 (class class class)co 7408 1c1 11110 Basecbs 17143 0gc0g 17384 -gcsg 18820 Ringcrg 20055 CRingccrg 20056 β₯rcdsr 20167 NzRingcnzr 20290 algSccascl 21406 var1cv1 21699 Poly1cpl1 21700 eval1ce1 21832 deg1 cdg1 25568 Monic1pcmn1 25642 Unic1pcuc1p 25643 rem1pcr1p 25645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-ofr 7670 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-fzo 13627 df-seq 13966 df-hash 14290 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17386 df-gsum 17387 df-prds 17392 df-pws 17394 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-submnd 18671 df-grp 18821 df-minusg 18822 df-sbg 18823 df-mulg 18950 df-subg 19002 df-ghm 19089 df-cntz 19180 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-srg 20009 df-ring 20057 df-cring 20058 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 df-rnghom 20250 df-nzr 20291 df-subrg 20316 df-lmod 20472 df-lss 20542 df-lsp 20582 df-rlreg 20898 df-cnfld 20944 df-assa 21407 df-asp 21408 df-ascl 21409 df-psr 21461 df-mvr 21462 df-mpl 21463 df-opsr 21465 df-evls 21634 df-evl 21635 df-psr1 21703 df-vr1 21704 df-ply1 21705 df-coe1 21706 df-evl1 21834 df-mdeg 25569 df-deg1 25570 df-mon1 25647 df-uc1p 25648 df-q1p 25649 df-r1p 25650 |
This theorem is referenced by: fta1glem1 25682 fta1glem2 25683 |
Copyright terms: Public domain | W3C validator |