MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1rem Structured version   Visualization version   GIF version

Theorem ply1rem 26193
Description: The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 16544). If a polynomial 𝐹 is divided by the linear factor 𝑥𝐴, the remainder is equal to 𝐹(𝐴), the evaluation of the polynomial at 𝐴 (interpreted as a constant polynomial). (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ply1rem.p 𝑃 = (Poly1𝑅)
ply1rem.b 𝐵 = (Base‘𝑃)
ply1rem.k 𝐾 = (Base‘𝑅)
ply1rem.x 𝑋 = (var1𝑅)
ply1rem.m = (-g𝑃)
ply1rem.a 𝐴 = (algSc‘𝑃)
ply1rem.g 𝐺 = (𝑋 (𝐴𝑁))
ply1rem.o 𝑂 = (eval1𝑅)
ply1rem.1 (𝜑𝑅 ∈ NzRing)
ply1rem.2 (𝜑𝑅 ∈ CRing)
ply1rem.3 (𝜑𝑁𝐾)
ply1rem.4 (𝜑𝐹𝐵)
ply1rem.e 𝐸 = (rem1p𝑅)
Assertion
Ref Expression
ply1rem (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((𝑂𝐹)‘𝑁)))

Proof of Theorem ply1rem
StepHypRef Expression
1 ply1rem.1 . . . . . . . . 9 (𝜑𝑅 ∈ NzRing)
2 nzrring 20498 . . . . . . . . 9 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
4 ply1rem.4 . . . . . . . 8 (𝜑𝐹𝐵)
5 ply1rem.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
6 ply1rem.b . . . . . . . . . . 11 𝐵 = (Base‘𝑃)
7 ply1rem.k . . . . . . . . . . 11 𝐾 = (Base‘𝑅)
8 ply1rem.x . . . . . . . . . . 11 𝑋 = (var1𝑅)
9 ply1rem.m . . . . . . . . . . 11 = (-g𝑃)
10 ply1rem.a . . . . . . . . . . 11 𝐴 = (algSc‘𝑃)
11 ply1rem.g . . . . . . . . . . 11 𝐺 = (𝑋 (𝐴𝑁))
12 ply1rem.o . . . . . . . . . . 11 𝑂 = (eval1𝑅)
13 ply1rem.2 . . . . . . . . . . 11 (𝜑𝑅 ∈ CRing)
14 ply1rem.3 . . . . . . . . . . 11 (𝜑𝑁𝐾)
15 eqid 2726 . . . . . . . . . . 11 (Monic1p𝑅) = (Monic1p𝑅)
16 eqid 2726 . . . . . . . . . . 11 (deg1𝑅) = (deg1𝑅)
17 eqid 2726 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
185, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15, 16, 17ply1remlem 26192 . . . . . . . . . 10 (𝜑 → (𝐺 ∈ (Monic1p𝑅) ∧ ((deg1𝑅)‘𝐺) = 1 ∧ ((𝑂𝐺) “ {(0g𝑅)}) = {𝑁}))
1918simp1d 1139 . . . . . . . . 9 (𝜑𝐺 ∈ (Monic1p𝑅))
20 eqid 2726 . . . . . . . . . 10 (Unic1p𝑅) = (Unic1p𝑅)
2120, 15mon1puc1p 26178 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐺 ∈ (Monic1p𝑅)) → 𝐺 ∈ (Unic1p𝑅))
223, 19, 21syl2anc 582 . . . . . . . 8 (𝜑𝐺 ∈ (Unic1p𝑅))
23 ply1rem.e . . . . . . . . 9 𝐸 = (rem1p𝑅)
2423, 5, 6, 20, 16r1pdeglt 26187 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → ((deg1𝑅)‘(𝐹𝐸𝐺)) < ((deg1𝑅)‘𝐺))
253, 4, 22, 24syl3anc 1368 . . . . . . 7 (𝜑 → ((deg1𝑅)‘(𝐹𝐸𝐺)) < ((deg1𝑅)‘𝐺))
2618simp2d 1140 . . . . . . 7 (𝜑 → ((deg1𝑅)‘𝐺) = 1)
2725, 26breqtrd 5179 . . . . . 6 (𝜑 → ((deg1𝑅)‘(𝐹𝐸𝐺)) < 1)
28 1e0p1 12771 . . . . . 6 1 = (0 + 1)
2927, 28breqtrdi 5194 . . . . 5 (𝜑 → ((deg1𝑅)‘(𝐹𝐸𝐺)) < (0 + 1))
30 0nn0 12539 . . . . . 6 0 ∈ ℕ0
31 nn0leltp1 12673 . . . . . 6 ((((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∧ 0 ∈ ℕ0) → (((deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ ((deg1𝑅)‘(𝐹𝐸𝐺)) < (0 + 1)))
3230, 31mpan2 689 . . . . 5 (((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 → (((deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ ((deg1𝑅)‘(𝐹𝐸𝐺)) < (0 + 1)))
3329, 32syl5ibrcom 246 . . . 4 (𝜑 → (((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 → ((deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0))
