MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1rem Structured version   Visualization version   GIF version

Theorem ply1rem 26069
Description: The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 16454). If a polynomial 𝐹 is divided by the linear factor 𝑥𝐴, the remainder is equal to 𝐹(𝐴), the evaluation of the polynomial at 𝐴 (interpreted as a constant polynomial). (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
ply1rem.p 𝑃 = (Poly1𝑅)
ply1rem.b 𝐵 = (Base‘𝑃)
ply1rem.k 𝐾 = (Base‘𝑅)
ply1rem.x 𝑋 = (var1𝑅)
ply1rem.m = (-g𝑃)
ply1rem.a 𝐴 = (algSc‘𝑃)
ply1rem.g 𝐺 = (𝑋 (𝐴𝑁))
ply1rem.o 𝑂 = (eval1𝑅)
ply1rem.1 (𝜑𝑅 ∈ NzRing)
ply1rem.2 (𝜑𝑅 ∈ CRing)
ply1rem.3 (𝜑𝑁𝐾)
ply1rem.4 (𝜑𝐹𝐵)
ply1rem.e 𝐸 = (rem1p𝑅)
Assertion
Ref Expression
ply1rem (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((𝑂𝐹)‘𝑁)))

Proof of Theorem ply1rem
StepHypRef Expression
1 ply1rem.1 . . . . . . . . 9 (𝜑𝑅 ∈ NzRing)
2 nzrring 20401 . . . . . . . . 9 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
4 ply1rem.4 . . . . . . . 8 (𝜑𝐹𝐵)
5 ply1rem.p . . . . . . . . . . 11 𝑃 = (Poly1𝑅)
6 ply1rem.b . . . . . . . . . . 11 𝐵 = (Base‘𝑃)
7 ply1rem.k . . . . . . . . . . 11 𝐾 = (Base‘𝑅)
8 ply1rem.x . . . . . . . . . . 11 𝑋 = (var1𝑅)
9 ply1rem.m . . . . . . . . . . 11 = (-g𝑃)
10 ply1rem.a . . . . . . . . . . 11 𝐴 = (algSc‘𝑃)
11 ply1rem.g . . . . . . . . . . 11 𝐺 = (𝑋 (𝐴𝑁))
12 ply1rem.o . . . . . . . . . . 11 𝑂 = (eval1𝑅)
13 ply1rem.2 . . . . . . . . . . 11 (𝜑𝑅 ∈ CRing)
14 ply1rem.3 . . . . . . . . . . 11 (𝜑𝑁𝐾)
15 eqid 2729 . . . . . . . . . . 11 (Monic1p𝑅) = (Monic1p𝑅)
16 eqid 2729 . . . . . . . . . . 11 (deg1𝑅) = (deg1𝑅)
17 eqid 2729 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
185, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15, 16, 17ply1remlem 26068 . . . . . . . . . 10 (𝜑 → (𝐺 ∈ (Monic1p𝑅) ∧ ((deg1𝑅)‘𝐺) = 1 ∧ ((𝑂𝐺) “ {(0g𝑅)}) = {𝑁}))
1918simp1d 1142 . . . . . . . . 9 (𝜑𝐺 ∈ (Monic1p𝑅))
20 eqid 2729 . . . . . . . . . 10 (Unic1p𝑅) = (Unic1p𝑅)
2120, 15mon1puc1p 26054 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐺 ∈ (Monic1p𝑅)) → 𝐺 ∈ (Unic1p𝑅))
223, 19, 21syl2anc 584 . . . . . . . 8 (𝜑𝐺 ∈ (Unic1p𝑅))
23 ply1rem.e . . . . . . . . 9 𝐸 = (rem1p𝑅)
2423, 5, 6, 20, 16r1pdeglt 26063 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → ((deg1𝑅)‘(𝐹𝐸𝐺)) < ((deg1𝑅)‘𝐺))
253, 4, 22, 24syl3anc 1373 . . . . . . 7 (𝜑 → ((deg1𝑅)‘(𝐹𝐸𝐺)) < ((deg1𝑅)‘𝐺))
2618simp2d 1143 . . . . . . 7 (𝜑 → ((deg1𝑅)‘𝐺) = 1)
2725, 26breqtrd 5118 . . . . . 6 (𝜑 → ((deg1𝑅)‘(𝐹𝐸𝐺)) < 1)
28 1e0p1 12633 . . . . . 6 1 = (0 + 1)
2927, 28breqtrdi 5133 . . . . 5 (𝜑 → ((deg1𝑅)‘(𝐹𝐸𝐺)) < (0 + 1))
30 0nn0 12399 . . . . . 6 0 ∈ ℕ0
31 nn0leltp1 12535 . . . . . 6 ((((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∧ 0 ∈ ℕ0) → (((deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ ((deg1𝑅)‘(𝐹𝐸𝐺)) < (0 + 1)))
3230, 31mpan2 691 . . . . 5 (((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 → (((deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ ((deg1𝑅)‘(𝐹𝐸𝐺)) < (0 + 1)))
3329, 32syl5ibrcom 247 . . . 4 (𝜑 → (((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 → ((deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0))
