Proof of Theorem ply1rem
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ply1rem.1 | . . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ NzRing) | 
| 2 |  | nzrring 20517 | . . . . . . . . 9
⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | 
| 3 | 1, 2 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 4 |  | ply1rem.4 | . . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ 𝐵) | 
| 5 |  | ply1rem.p | . . . . . . . . . . 11
⊢ 𝑃 = (Poly1‘𝑅) | 
| 6 |  | ply1rem.b | . . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑃) | 
| 7 |  | ply1rem.k | . . . . . . . . . . 11
⊢ 𝐾 = (Base‘𝑅) | 
| 8 |  | ply1rem.x | . . . . . . . . . . 11
⊢ 𝑋 = (var1‘𝑅) | 
| 9 |  | ply1rem.m | . . . . . . . . . . 11
⊢  − =
(-g‘𝑃) | 
| 10 |  | ply1rem.a | . . . . . . . . . . 11
⊢ 𝐴 = (algSc‘𝑃) | 
| 11 |  | ply1rem.g | . . . . . . . . . . 11
⊢ 𝐺 = (𝑋 − (𝐴‘𝑁)) | 
| 12 |  | ply1rem.o | . . . . . . . . . . 11
⊢ 𝑂 = (eval1‘𝑅) | 
| 13 |  | ply1rem.2 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ CRing) | 
| 14 |  | ply1rem.3 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ 𝐾) | 
| 15 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(Monic1p‘𝑅) = (Monic1p‘𝑅) | 
| 16 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(deg1‘𝑅) = (deg1‘𝑅) | 
| 17 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(0g‘𝑅) = (0g‘𝑅) | 
| 18 | 5, 6, 7, 8, 9, 10,
11, 12, 1, 13, 14, 15, 16, 17 | ply1remlem 26205 | . . . . . . . . . 10
⊢ (𝜑 → (𝐺 ∈ (Monic1p‘𝑅) ∧
((deg1‘𝑅)‘𝐺) = 1 ∧ (◡(𝑂‘𝐺) “ {(0g‘𝑅)}) = {𝑁})) | 
| 19 | 18 | simp1d 1142 | . . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ (Monic1p‘𝑅)) | 
| 20 |  | eqid 2736 | . . . . . . . . . 10
⊢
(Unic1p‘𝑅) = (Unic1p‘𝑅) | 
| 21 | 20, 15 | mon1puc1p 26191 | . . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈
(Monic1p‘𝑅)) → 𝐺 ∈ (Unic1p‘𝑅)) | 
| 22 | 3, 19, 21 | syl2anc 584 | . . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ (Unic1p‘𝑅)) | 
| 23 |  | ply1rem.e | . . . . . . . . 9
⊢ 𝐸 = (rem1p‘𝑅) | 
| 24 | 23, 5, 6, 20, 16 | r1pdeglt 26200 | . . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ (Unic1p‘𝑅)) →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) < ((deg1‘𝑅)‘𝐺)) | 
| 25 | 3, 4, 22, 24 | syl3anc 1372 | . . . . . . 7
⊢ (𝜑 →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) < ((deg1‘𝑅)‘𝐺)) | 
| 26 | 18 | simp2d 1143 | . . . . . . 7
⊢ (𝜑 →
((deg1‘𝑅)‘𝐺) = 1) | 
| 27 | 25, 26 | breqtrd 5168 | . . . . . 6
⊢ (𝜑 →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) < 1) | 
| 28 |  | 1e0p1 12777 | . . . . . 6
⊢ 1 = (0 +
1) | 
| 29 | 27, 28 | breqtrdi 5183 | . . . . 5
⊢ (𝜑 →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) < (0 + 1)) | 
| 30 |  | 0nn0 12543 | . . . . . 6
⊢ 0 ∈
ℕ0 | 