34 elsni 4650 . . . . . 6 (((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} → ((deg1𝑅)‘(𝐹𝐸𝐺)) = -∞)
35 0xr 11311 . . . . . . 7 0 ∈ ℝ*
36 mnfle 13168 . . . . . . 7 (0 ∈ ℝ* → -∞ ≤ 0)
3735, 36ax-mp 5 . . . . . 6 -∞ ≤ 0
3834, 37eqbrtrdi 5192 . . . . 5 (((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} → ((deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0)
3938a1i 11 . . . 4 (𝜑 → (((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} → ((deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0))
4023, 5, 6, 20r1pcl 26186 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐹𝐸𝐺) ∈ 𝐵)
413, 4, 22, 40syl3anc 1368 . . . . . 6 (𝜑 → (𝐹𝐸𝐺) ∈ 𝐵)
4216, 5, 6deg1cl 26110 . . . . . 6 ((𝐹𝐸𝐺) ∈ 𝐵 → ((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪ {-∞}))
4341, 42syl 17 . . . . 5 (𝜑 → ((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪ {-∞}))
44 elun 4148 . . . . 5 (((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪ {-∞}) ↔ (((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∨ ((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞}))
4543, 44sylib 217 . . . 4 (𝜑 → (((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∨ ((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞}))
4633, 39, 45mpjaod 858 . . 3 (𝜑 → ((deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0)
4716, 5, 6, 10deg1le0 26138 . . . 4 ((𝑅 ∈ Ring ∧ (𝐹𝐸𝐺) ∈ 𝐵) → (((deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))))
483, 41, 47syl2anc 582 . . 3 (𝜑 → (((deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))))
4946, 48mpbid 231 . 2 (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0)))
50 eqid 2726 . . . . . . . . 9 (quot1p𝑅) = (quot1p𝑅)
51 eqid 2726 . . . . . . . . 9 (.r𝑃) = (.r𝑃)
52 eqid 2726 . . . . . . . . 9 (+g𝑃) = (+g𝑃)
535, 6, 20, 50, 23, 51, 52r1pid 26188 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → 𝐹 = (((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺)))
543, 4, 22, 53syl3anc 1368 . . . . . . 7 (𝜑𝐹 = (((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺)))
5554fveq2d 6905 . . . . . 6 (𝜑 → (𝑂𝐹) = (𝑂‘(((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺))))
56 eqid 2726 . . . . . . . . . 10 (𝑅s 𝐾) = (𝑅s 𝐾)
5712, 5, 56, 7evl1rhm 22323 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
5813, 57syl 17 . . . . . . . 8 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
59 rhmghm 20466 . . . . . . . 8 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐾)))
6058, 59syl 17 . . . . . . 7 (𝜑𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐾)))
615ply1ring 22237 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
623, 61syl 17 . . . . . . . 8 (𝜑𝑃 ∈ Ring)
6350, 5, 6, 20q1pcl 26184 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
643, 4, 22, 63syl3anc 1368 . . . . . . . 8 (𝜑 → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
655, 6, 15mon1pcl 26172 . . . . . . . . 9 (𝐺 ∈ (Monic1p𝑅) → 𝐺𝐵)
6619, 65syl 17 . . . . . . . 8 (𝜑𝐺𝐵)
676, 51ringcl 20233 . . . . . . . 8 ((𝑃 ∈ Ring ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵)
6862, 64, 66, 67syl3anc 1368 . . . . . . 7 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵)
