|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > facth1 | Structured version Visualization version GIF version | ||
| Description: The factor theorem and its converse. A polynomial 𝐹 has a root at 𝐴 iff 𝐺 = 𝑥 − 𝐴 is a factor of 𝐹. (Contributed by Mario Carneiro, 12-Jun-2015.) | 
| Ref | Expression | 
|---|---|
| ply1rem.p | ⊢ 𝑃 = (Poly1‘𝑅) | 
| ply1rem.b | ⊢ 𝐵 = (Base‘𝑃) | 
| ply1rem.k | ⊢ 𝐾 = (Base‘𝑅) | 
| ply1rem.x | ⊢ 𝑋 = (var1‘𝑅) | 
| ply1rem.m | ⊢ − = (-g‘𝑃) | 
| ply1rem.a | ⊢ 𝐴 = (algSc‘𝑃) | 
| ply1rem.g | ⊢ 𝐺 = (𝑋 − (𝐴‘𝑁)) | 
| ply1rem.o | ⊢ 𝑂 = (eval1‘𝑅) | 
| ply1rem.1 | ⊢ (𝜑 → 𝑅 ∈ NzRing) | 
| ply1rem.2 | ⊢ (𝜑 → 𝑅 ∈ CRing) | 
| ply1rem.3 | ⊢ (𝜑 → 𝑁 ∈ 𝐾) | 
| ply1rem.4 | ⊢ (𝜑 → 𝐹 ∈ 𝐵) | 
| facth1.z | ⊢ 0 = (0g‘𝑅) | 
| facth1.d | ⊢ ∥ = (∥r‘𝑃) | 
| Ref | Expression | 
|---|---|
| facth1 | ⊢ (𝜑 → (𝐺 ∥ 𝐹 ↔ ((𝑂‘𝐹)‘𝑁) = 0 )) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ply1rem.1 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ NzRing) | |
| 2 | nzrring 20517 | . . . 4 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 4 | ply1rem.4 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 5 | ply1rem.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 6 | ply1rem.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
| 7 | ply1rem.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑅) | |
| 8 | ply1rem.x | . . . . . 6 ⊢ 𝑋 = (var1‘𝑅) | |
| 9 | ply1rem.m | . . . . . 6 ⊢ − = (-g‘𝑃) | |
| 10 | ply1rem.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑃) | |
| 11 | ply1rem.g | . . . . . 6 ⊢ 𝐺 = (𝑋 − (𝐴‘𝑁)) | |
| 12 | ply1rem.o | . . . . . 6 ⊢ 𝑂 = (eval1‘𝑅) | |
| 13 | ply1rem.2 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 14 | ply1rem.3 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ 𝐾) | |
| 15 | eqid 2736 | . . . . . 6 ⊢ (Monic1p‘𝑅) = (Monic1p‘𝑅) | |
| 16 | eqid 2736 | . . . . . 6 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
| 17 | facth1.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 18 | 5, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15, 16, 17 | ply1remlem 26205 | . . . . 5 ⊢ (𝜑 → (𝐺 ∈ (Monic1p‘𝑅) ∧ ((deg1‘𝑅)‘𝐺) = 1 ∧ (◡(𝑂‘𝐺) “ { 0 }) = {𝑁})) | 
| 19 | 18 | simp1d 1142 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (Monic1p‘𝑅)) | 
| 20 | eqid 2736 | . . . . 5 ⊢ (Unic1p‘𝑅) = (Unic1p‘𝑅) | |
| 21 | 20, 15 | mon1puc1p 26191 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ (Monic1p‘𝑅)) → 𝐺 ∈ (Unic1p‘𝑅)) | 
| 22 | 3, 19, 21 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Unic1p‘𝑅)) | 
| 23 | facth1.d | . . . 4 ⊢ ∥ = (∥r‘𝑃) | |
| 24 | eqid 2736 | . . . 4 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 25 | eqid 2736 | . . . 4 ⊢ (rem1p‘𝑅) = (rem1p‘𝑅) | |
| 26 | 5, 23, 6, 20, 24, 25 | dvdsr1p 26204 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ (Unic1p‘𝑅)) → (𝐺 ∥ 𝐹 ↔ (𝐹(rem1p‘𝑅)𝐺) = (0g‘𝑃))) | 
| 27 | 3, 4, 22, 26 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝐺 ∥ 𝐹 ↔ (𝐹(rem1p‘𝑅)𝐺) = (0g‘𝑃))) | 