| 31 |  | nn0leltp1 12679 | . . . . . 6
⊢
((((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∧ 0 ∈
ℕ0) → (((deg1‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔
((deg1‘𝑅)‘(𝐹𝐸𝐺)) < (0 + 1))) | 
| 32 | 30, 31 | mpan2 691 | . . . . 5
⊢
(((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 →
(((deg1‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔
((deg1‘𝑅)‘(𝐹𝐸𝐺)) < (0 + 1))) | 
| 33 | 29, 32 | syl5ibrcom 247 | . . . 4
⊢ (𝜑 →
(((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0)) | 
| 34 |  | elsni 4642 | . . . . . 6
⊢
(((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) = -∞) | 
| 35 |  | 0xr 11309 | . . . . . . 7
⊢ 0 ∈
ℝ* | 
| 36 |  | mnfle 13178 | . . . . . . 7
⊢ (0 ∈
ℝ* → -∞ ≤ 0) | 
| 37 | 35, 36 | ax-mp 5 | . . . . . 6
⊢ -∞
≤ 0 | 
| 38 | 34, 37 | eqbrtrdi 5181 | . . . . 5
⊢
(((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0) | 
| 39 | 38 | a1i 11 | . . . 4
⊢ (𝜑 →
(((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0)) | 
| 40 | 23, 5, 6, 20 | r1pcl 26199 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ (Unic1p‘𝑅)) → (𝐹𝐸𝐺) ∈ 𝐵) | 
| 41 | 3, 4, 22, 40 | syl3anc 1372 | . . . . . 6
⊢ (𝜑 → (𝐹𝐸𝐺) ∈ 𝐵) | 
| 42 | 16, 5, 6 | deg1cl 26123 | . . . . . 6
⊢ ((𝐹𝐸𝐺) ∈ 𝐵 → ((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪
{-∞})) | 
| 43 | 41, 42 | syl 17 | . . . . 5
⊢ (𝜑 →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪
{-∞})) | 
| 44 |  | elun 4152 | . . . . 5
⊢
(((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪
{-∞}) ↔ (((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∨
((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞})) | 
| 45 | 43, 44 | sylib 218 | . . . 4
⊢ (𝜑 →
(((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∨
((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞})) | 
| 46 | 33, 39, 45 | mpjaod 860 | . . 3
⊢ (𝜑 →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0) | 
| 47 | 16, 5, 6, 10 | deg1le0 26151 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝐹𝐸𝐺) ∈ 𝐵) → (((deg1‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0)))) | 
| 48 | 3, 41, 47 | syl2anc 584 | . . 3
⊢ (𝜑 →
(((deg1‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0)))) | 
| 49 | 46, 48 | mpbid 232 | . 2
⊢ (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) | 
| 50 |  | eqid 2736 | . . . . . . . . 9
⊢
(quot1p‘𝑅) = (quot1p‘𝑅) | 
| 51 |  | eqid 2736 | . . . . . . . . 9
⊢
(.r‘𝑃) = (.r‘𝑃) | 
| 52 |  | eqid 2736 | . . . . . . . . 9
⊢
(+g‘𝑃) = (+g‘𝑃) | 
| 53 | 5, 6, 20, 50, 23, 51, 52 | r1pid 26201 | . . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ (Unic1p‘𝑅)) → 𝐹 = (((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)(+g‘𝑃)(𝐹𝐸𝐺))) | 
| 54 | 3, 4, 22, 53 | syl3anc 1372 | . . . . . . 7
