MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1rem Structured version   Visualization version   GIF version

Theorem ply1rem 24684
Description: The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 15879). If a polynomial 𝐹 is divided by the linear factor 𝑥𝐴, the remainder is equal to 𝐹(𝐴), the evaluation of the polynomial at 𝐴 (interpreted as a constant polynomial). (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ply1rem.p 𝑃 = (Poly1𝑅)
ply1rem.b 𝐵 = (Base‘𝑃)
ply1rem.k 𝐾 = (Base‘𝑅)
ply1rem.x 𝑋 = (var1𝑅)
ply1rem.m = (-g𝑃)
ply1rem.a 𝐴 = (algSc‘𝑃)
ply1rem.g 𝐺 = (𝑋 (𝐴𝑁))
ply1rem.o 𝑂 = (eval1𝑅)
ply1rem.1 (𝜑𝑅 ∈ NzRing)
ply1rem.2 (𝜑𝑅 ∈ CRing)
ply1rem.3 (𝜑𝑁𝐾)
ply1rem.4 (𝜑𝐹𝐵)
ply1rem.e 𝐸 = (rem1p𝑅)
Assertion
Ref Expression
ply1rem (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((𝑂𝐹)‘𝑁)))

Proof of Theorem ply1rem
StepHypRef Expression
1 ply1rem.1 . . . . . . . . 9 (𝜑𝑅 ∈ NzRing)
2 nzrring 19962 . . . . . . . . 9 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
4 ply1rem.4 . . . . . . . 8 (𝜑𝐹𝐵)
5 ply1rem.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
6 ply1rem.b . . . . . . . . . . 11 𝐵 = (Base‘𝑃)
7 ply1rem.k . . . . . . . . . . 11 𝐾 = (Base‘𝑅)
8 ply1rem.x . . . . . . . . . . 11 𝑋 = (var1𝑅)
9 ply1rem.m . . . . . . . . . . 11 = (-g𝑃)
10 ply1rem.a . . . . . . . . . . 11 𝐴 = (algSc‘𝑃)
11 ply1rem.g . . . . . . . . . . 11 𝐺 = (𝑋 (𝐴𝑁))
12 ply1rem.o . . . . . . . . . . 11 𝑂 = (eval1𝑅)
13 ply1rem.2 . . . . . . . . . . 11 (𝜑𝑅 ∈ CRing)
14 ply1rem.3 . . . . . . . . . . 11 (𝜑𝑁𝐾)
15 eqid 2818 . . . . . . . . . . 11 (Monic1p𝑅) = (Monic1p𝑅)
16 eqid 2818 . . . . . . . . . . 11 ( deg1𝑅) = ( deg1𝑅)
17 eqid 2818 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
185, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15, 16, 17ply1remlem 24683 . . . . . . . . . 10 (𝜑 → (𝐺 ∈ (Monic1p𝑅) ∧ (( deg1𝑅)‘𝐺) = 1 ∧ ((𝑂𝐺) “ {(0g𝑅)}) = {𝑁}))
1918simp1d 1134 . . . . . . . . 9 (𝜑𝐺 ∈ (Monic1p𝑅))
20 eqid 2818 . . . . . . . . . 10 (Unic1p𝑅) = (Unic1p𝑅)
2120, 15mon1puc1p 24671 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐺 ∈ (Monic1p𝑅)) → 𝐺 ∈ (Unic1p𝑅))
223, 19, 21syl2anc 584 . . . . . . . 8 (𝜑𝐺 ∈ (Unic1p𝑅))
23 ply1rem.e . . . . . . . . 9 𝐸 = (rem1p𝑅)
2423, 5, 6, 20, 16r1pdeglt 24679 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (( deg1𝑅)‘(𝐹𝐸𝐺)) < (( deg1𝑅)‘𝐺))
253, 4, 22, 24syl3anc 1363 . . . . . . 7 (𝜑 → (( deg1𝑅)‘(𝐹𝐸𝐺)) < (( deg1𝑅)‘𝐺))
2618simp2d 1135 . . . . . . 7 (𝜑 → (( deg1𝑅)‘𝐺) = 1)
2725, 26breqtrd 5083 . . . . . 6 (𝜑 → (( deg1𝑅)‘(𝐹𝐸𝐺)) < 1)
28 1e0p1 12128 . . . . . 6 1 = (0 + 1)
2927, 28breqtrdi 5098 . . . . 5 (𝜑 → (( deg1𝑅)‘(𝐹𝐸𝐺)) < (0 + 1))
30 0nn0 11900 . . . . . 6 0 ∈ ℕ0
31 nn0leltp1 12029 . . . . . 6 (((( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∧ 0 ∈ ℕ0) → ((( deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (( deg1𝑅)‘(𝐹𝐸𝐺)) < (0 + 1)))
3230, 31mpan2 687 . . . . 5 ((( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 → ((( deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (( deg1𝑅)‘(𝐹𝐸𝐺)) < (0 + 1)))
3329, 32syl5ibrcom 248 . . . 4 (𝜑 → ((( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 → (( deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0))