| 28 | 5, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 4, 25 | ply1rem 26206 | . . 3 ⊢ (𝜑 → (𝐹(rem1p‘𝑅)𝐺) = (𝐴‘((𝑂‘𝐹)‘𝑁))) | 
| 29 | 5, 10, 17, 24 | ply1scl0 22294 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝐴‘ 0 ) = (0g‘𝑃)) | 
| 30 | 3, 29 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴‘ 0 ) = (0g‘𝑃)) | 
| 31 | 30 | eqcomd 2742 | . . 3 ⊢ (𝜑 → (0g‘𝑃) = (𝐴‘ 0 )) | 
| 32 | 28, 31 | eqeq12d 2752 | . 2 ⊢ (𝜑 → ((𝐹(rem1p‘𝑅)𝐺) = (0g‘𝑃) ↔ (𝐴‘((𝑂‘𝐹)‘𝑁)) = (𝐴‘ 0 ))) | 
| 33 | 5, 10, 7, 6 | ply1sclf1 22293 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝐴:𝐾–1-1→𝐵) | 
| 34 | 3, 33 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴:𝐾–1-1→𝐵) | 
| 35 | 12, 5, 7, 6, 13, 14, 4 | fveval1fvcl 22338 | . . 3 ⊢ (𝜑 → ((𝑂‘𝐹)‘𝑁) ∈ 𝐾) | 
| 36 | 7, 17 | ring0cl 20265 | . . . 4 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐾) | 
| 37 | 3, 36 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐾) | 
| 38 | f1fveq 7283 | . . 3 ⊢ ((𝐴:𝐾–1-1→𝐵 ∧ (((𝑂‘𝐹)‘𝑁) ∈ 𝐾 ∧ 0 ∈ 𝐾)) → ((𝐴‘((𝑂‘𝐹)‘𝑁)) = (𝐴‘ 0 ) ↔ ((𝑂‘𝐹)‘𝑁) = 0 )) | |
| 39 | 34, 35, 37, 38 | syl12anc 836 | . 2 ⊢ (𝜑 → ((𝐴‘((𝑂‘𝐹)‘𝑁)) = (𝐴‘ 0 ) ↔ ((𝑂‘𝐹)‘𝑁) = 0 )) | 
| 40 | 27, 32, 39 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐺 ∥ 𝐹 ↔ ((𝑂‘𝐹)‘𝑁) = 0 )) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 {csn 4625 class class class wbr 5142 ◡ccnv 5683 “ cima 5687 –1-1→wf1 6557 ‘cfv 6560 (class class class)co 7432 1c1 11157 Basecbs 17248 0gc0g 17485 -gcsg 18954 Ringcrg 20231 CRingccrg 20232 ∥rcdsr 20355 NzRingcnzr 20513 algSccascl 21873 var1cv1 22178 Poly1cpl1 22179 eval1ce1 22319 deg1cdg1 26094 Monic1pcmn1 26166 Unic1pcuc1p 26167 rem1pcr1p 26169 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 ax-addf 11235 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-ofr 7699 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-tpos 8252 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-sup 9483 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-fzo 13696 df-seq 14044 df-hash 14371 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18797 df-submnd 18798 df-grp 18955 df-minusg 18956 df-sbg 18957 df-mulg 19087 df-subg 19142 df-ghm 19232 df-cntz 19336 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-srg 20185 df-ring 20233 df-cring 20234 df-oppr 20335 df-dvdsr 20358 df-unit 20359 df-invr 20389 df-rhm 20473 df-nzr 20514 df-subrng 20547 df-subrg 20571 df-rlreg 20695 df-lmod 20861 df-lss 20931 df-lsp 20971 df-cnfld 21366 df-assa 21874 df-asp 21875 df-ascl 21876 df-psr 21930 df-mvr 21931 df-mpl 21932 df-opsr 21934 df-evls 22099 df-evl 22100 df-psr1 22182 df-vr1 22183 df-ply1 22184 df-coe1 22185 df-evl1 22321 df-mdeg 26095 df-deg1 26096 df-mon1 26171 df-uc1p 26172 df-q1p 26173 df-r1p 26174 | 
| This theorem is referenced by: fta1glem1 26208 fta1glem2 26209 | 
| Copyright terms: Public domain | W3C validator |