⊢ (𝜑 → 𝐹 = (((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)(+g‘𝑃)(𝐹𝐸𝐺))) | 
| 55 | 54 | fveq2d 6909 | . . . . . 6
⊢ (𝜑 → (𝑂‘𝐹) = (𝑂‘(((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)(+g‘𝑃)(𝐹𝐸𝐺)))) | 
| 56 |  | eqid 2736 | . . . . . . . . . 10
⊢ (𝑅 ↑s 𝐾) = (𝑅 ↑s 𝐾) | 
| 57 | 12, 5, 56, 7 | evl1rhm 22337 | . . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾))) | 
| 58 | 13, 57 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾))) | 
| 59 |  | rhmghm 20485 | . . . . . . . 8
⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾)) → 𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐾))) | 
| 60 | 58, 59 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐾))) | 
| 61 | 5 | ply1ring 22250 | . . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) | 
| 62 | 3, 61 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ Ring) | 
| 63 | 50, 5, 6, 20 | q1pcl 26197 | . . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ (Unic1p‘𝑅)) → (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵) | 
| 64 | 3, 4, 22, 63 | syl3anc 1372 | . . . . . . . 8
⊢ (𝜑 → (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵) | 
| 65 | 5, 6, 15 | mon1pcl 26185 | . . . . . . . . 9
⊢ (𝐺 ∈
(Monic1p‘𝑅) → 𝐺 ∈ 𝐵) | 
| 66 | 19, 65 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ 𝐵) | 
| 67 | 6, 51 | ringcl 20248 | . . . . . . . 8
⊢ ((𝑃 ∈ Ring ∧ (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) | 
| 68 | 62, 64, 66, 67 | syl3anc 1372 | . . . . . . 7
⊢ (𝜑 → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) | 
| 69 |  | eqid 2736 | . . . . . . . 8
⊢
(+g‘(𝑅 ↑s 𝐾)) = (+g‘(𝑅 ↑s 𝐾)) | 
| 70 | 6, 52, 69 | ghmlin 19240 | . . . . . . 7
⊢ ((𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐾)) ∧ ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵 ∧ (𝐹𝐸𝐺) ∈ 𝐵) → (𝑂‘(((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)(+g‘𝑃)(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))(+g‘(𝑅 ↑s 𝐾))(𝑂‘(𝐹𝐸𝐺)))) | 
| 71 | 60, 68, 41, 70 | syl3anc 1372 | . . . . . 6
⊢ (𝜑 → (𝑂‘(((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)(+g‘𝑃)(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))(+g‘(𝑅 ↑s 𝐾))(𝑂‘(𝐹𝐸𝐺)))) | 
| 72 |  | eqid 2736 | . . . . . . 7
⊢
(Base‘(𝑅
↑s 𝐾)) = (Base‘(𝑅 ↑s 𝐾)) | 
| 73 | 7 | fvexi 6919 | . . . . . . . 8
⊢ 𝐾 ∈ V | 
| 74 | 73 | a1i 11 | . . . . . . 7
⊢ (𝜑 → 𝐾 ∈ V) | 
| 75 | 6, 72 | rhmf 20486 | . . . . . . . . 9
⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅 ↑s 𝐾))) | 
| 76 | 58, 75 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝑂:𝐵⟶(Base‘(𝑅 ↑s 𝐾))) | 
| 77 | 76, 68 | ffvelcdmd 7104 | . . . . . . 7
⊢ (𝜑 → (𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∈ (Base‘(𝑅 ↑s 𝐾))) | 
| 78 | 76, 41 | ffvelcdmd 7104 | . . . . . . 7