34 elsni 4574 . . . . . 6 ((( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} → (( deg1𝑅)‘(𝐹𝐸𝐺)) = -∞)
35 0xr 10676 . . . . . . 7 0 ∈ ℝ*
36 mnfle 12517 . . . . . . 7 (0 ∈ ℝ* → -∞ ≤ 0)
3735, 36ax-mp 5 . . . . . 6 -∞ ≤ 0
3834, 37eqbrtrdi 5096 . . . . 5 ((( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} → (( deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0)
3938a1i 11 . . . 4 (𝜑 → ((( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} → (( deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0))
4023, 5, 6, 20r1pcl 24678 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐹𝐸𝐺) ∈ 𝐵)
413, 4, 22, 40syl3anc 1363 . . . . . 6 (𝜑 → (𝐹𝐸𝐺) ∈ 𝐵)
4216, 5, 6deg1cl 24604 . . . . . 6 ((𝐹𝐸𝐺) ∈ 𝐵 → (( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪ {-∞}))
4341, 42syl 17 . . . . 5 (𝜑 → (( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪ {-∞}))
44 elun 4122 . . . . 5 ((( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪ {-∞}) ↔ ((( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∨ (( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞}))
4543, 44sylib 219 . . . 4 (𝜑 → ((( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∨ (( deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞}))
4633, 39, 45mpjaod 854 . . 3 (𝜑 → (( deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0)
4716, 5, 6, 10deg1le0 24632 . . . 4 ((𝑅 ∈ Ring ∧ (𝐹𝐸𝐺) ∈ 𝐵) → ((( deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))))
483, 41, 47syl2anc 584 . . 3 (𝜑 → ((( deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))))
4946, 48mpbid 233 . 2 (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0)))
50 eqid 2818 . . . . . . . . 9 (quot1p𝑅) = (quot1p𝑅)
51 eqid 2818 . . . . . . . . 9 (.r𝑃) = (.r𝑃)
52 eqid 2818 . . . . . . . . 9 (+g𝑃) = (+g𝑃)
535, 6, 20, 50, 23, 51, 52r1pid 24680 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → 𝐹 = (((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺)))
543, 4, 22, 53syl3anc 1363 . . . . . . 7 (𝜑𝐹 = (((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺)))
5554fveq2d 6667 . . . . . 6 (𝜑 → (𝑂𝐹) = (𝑂‘(((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺))))
56 eqid 2818 . . . . . . . . . 10 (𝑅s 𝐾) = (𝑅s 𝐾)
5712, 5, 56, 7evl1rhm 20423 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
5813, 57syl 17 . . . . . . . 8 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
59 rhmghm 19406 . . . . . . . 8 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐾)))
6058, 59syl 17 . . . . . . 7 (𝜑𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐾)))
615ply1ring 20344 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
623, 61syl 17 . . . . . . . 8 (𝜑𝑃 ∈ Ring)
6350, 5, 6, 20q1pcl 24676 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
643, 4, 22, 63syl3anc 1363 . . . . . . . 8 (𝜑 → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
655, 6, 15mon1pcl 24665 . . . . . . . . 9 (𝐺 ∈ (Monic1p𝑅) → 𝐺𝐵)
6619, 65syl 17 . . . . . . . 8 (𝜑𝐺𝐵)
676, 51ringcl 19240 . . . . . . . 8 ((𝑃 ∈ Ring ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵)
