![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > facth1 | Structured version Visualization version GIF version |
Description: The factor theorem and its converse. A polynomial 𝐹 has a root at 𝐴 iff 𝐺 = 𝑥 − 𝐴 is a factor of 𝐹. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
ply1rem.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1rem.b | ⊢ 𝐵 = (Base‘𝑃) |
ply1rem.k | ⊢ 𝐾 = (Base‘𝑅) |
ply1rem.x | ⊢ 𝑋 = (var1‘𝑅) |
ply1rem.m | ⊢ − = (-g‘𝑃) |
ply1rem.a | ⊢ 𝐴 = (algSc‘𝑃) |
ply1rem.g | ⊢ 𝐺 = (𝑋 − (𝐴‘𝑁)) |
ply1rem.o | ⊢ 𝑂 = (eval1‘𝑅) |
ply1rem.1 | ⊢ (𝜑 → 𝑅 ∈ NzRing) |
ply1rem.2 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
ply1rem.3 | ⊢ (𝜑 → 𝑁 ∈ 𝐾) |
ply1rem.4 | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
facth1.z | ⊢ 0 = (0g‘𝑅) |
facth1.d | ⊢ ∥ = (∥r‘𝑃) |
Ref | Expression |
---|---|
facth1 | ⊢ (𝜑 → (𝐺 ∥ 𝐹 ↔ ((𝑂‘𝐹)‘𝑁) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1rem.1 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ NzRing) | |
2 | nzrring 19767 | . . . 4 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
4 | ply1rem.4 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
5 | ply1rem.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
6 | ply1rem.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
7 | ply1rem.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑅) | |
8 | ply1rem.x | . . . . . 6 ⊢ 𝑋 = (var1‘𝑅) | |
9 | ply1rem.m | . . . . . 6 ⊢ − = (-g‘𝑃) | |
10 | ply1rem.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑃) | |
11 | ply1rem.g | . . . . . 6 ⊢ 𝐺 = (𝑋 − (𝐴‘𝑁)) | |
12 | ply1rem.o | . . . . . 6 ⊢ 𝑂 = (eval1‘𝑅) | |
13 | ply1rem.2 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
14 | ply1rem.3 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ 𝐾) | |
15 | eqid 2772 | . . . . . 6 ⊢ (Monic1p‘𝑅) = (Monic1p‘𝑅) | |
16 | eqid 2772 | . . . . . 6 ⊢ ( deg1 ‘𝑅) = ( deg1 ‘𝑅) | |
17 | facth1.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
18 | 5, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15, 16, 17 | ply1remlem 24471 | . . . . 5 ⊢ (𝜑 → (𝐺 ∈ (Monic1p‘𝑅) ∧ (( deg1 ‘𝑅)‘𝐺) = 1 ∧ (◡(𝑂‘𝐺) “ { 0 }) = {𝑁})) |
19 | 18 | simp1d 1122 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (Monic1p‘𝑅)) |
20 | eqid 2772 | . . . . 5 ⊢ (Unic1p‘𝑅) = (Unic1p‘𝑅) | |
21 | 20, 15 | mon1puc1p 24459 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ (Monic1p‘𝑅)) → 𝐺 ∈ (Unic1p‘𝑅)) |
22 | 3, 19, 21 | syl2anc 576 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Unic1p‘𝑅)) |
23 | facth1.d | . . . 4 ⊢ ∥ = (∥r‘𝑃) | |
24 | eqid 2772 | . . . 4 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
25 | eqid 2772 | . . . 4 ⊢ (rem1p‘𝑅) = (rem1p‘𝑅) | |
26 | 5, 23, 6, 20, 24, 25 | dvdsr1p 24470 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ (Unic1p‘𝑅)) → (𝐺 ∥ 𝐹 ↔ (𝐹(rem1p‘𝑅)𝐺) = (0g‘𝑃))) |
27 | 3, 4, 22, 26 | syl3anc 1351 | . 2 ⊢ (𝜑 → (𝐺 ∥ 𝐹 ↔ (𝐹(rem1p‘𝑅)𝐺) = (0g‘𝑃))) |
28 | 5, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 4, 25 | ply1rem 24472 | . . 3 ⊢ (𝜑 → (𝐹(rem1p‘𝑅)𝐺) = (𝐴‘((𝑂‘𝐹)‘𝑁))) |
29 | 5, 10, 17, 24 | ply1scl0 20173 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝐴‘ 0 ) = (0g‘𝑃)) |
30 | 3, 29 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴‘ 0 ) = (0g‘𝑃)) |
31 | 30 | eqcomd 2778 | . . 3 ⊢ (𝜑 → (0g‘𝑃) = (𝐴‘ 0 )) |