69 eqid 2726 . . . . . . . 8 (+g‘(𝑅s 𝐾)) = (+g‘(𝑅s 𝐾))
706, 52, 69ghmlin 19215 . . . . . . 7 ((𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐾)) ∧ ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵 ∧ (𝐹𝐸𝐺) ∈ 𝐵) → (𝑂‘(((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))(+g‘(𝑅s 𝐾))(𝑂‘(𝐹𝐸𝐺))))
7160, 68, 41, 70syl3anc 1368 . . . . . 6 (𝜑 → (𝑂‘(((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))(+g‘(𝑅s 𝐾))(𝑂‘(𝐹𝐸𝐺))))
72 eqid 2726 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
737fvexi 6915 . . . . . . . 8 𝐾 ∈ V
7473a1i 11 . . . . . . 7 (𝜑𝐾 ∈ V)
756, 72rhmf 20467 . . . . . . . . 9 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
7658, 75syl 17 . . . . . . . 8 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
7776, 68ffvelcdmd 7099 . . . . . . 7 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∈ (Base‘(𝑅s 𝐾)))
7876, 41ffvelcdmd 7099 . . . . . . 7 (𝜑 → (𝑂‘(𝐹𝐸𝐺)) ∈ (Base‘(𝑅s 𝐾)))
79 eqid 2726 . . . . . . 7 (+g𝑅) = (+g𝑅)
8056, 72, 1, 74, 77, 78, 79, 69pwsplusgval 17505 . . . . . 6 (𝜑 → ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))(+g‘(𝑅s 𝐾))(𝑂‘(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘f (+g𝑅)(𝑂‘(𝐹𝐸𝐺))))
8155, 71, 803eqtrd 2770 . . . . 5 (𝜑 → (𝑂𝐹) = ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘f (+g𝑅)(𝑂‘(𝐹𝐸𝐺))))
8281fveq1d 6903 . . . 4 (𝜑 → ((𝑂𝐹)‘𝑁) = (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘f (+g𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁))
8356, 7, 72, 1, 74, 77pwselbas 17504 . . . . . . 7 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)):𝐾𝐾)
8483ffnd 6729 . . . . . 6 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) Fn 𝐾)
8556, 7, 72, 1, 74, 78pwselbas 17504 . . . . . . 7 (𝜑 → (𝑂‘(𝐹𝐸𝐺)):𝐾𝐾)
8685ffnd 6729 . . . . . 6 (𝜑 → (𝑂‘(𝐹𝐸𝐺)) Fn 𝐾)
87 fnfvof 7707 . . . . . 6 ((((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) Fn 𝐾 ∧ (𝑂‘(𝐹𝐸𝐺)) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑁𝐾)) → (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘f (+g𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)))
8884, 86, 74, 14, 87syl22anc 837 . . . . 5 (𝜑 → (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘f (+g𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)))
89 eqid 2726 . . . . . . . . . . 11 (.r‘(𝑅s 𝐾)) = (.r‘(𝑅s 𝐾))
906, 51, 89rhmmul 20468 . . . . . . . . . 10 ((𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)))
9158, 64, 66, 90syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)))
9276, 64ffvelcdmd 7099 . . . . . . . . . 10 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)) ∈ (Base‘(𝑅s 𝐾)))
9376, 66ffvelcdmd 7099 . . . . . . . . . 10 (𝜑 → (𝑂𝐺) ∈ (Base‘(𝑅s 𝐾)))
94 eqid 2726 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
9556, 72, 1, 74, 92, 93, 94, 89pwsmulrval 17506 . . . . . . . . 9 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺)))
9691, 95eqtrd 2766 . . . . . . . 8 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺)))
9796fveq1d 6903 . . . . . . 7 (𝜑 → ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑁))
9856, 7, 72, 1, 74, 92pwselbas 17504 . . . . . . . . 9 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)):𝐾𝐾)
9998ffnd 6729 . . . . . . . 8 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾)