6862, 64, 66, 67syl3anc 1363 . . . . . . 7 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵)
69 eqid 2818 . . . . . . . 8 (+g‘(𝑅s 𝐾)) = (+g‘(𝑅s 𝐾))
706, 52, 69ghmlin 18301 . . . . . . 7 ((𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐾)) ∧ ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵 ∧ (𝐹𝐸𝐺) ∈ 𝐵) → (𝑂‘(((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))(+g‘(𝑅s 𝐾))(𝑂‘(𝐹𝐸𝐺))))
7160, 68, 41, 70syl3anc 1363 . . . . . 6 (𝜑 → (𝑂‘(((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))(+g‘(𝑅s 𝐾))(𝑂‘(𝐹𝐸𝐺))))
72 eqid 2818 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
737fvexi 6677 . . . . . . . 8 𝐾 ∈ V
7473a1i 11 . . . . . . 7 (𝜑𝐾 ∈ V)
756, 72rhmf 19407 . . . . . . . . 9 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
7658, 75syl 17 . . . . . . . 8 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
7776, 68ffvelrnd 6844 . . . . . . 7 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∈ (Base‘(𝑅s 𝐾)))
7876, 41ffvelrnd 6844 . . . . . . 7 (𝜑 → (𝑂‘(𝐹𝐸𝐺)) ∈ (Base‘(𝑅s 𝐾)))
79 eqid 2818 . . . . . . 7 (+g𝑅) = (+g𝑅)
8056, 72, 1, 74, 77, 78, 79, 69pwsplusgval 16751 . . . . . 6 (𝜑 → ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))(+g‘(𝑅s 𝐾))(𝑂‘(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘f (+g𝑅)(𝑂‘(𝐹𝐸𝐺))))
8155, 71, 803eqtrd 2857 . . . . 5 (𝜑 → (𝑂𝐹) = ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘f (+g𝑅)(𝑂‘(𝐹𝐸𝐺))))
8281fveq1d 6665 . . . 4 (𝜑 → ((𝑂𝐹)‘𝑁) = (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘f (+g𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁))
8356, 7, 72, 1, 74, 77pwselbas 16750 . . . . . . 7 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)):𝐾𝐾)
8483ffnd 6508 . . . . . 6 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) Fn 𝐾)
8556, 7, 72, 1, 74, 78pwselbas 16750 . . . . . . 7 (𝜑 → (𝑂‘(𝐹𝐸𝐺)):𝐾𝐾)
8685ffnd 6508 . . . . . 6 (𝜑 → (𝑂‘(𝐹𝐸𝐺)) Fn 𝐾)
87 fnfvof 7412 . . . . . 6 ((((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) Fn 𝐾 ∧ (𝑂‘(𝐹𝐸𝐺)) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑁𝐾)) → (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘f (+g𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)))
8884, 86, 74, 14, 87syl22anc 834 . . . . 5 (𝜑 → (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘f (+g𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)))
89 eqid 2818 . . . . . . . . . . 11 (.r‘(𝑅s 𝐾)) = (.r‘(𝑅s 𝐾))
906, 51, 89rhmmul 19408 . . . . . . . . . 10 ((𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)))
9158, 64, 66, 90syl3anc 1363 . . . . . . . . 9 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)))
9276, 64ffvelrnd 6844 . . . . . . . . . 10 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)) ∈ (Base‘(𝑅s 𝐾)))
9376, 66ffvelrnd 6844 . . . . . . . . . 10 (𝜑 → (𝑂𝐺) ∈ (Base‘(𝑅s 𝐾)))
94 eqid 2818 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
9556, 72, 1, 74, 92, 93, 94, 89pwsmulrval 16752 . . . . . . . . 9 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺)))
9691, 95eqtrd 2853 . . . . . . . 8 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺)))