32 | 28, 31 | eqeq12d 2787 | . 2 ⊢ (𝜑 → ((𝐹(rem1p‘𝑅)𝐺) = (0g‘𝑃) ↔ (𝐴‘((𝑂‘𝐹)‘𝑁)) = (𝐴‘ 0 ))) |
33 | 5, 10, 7, 6 | ply1sclf1 20172 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝐴:𝐾–1-1→𝐵) |
34 | 3, 33 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴:𝐾–1-1→𝐵) |
35 | 12, 5, 7, 6, 13, 14, 4 | fveval1fvcl 20210 | . . 3 ⊢ (𝜑 → ((𝑂‘𝐹)‘𝑁) ∈ 𝐾) |
36 | 7, 17 | ring0cl 19054 | . . . 4 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐾) |
37 | 3, 36 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐾) |
38 | f1fveq 6843 | . . 3 ⊢ ((𝐴:𝐾–1-1→𝐵 ∧ (((𝑂‘𝐹)‘𝑁) ∈ 𝐾 ∧ 0 ∈ 𝐾)) → ((𝐴‘((𝑂‘𝐹)‘𝑁)) = (𝐴‘ 0 ) ↔ ((𝑂‘𝐹)‘𝑁) = 0 )) | |
39 | 34, 35, 37, 38 | syl12anc 824 | . 2 ⊢ (𝜑 → ((𝐴‘((𝑂‘𝐹)‘𝑁)) = (𝐴‘ 0 ) ↔ ((𝑂‘𝐹)‘𝑁) = 0 )) |
40 | 27, 32, 39 | 3bitrd 297 | 1 ⊢ (𝜑 → (𝐺 ∥ 𝐹 ↔ ((𝑂‘𝐹)‘𝑁) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 ∈ wcel 2050 {csn 4435 class class class wbr 4925 ◡ccnv 5402 “ cima 5406 –1-1→wf1 6182 ‘cfv 6185 (class class class)co 6974 1c1 10334 Basecbs 16337 0gc0g 16567 -gcsg 17905 Ringcrg 19032 CRingccrg 19033 ∥rcdsr 19123 NzRingcnzr 19763 algSccascl 19817 var1cv1 20059 Poly1cpl1 20060 eval1ce1 20192 deg1 cdg1 24363 Monic1pcmn1 24434 Unic1pcuc1p 24435 rem1pcr1p 24437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 ax-addf 10412 ax-mulf 10413 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-iin 4791 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-se 5363 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-isom 6194 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-of 7225 df-ofr 7226 df-om 7395 df-1st 7499 df-2nd 7500 df-supp 7632 df-tpos 7693 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-2o 7904 df-oadd 7907 df-er 8087 df-map 8206 df-pm 8207 df-ixp 8258 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-fsupp 8627 df-sup 8699 df-oi 8767 df-card 9160 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-2 11501 df-3 11502 df-4 11503 df-5 11504 df-6 11505 df-7 11506 df-8 11507 df-9 11508 df-n0 11706 df-z 11792 df-dec 11910 df-uz 12057 df-fz 12707 df-fzo 12848 df-seq 13183 df-hash 13504 df-struct 16339 df-ndx 16340 df-slot 16341 df-base 16343 df-sets 16344 df-ress 16345 df-plusg 16432 df-mulr 16433 df-starv 16434 df-sca 16435 df-vsca 16436 df-ip 16437 df-tset 16438 df-ple 16439 df-ds 16441 df-unif 16442 df-hom 16443 df-cco 16444 df-0g 16569 df-gsum 16570 df-prds 16575 df-pws 16577 df-mre 16727 df-mrc 16728 df-acs 16730 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-mhm 17815 df-submnd 17816 df-grp 17906 df-minusg 17907 df-sbg 17908 df-mulg 18024 df-subg 18072 df-ghm 18139 df-cntz 18230 df-cmn 18680 df-abl 18681 df-mgp 18975 df-ur 18987 df-srg 18991 df-ring 19034 df-cring 19035 df-oppr 19108 df-dvdsr 19126 df-unit 19127 df-invr 19157 df-rnghom 19202 df-subrg 19268 df-lmod 19370 df-lss 19438 df-lsp 19478 df-nzr 19764 df-rlreg 19789 df-assa 19818 df-asp 19819 df-ascl 19820 df-psr 19862 df-mvr 19863 df-mpl 19864 df-opsr 19866 df-evls 20011 df-evl 20012 df-psr1 20063 df-vr1 20064 df-ply1 20065 df-coe1 20066 df-evl1 20194 df-cnfld 20260 df-mdeg 24364 df-deg1 24365 df-mon1 24439 df-uc1p 24440 df-q1p 24441 df-r1p 24442 |
This theorem is referenced by: fta1glem1 24474 fta1glem2 24475 |
Copyright terms: Public domain | W3C validator |