⊢ (𝜑 → (𝑂‘(𝐹𝐸𝐺)) ∈ (Base‘(𝑅 ↑s 𝐾))) | 
| 79 |  | eqid 2736 | . . . . . . 7
⊢
(+g‘𝑅) = (+g‘𝑅) | 
| 80 | 56, 72, 1, 74, 77, 78, 79, 69 | pwsplusgval 17536 | . . . . . 6
⊢ (𝜑 → ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))(+g‘(𝑅 ↑s 𝐾))(𝑂‘(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∘f
(+g‘𝑅)(𝑂‘(𝐹𝐸𝐺)))) | 
| 81 | 55, 71, 80 | 3eqtrd 2780 | . . . . 5
⊢ (𝜑 → (𝑂‘𝐹) = ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∘f
(+g‘𝑅)(𝑂‘(𝐹𝐸𝐺)))) | 
| 82 | 81 | fveq1d 6907 | . . . 4
⊢ (𝜑 → ((𝑂‘𝐹)‘𝑁) = (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∘f
(+g‘𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁)) | 
| 83 | 56, 7, 72, 1, 74, 77 | pwselbas 17535 | . . . . . . 7
⊢ (𝜑 → (𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)):𝐾⟶𝐾) | 
| 84 | 83 | ffnd 6736 | . . . . . 6
⊢ (𝜑 → (𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) Fn 𝐾) | 
| 85 | 56, 7, 72, 1, 74, 78 | pwselbas 17535 | . . . . . . 7
⊢ (𝜑 → (𝑂‘(𝐹𝐸𝐺)):𝐾⟶𝐾) | 
| 86 | 85 | ffnd 6736 | . . . . . 6
⊢ (𝜑 → (𝑂‘(𝐹𝐸𝐺)) Fn 𝐾) | 
| 87 |  | fnfvof 7715 | . . . . . 6
⊢ ((((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) Fn 𝐾 ∧ (𝑂‘(𝐹𝐸𝐺)) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑁 ∈ 𝐾)) → (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∘f
(+g‘𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))‘𝑁)(+g‘𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁))) | 
| 88 | 84, 86, 74, 14, 87 | syl22anc 838 | . . . . 5
⊢ (𝜑 → (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∘f
(+g‘𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))‘𝑁)(+g‘𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁))) | 
| 89 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(.r‘(𝑅 ↑s 𝐾)) = (.r‘(𝑅 ↑s 𝐾)) | 
| 90 | 6, 51, 89 | rhmmul 20487 | . . . . . . . . . 10
⊢ ((𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾)) ∧ (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p‘𝑅)𝐺))(.r‘(𝑅 ↑s 𝐾))(𝑂‘𝐺))) | 
| 91 | 58, 64, 66, 90 | syl3anc 1372 | . . . . . . . . 9
⊢ (𝜑 → (𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p‘𝑅)𝐺))(.r‘(𝑅 ↑s 𝐾))(𝑂‘𝐺))) | 
| 92 | 76, 64 | ffvelcdmd 7104 | . . . . . . . . . 10
⊢ (𝜑 → (𝑂‘(𝐹(quot1p‘𝑅)𝐺)) ∈ (Base‘(𝑅 ↑s 𝐾))) | 
| 93 | 76, 66 | ffvelcdmd 7104 | . . . . . . . . . 10
⊢ (𝜑 → (𝑂‘𝐺) ∈ (Base‘(𝑅 ↑s 𝐾))) | 
| 94 |  | eqid 2736 | . . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 95 | 56, 72, 1, 74, 92, 93, 94, 89 | pwsmulrval 17537 | . . . . . . . . 9
⊢ (𝜑 → ((𝑂‘(𝐹(quot1p‘𝑅)𝐺))(.r‘(𝑅 ↑s 𝐾))(𝑂‘𝐺)) = ((𝑂‘(𝐹(quot1p‘𝑅)𝐺)) ∘f
(.r‘𝑅)(𝑂‘𝐺))) | 
| 96 | 91, 95 | eqtrd 2776 | . . . . . . . 8
⊢ (𝜑 → (𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p‘𝑅)𝐺)) ∘f
(.r‘𝑅)(𝑂‘𝐺))) | 
| 97 | 96 | fveq1d 6907 | . . . . . . 7