9796fveq1d 6665 . . . . . . 7 (𝜑 → ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑁))
9856, 7, 72, 1, 74, 92pwselbas 16750 . . . . . . . . 9 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)):𝐾𝐾)
9998ffnd 6508 . . . . . . . 8 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾)
10056, 7, 72, 1, 74, 93pwselbas 16750 . . . . . . . . 9 (𝜑 → (𝑂𝐺):𝐾𝐾)
101100ffnd 6508 . . . . . . . 8 (𝜑 → (𝑂𝐺) Fn 𝐾)
102 fnfvof 7412 . . . . . . . 8 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾 ∧ (𝑂𝐺) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑁𝐾)) → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)((𝑂𝐺)‘𝑁)))
10399, 101, 74, 14, 102syl22anc 834 . . . . . . 7 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)((𝑂𝐺)‘𝑁)))
104 snidg 4589 . . . . . . . . . . . . 13 (𝑁𝐾𝑁 ∈ {𝑁})
10514, 104syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ {𝑁})
10618simp3d 1136 . . . . . . . . . . . 12 (𝜑 → ((𝑂𝐺) “ {(0g𝑅)}) = {𝑁})
107105, 106eleqtrrd 2913 . . . . . . . . . . 11 (𝜑𝑁 ∈ ((𝑂𝐺) “ {(0g𝑅)}))
108 fniniseg 6822 . . . . . . . . . . . 12 ((𝑂𝐺) Fn 𝐾 → (𝑁 ∈ ((𝑂𝐺) “ {(0g𝑅)}) ↔ (𝑁𝐾 ∧ ((𝑂𝐺)‘𝑁) = (0g𝑅))))
109101, 108syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ((𝑂𝐺) “ {(0g𝑅)}) ↔ (𝑁𝐾 ∧ ((𝑂𝐺)‘𝑁) = (0g𝑅))))
110107, 109mpbid 233 . . . . . . . . . 10 (𝜑 → (𝑁𝐾 ∧ ((𝑂𝐺)‘𝑁) = (0g𝑅)))
111110simprd 496 . . . . . . . . 9 (𝜑 → ((𝑂𝐺)‘𝑁) = (0g𝑅))
112111oveq2d 7161 . . . . . . . 8 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)((𝑂𝐺)‘𝑁)) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)(0g𝑅)))
11398, 14ffvelrnd 6844 . . . . . . . . 9 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁) ∈ 𝐾)
1147, 94, 17ringrz 19267 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁) ∈ 𝐾) → (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)(0g𝑅)) = (0g𝑅))
1153, 113, 114syl2anc 584 . . . . . . . 8 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)(0g𝑅)) = (0g𝑅))
116112, 115eqtrd 2853 . . . . . . 7 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)((𝑂𝐺)‘𝑁)) = (0g𝑅))
11797, 103, 1163eqtrd 2857 . . . . . 6 (𝜑 → ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁) = (0g𝑅))
118117oveq1d 7160 . . . . 5 (𝜑 → (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((0g𝑅)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)))
119 ringgrp 19231 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1203, 119syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
12185, 14ffvelrnd 6844 . . . . . 6 (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) ∈ 𝐾)
1227, 79, 17grplid 18071 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑂‘(𝐹𝐸𝐺))‘𝑁) ∈ 𝐾) → ((0g𝑅)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁))
123120, 121, 122syl2anc 584 . . . . 5 (𝜑 → ((0g𝑅)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁))
12488, 118, 1233eqtrd 2857 . . . 4 (𝜑 → (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘f (+g𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁))
12549fveq2d 6667 . . . . . . 7 (𝜑 → (𝑂‘(𝐹𝐸𝐺)) = (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))))
126 eqid 2818 . . . . . . . . . . 11 (coe1‘(𝐹𝐸𝐺)) = (coe1‘(𝐹𝐸𝐺))
127126, 6, 5, 7coe1f 20307 . . . . . . . . . 10 ((𝐹𝐸𝐺) ∈ 𝐵 → (coe1‘(𝐹𝐸𝐺)):ℕ0𝐾)