10056, 7, 72, 1, 74, 93pwselbas 17504 . . . . . . . . 9 (𝜑 → (𝑂𝐺):𝐾𝐾)
101100ffnd 6729 . . . . . . . 8 (𝜑 → (𝑂𝐺) Fn 𝐾)
102 fnfvof 7707 . . . . . . . 8 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾 ∧ (𝑂𝐺) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑁𝐾)) → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)((𝑂𝐺)‘𝑁)))
10399, 101, 74, 14, 102syl22anc 837 . . . . . . 7 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)((𝑂𝐺)‘𝑁)))
104 snidg 4667 . . . . . . . . . . . . 13 (𝑁𝐾𝑁 ∈ {𝑁})
10514, 104syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ {𝑁})
10618simp3d 1141 . . . . . . . . . . . 12 (𝜑 → ((𝑂𝐺) “ {(0g𝑅)}) = {𝑁})
107105, 106eleqtrrd 2829 . . . . . . . . . . 11 (𝜑𝑁 ∈ ((𝑂𝐺) “ {(0g𝑅)}))
108 fniniseg 7073 . . . . . . . . . . . 12 ((𝑂𝐺) Fn 𝐾 → (𝑁 ∈ ((𝑂𝐺) “ {(0g𝑅)}) ↔ (𝑁𝐾 ∧ ((𝑂𝐺)‘𝑁) = (0g𝑅))))
109101, 108syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ((𝑂𝐺) “ {(0g𝑅)}) ↔ (𝑁𝐾 ∧ ((𝑂𝐺)‘𝑁) = (0g𝑅))))
110107, 109mpbid 231 . . . . . . . . . 10 (𝜑 → (𝑁𝐾 ∧ ((𝑂𝐺)‘𝑁) = (0g𝑅)))
111110simprd 494 . . . . . . . . 9 (𝜑 → ((𝑂𝐺)‘𝑁) = (0g𝑅))
112111oveq2d 7440 . . . . . . . 8 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)((𝑂𝐺)‘𝑁)) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)(0g𝑅)))
11398, 14ffvelcdmd 7099 . . . . . . . . 9 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁) ∈ 𝐾)
1147, 94, 17ringrz 20273 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁) ∈ 𝐾) → (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)(0g𝑅)) = (0g𝑅))
1153, 113, 114syl2anc 582 . . . . . . . 8 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)(0g𝑅)) = (0g𝑅))
116112, 115eqtrd 2766 . . . . . . 7 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)((𝑂𝐺)‘𝑁)) = (0g𝑅))
11797, 103, 1163eqtrd 2770 . . . . . 6 (𝜑 → ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁) = (0g𝑅))
118117oveq1d 7439 . . . . 5 (𝜑 → (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((0g𝑅)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)))
119 ringgrp 20221 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1203, 119syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
12185, 14ffvelcdmd 7099 . . . . . 6 (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) ∈ 𝐾)
1227, 79, 17grplid 18962 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑂‘(𝐹𝐸𝐺))‘𝑁) ∈ 𝐾) → ((0g𝑅)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁))
123120, 121, 122syl2anc 582 . . . . 5 (𝜑 → ((0g𝑅)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁))
12488, 118, 1233eqtrd 2770 . . . 4 (𝜑 → (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘f (+g𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁))
12549fveq2d 6905 . . . . . . 7 (𝜑 → (𝑂‘(𝐹𝐸𝐺)) = (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))))
126 eqid 2726 . . . . . . . . . . 11 (coe1‘(𝐹𝐸𝐺)) = (coe1‘(𝐹𝐸𝐺))
127126, 6, 5, 7coe1f 22201 . . . . . . . . . 10 ((𝐹𝐸𝐺) ∈ 𝐵 → (coe1‘(𝐹𝐸𝐺)):ℕ0𝐾)
12841, 127syl 17 . . . . . . . . 9 (𝜑 → (coe1‘(𝐹𝐸𝐺)):ℕ0𝐾)
129 ffvelcdm 7095 . . . . . . . . 9 (((coe1‘(𝐹𝐸𝐺)):ℕ0𝐾 ∧ 0 ∈ ℕ0) → ((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾)
130128, 30, 129sylancl 584 . . . . . . . 8 (𝜑 → ((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾)