⊢ (𝜑 → ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p‘𝑅)𝐺)) ∘f
(.r‘𝑅)(𝑂‘𝐺))‘𝑁)) | 
| 98 | 56, 7, 72, 1, 74, 92 | pwselbas 17535 | . . . . . . . . 9
⊢ (𝜑 → (𝑂‘(𝐹(quot1p‘𝑅)𝐺)):𝐾⟶𝐾) | 
| 99 | 98 | ffnd 6736 | . . . . . . . 8
⊢ (𝜑 → (𝑂‘(𝐹(quot1p‘𝑅)𝐺)) Fn 𝐾) | 
| 100 | 56, 7, 72, 1, 74, 93 | pwselbas 17535 | . . . . . . . . 9
⊢ (𝜑 → (𝑂‘𝐺):𝐾⟶𝐾) | 
| 101 | 100 | ffnd 6736 | . . . . . . . 8
⊢ (𝜑 → (𝑂‘𝐺) Fn 𝐾) | 
| 102 |  | fnfvof 7715 | . . . . . . . 8
⊢ ((((𝑂‘(𝐹(quot1p‘𝑅)𝐺)) Fn 𝐾 ∧ (𝑂‘𝐺) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑁 ∈ 𝐾)) → (((𝑂‘(𝐹(quot1p‘𝑅)𝐺)) ∘f
(.r‘𝑅)(𝑂‘𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)((𝑂‘𝐺)‘𝑁))) | 
| 103 | 99, 101, 74, 14, 102 | syl22anc 838 | . . . . . . 7
⊢ (𝜑 → (((𝑂‘(𝐹(quot1p‘𝑅)𝐺)) ∘f
(.r‘𝑅)(𝑂‘𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)((𝑂‘𝐺)‘𝑁))) | 
| 104 |  | snidg 4659 | . . . . . . . . . . . . 13
⊢ (𝑁 ∈ 𝐾 → 𝑁 ∈ {𝑁}) | 
| 105 | 14, 104 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ {𝑁}) | 
| 106 | 18 | simp3d 1144 | . . . . . . . . . . . 12
⊢ (𝜑 → (◡(𝑂‘𝐺) “ {(0g‘𝑅)}) = {𝑁}) | 
| 107 | 105, 106 | eleqtrrd 2843 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ (◡(𝑂‘𝐺) “ {(0g‘𝑅)})) | 
| 108 |  | fniniseg 7079 | . . . . . . . . . . . 12
⊢ ((𝑂‘𝐺) Fn 𝐾 → (𝑁 ∈ (◡(𝑂‘𝐺) “ {(0g‘𝑅)}) ↔ (𝑁 ∈ 𝐾 ∧ ((𝑂‘𝐺)‘𝑁) = (0g‘𝑅)))) | 
| 109 | 101, 108 | syl 17 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑁 ∈ (◡(𝑂‘𝐺) “ {(0g‘𝑅)}) ↔ (𝑁 ∈ 𝐾 ∧ ((𝑂‘𝐺)‘𝑁) = (0g‘𝑅)))) | 
| 110 | 107, 109 | mpbid 232 | . . . . . . . . . 10
⊢ (𝜑 → (𝑁 ∈ 𝐾 ∧ ((𝑂‘𝐺)‘𝑁) = (0g‘𝑅))) | 
| 111 | 110 | simprd 495 | . . . . . . . . 9
⊢ (𝜑 → ((𝑂‘𝐺)‘𝑁) = (0g‘𝑅)) | 
| 112 | 111 | oveq2d 7448 | . . . . . . . 8
⊢ (𝜑 → (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)((𝑂‘𝐺)‘𝑁)) = (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)(0g‘𝑅))) | 
| 113 | 98, 14 | ffvelcdmd 7104 | . . . . . . . . 9
⊢ (𝜑 → ((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁) ∈ 𝐾) | 
| 114 | 7, 94, 17 | ringrz 20292 | . . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ ((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁) ∈ 𝐾) → (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) | 
| 115 | 3, 113, 114 | syl2anc 584 | . . . . . . . 8
⊢ (𝜑 → (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) | 
| 116 | 112, 115 | eqtrd 2776 | . . . . . . 7
⊢ (𝜑 → (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)((𝑂‘𝐺)‘𝑁)) = (0g‘𝑅)) | 
| 117 | 97, 103, 116 | 3eqtrd 2780 | . . . . . 6
⊢ (𝜑 → ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))‘𝑁) = (0g‘𝑅)) | 
| 118 | 117 | oveq1d 7447 | . . . . 5
⊢ (𝜑 → (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))‘𝑁)(+g‘𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((0g‘𝑅)(+g‘𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁))) | 