12841, 127syl 17 . . . . . . . . 9 (𝜑 → (coe1‘(𝐹𝐸𝐺)):ℕ0𝐾)
129 ffvelrn 6841 . . . . . . . . 9 (((coe1‘(𝐹𝐸𝐺)):ℕ0𝐾 ∧ 0 ∈ ℕ0) → ((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾)
130128, 30, 129sylancl 586 . . . . . . . 8 (𝜑 → ((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾)
13112, 5, 7, 10evl1sca 20425 . . . . . . . 8 ((𝑅 ∈ CRing ∧ ((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾) → (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)}))
13213, 130, 131syl2anc 584 . . . . . . 7 (𝜑 → (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)}))
133125, 132eqtrd 2853 . . . . . 6 (𝜑 → (𝑂‘(𝐹𝐸𝐺)) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)}))
134133fveq1d 6665 . . . . 5 (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) = ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁))
135 fvex 6676 . . . . . . 7 ((coe1‘(𝐹𝐸𝐺))‘0) ∈ V
136135fvconst2 6958 . . . . . 6 (𝑁𝐾 → ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0))
13714, 136syl 17 . . . . 5 (𝜑 → ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0))
138134, 137eqtrd 2853 . . . 4 (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0))
13982, 124, 1383eqtrd 2857 . . 3 (𝜑 → ((𝑂𝐹)‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0))
140139fveq2d 6667 . 2 (𝜑 → (𝐴‘((𝑂𝐹)‘𝑁)) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0)))
14149, 140eqtr4d 2856 1 (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((𝑂𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 841   = wceq 1528  wcel 2105  Vcvv 3492  cun 3931  {csn 4557   class class class wbr 5057   × cxp 5546  ccnv 5547  cima 5551   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7145  f cof 7396  0cc0 10525  1c1 10526   + caddc 10528  -∞cmnf 10661  *cxr 10662   < clt 10663  cle 10664  0cn0 11885  Basecbs 16471  +gcplusg 16553  .rcmulr 16554  0gc0g 16701  s cpws 16708  Grpcgrp 18041  -gcsg 18043   GrpHom cghm 18293  Ringcrg 19226  CRingccrg 19227   RingHom crh 19393  NzRingcnzr 19958  algSccascl 20012  var1cv1 20272  Poly1cpl1 20273  coe1cco1 20274  eval1ce1 20405   deg1 cdg1 24575  Monic1pcmn1 24646  Unic1pcuc1p 24647  quot1pcq1p 24648  rem1pcr1p 24649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-ofr 7399  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-0g 16703  df-gsum 16704  df-prds 16709  df-pws 16711  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mulg 18163  df-subg 18214  df-ghm 18294  df-cntz 18385  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-srg 19185  df-ring 19228  df-cring 19229  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-rnghom 19396  df-subrg 19462  df-lmod 19565  df-lss 19633  df-lsp 19673  df-nzr 19959  df-rlreg 19984  df-assa 20013  df-asp 20014  df-ascl 20015  df-psr 20064  df-mvr 20065  df-mpl 20066  df-opsr 20068  df-evls 20214  df-evl 20215  df-psr1 20276  df-vr1 20277  df-ply1 20278  df-coe1 20279  df-evl1 20407  df-cnfld 20474  df-mdeg 24576  df-deg1 24577  df-mon1 24651  df-uc1p 24652  df-q1p 24653  df-r1p 24654
This theorem is referenced by:  facth1  24685
  Copyright terms: Public domain W3C validator