13112, 5, 7, 10evl1sca 22325 . . . . . . . 8 ((𝑅 ∈ CRing ∧ ((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾) → (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)}))
13213, 130, 131syl2anc 582 . . . . . . 7 (𝜑 → (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)}))
133125, 132eqtrd 2766 . . . . . 6 (𝜑 → (𝑂‘(𝐹𝐸𝐺)) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)}))
134133fveq1d 6903 . . . . 5 (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) = ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁))
135 fvex 6914 . . . . . . 7 ((coe1‘(𝐹𝐸𝐺))‘0) ∈ V
136135fvconst2 7221 . . . . . 6 (𝑁𝐾 → ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0))
13714, 136syl 17 . . . . 5 (𝜑 → ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0))
138134, 137eqtrd 2766 . . . 4 (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0))
13982, 124, 1383eqtrd 2770 . . 3 (𝜑 → ((𝑂𝐹)‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0))
140139fveq2d 6905 . 2 (𝜑 → (𝐴‘((𝑂𝐹)‘𝑁)) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0)))
14149, 140eqtr4d 2769 1 (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((𝑂𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1534  wcel 2099  Vcvv 3462  cun 3945  {csn 4633   class class class wbr 5153   × cxp 5680  ccnv 5681  cima 5685   Fn wfn 6549  wf 6550  cfv 6554  (class class class)co 7424  f cof 7688  0cc0 11158  1c1 11159   + caddc 11161  -∞cmnf 11296  *cxr 11297   < clt 11298  cle 11299  0cn0 12524  Basecbs 17213  +gcplusg 17266  .rcmulr 17267  0gc0g 17454  s cpws 17461  Grpcgrp 18928  -gcsg 18930   GrpHom cghm 19206  Ringcrg 20216  CRingccrg 20217   RingHom crh 20451  NzRingcnzr 20494  algSccascl 21850  var1cv1 22165  Poly1cpl1 22166  coe1cco1 22167  eval1ce1 22305  deg1cdg1 26078  Monic1pcmn1 26153  Unic1pcuc1p 26154  quot1pcq1p 26155  rem1pcr1p 26156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-ofr 7691  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-tpos 8241  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-sup 9485  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-fz 13539  df-fzo 13682  df-seq 14022  df-hash 14348  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-0g 17456  df-gsum 17457  df-prds 17462  df-pws 17464  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-mhm 18773  df-submnd 18774  df-grp 18931  df-minusg 18932  df-sbg 18933  df-mulg 19062  df-subg 19117  df-ghm 19207  df-cntz 19311  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-srg 20170  df-ring 20218  df-cring 20219  df-oppr 20316  df-dvdsr 20339  df-unit 20340  df-invr 20370  df-rhm 20454  df-nzr 20495  df-subrng 20528  df-subrg 20553  df-rlreg 20672  df-lmod 20838  df-lss 20909  df-lsp 20949  df-cnfld 21344  df-assa 21851  df-asp 21852  df-ascl 21853  df-psr 21906  df-mvr 21907  df-mpl 21908  df-opsr 21910  df-evls 22087  df-evl 22088  df-psr1 22169  df-vr1 22170  df-ply1 22171  df-coe1 22172  df-evl1 22307  df-mdeg 26079  df-deg1 26080  df-mon1 26158  df-uc1p 26159  df-q1p 26160  df-r1p 26161
This theorem is referenced by:  facth1  26194
  Copyright terms: Public domain W3C validator