| 119 |  | ringgrp 20236 | . . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | 
| 120 | 3, 119 | syl 17 | . . . . . 6
⊢ (𝜑 → 𝑅 ∈ Grp) | 
| 121 | 85, 14 | ffvelcdmd 7104 | . . . . . 6
⊢ (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) ∈ 𝐾) | 
| 122 | 7, 79, 17 | grplid 18986 | . . . . . 6
⊢ ((𝑅 ∈ Grp ∧ ((𝑂‘(𝐹𝐸𝐺))‘𝑁) ∈ 𝐾) → ((0g‘𝑅)(+g‘𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁)) | 
| 123 | 120, 121,
122 | syl2anc 584 | . . . . 5
⊢ (𝜑 →
((0g‘𝑅)(+g‘𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁)) | 
| 124 | 88, 118, 123 | 3eqtrd 2780 | . . . 4
⊢ (𝜑 → (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∘f
(+g‘𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁)) | 
| 125 | 49 | fveq2d 6909 | . . . . . . 7
⊢ (𝜑 → (𝑂‘(𝐹𝐸𝐺)) = (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0)))) | 
| 126 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(coe1‘(𝐹𝐸𝐺)) = (coe1‘(𝐹𝐸𝐺)) | 
| 127 | 126, 6, 5, 7 | coe1f 22214 | . . . . . . . . . 10
⊢ ((𝐹𝐸𝐺) ∈ 𝐵 → (coe1‘(𝐹𝐸𝐺)):ℕ0⟶𝐾) | 
| 128 | 41, 127 | syl 17 | . . . . . . . . 9
⊢ (𝜑 →
(coe1‘(𝐹𝐸𝐺)):ℕ0⟶𝐾) | 
| 129 |  | ffvelcdm 7100 | . . . . . . . . 9
⊢
(((coe1‘(𝐹𝐸𝐺)):ℕ0⟶𝐾 ∧ 0 ∈
ℕ0) → ((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾) | 
| 130 | 128, 30, 129 | sylancl 586 | . . . . . . . 8
⊢ (𝜑 →
((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾) | 
| 131 | 12, 5, 7, 10 | evl1sca 22339 | . . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧
((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾) → (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})) | 
| 132 | 13, 130, 131 | syl2anc 584 | . . . . . . 7
⊢ (𝜑 → (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})) | 
| 133 | 125, 132 | eqtrd 2776 | . . . . . 6
⊢ (𝜑 → (𝑂‘(𝐹𝐸𝐺)) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})) | 
| 134 | 133 | fveq1d 6907 | . . . . 5
⊢ (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) = ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁)) | 
| 135 |  | fvex 6918 | . . . . . . 7
⊢
((coe1‘(𝐹𝐸𝐺))‘0) ∈ V | 
| 136 | 135 | fvconst2 7225 | . . . . . 6
⊢ (𝑁 ∈ 𝐾 → ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0)) | 
| 137 | 14, 136 | syl 17 | . . . . 5
⊢ (𝜑 → ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0)) | 
| 138 | 134, 137 | eqtrd 2776 | . . . 4
⊢ (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0)) | 
| 139 | 82, 124, 138 | 3eqtrd 2780 | . . 3
⊢ (𝜑 → ((𝑂‘𝐹)‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0)) | 
| 140 | 139 | fveq2d 6909 | . 2
⊢ (𝜑 → (𝐴‘((𝑂‘𝐹)‘𝑁)) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) | 
| 141 | 49, 140 | eqtr4d 2779 | 1
⊢ (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((𝑂‘𝐹)‘𝑁))) |