34 elsni 4594 . . . . . 6 (((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} → ((deg1𝑅)‘(𝐹𝐸𝐺)) = -∞)
35 0xr 11162 . . . . . . 7 0 ∈ ℝ*
36 mnfle 13037 . . . . . . 7 (0 ∈ ℝ* → -∞ ≤ 0)
3735, 36ax-mp 5 . . . . . 6 -∞ ≤ 0
3834, 37eqbrtrdi 5131 . . . . 5 (((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} → ((deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0)
3938a1i 11 . . . 4 (𝜑 → (((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} → ((deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0))
4023, 5, 6, 20r1pcl 26062 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐹𝐸𝐺) ∈ 𝐵)
413, 4, 22, 40syl3anc 1373 . . . . . 6 (𝜑 → (𝐹𝐸𝐺) ∈ 𝐵)
4216, 5, 6deg1cl 25986 . . . . . 6 ((𝐹𝐸𝐺) ∈ 𝐵 → ((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪ {-∞}))
4341, 42syl 17 . . . . 5 (𝜑 → ((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪ {-∞}))
44 elun 4104 . . . . 5 (((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪ {-∞}) ↔ (((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∨ ((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞}))
4543, 44sylib 218 . . . 4 (𝜑 → (((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∨ ((deg1𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞}))
4633, 39, 45mpjaod 860 . . 3 (𝜑 → ((deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0)
4716, 5, 6, 10deg1le0 26014 . . . 4 ((𝑅 ∈ Ring ∧ (𝐹𝐸𝐺) ∈ 𝐵) → (((deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))))
483, 41, 47syl2anc 584 . . 3 (𝜑 → (((deg1𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))))
4946, 48mpbid 232 . 2 (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0)))
50 eqid 2729 . . . . . . . . 9 (quot1p𝑅) = (quot1p𝑅)
51 eqid 2729 . . . . . . . . 9 (.r𝑃) = (.r𝑃)
52 eqid 2729 . . . . . . . . 9 (+g𝑃) = (+g𝑃)
535, 6, 20, 50, 23, 51, 52r1pid 26064 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → 𝐹 = (((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺)))
543, 4, 22, 53syl3anc 1373 . . . . . . 7 (𝜑𝐹 = (((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺)))
5554fveq2d 6826 . . . . . 6 (𝜑 → (𝑂𝐹) = (𝑂‘(((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺))))
56 eqid 2729 . . . . . . . . . 10 (𝑅s 𝐾) = (𝑅s 𝐾)
5712, 5, 56, 7evl1rhm 22217 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
5813, 57syl 17 . . . . . . . 8 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
59 rhmghm 20369 . . . . . . . 8 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐾)))
6058, 59syl 17 . . . . . . 7 (𝜑𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐾)))
615ply1ring 22130 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
623, 61syl 17 . . . . . . . 8 (𝜑𝑃 ∈ Ring)
6350, 5, 6, 20q1pcl 26060 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺 ∈ (Unic1p𝑅)) → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
643, 4, 22, 63syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
655, 6, 15mon1pcl 26048 . . . . . . . . 9 (𝐺 ∈ (Monic1p𝑅) → 𝐺𝐵)
6619, 65syl 17 . . . . . . . 8 (𝜑𝐺𝐵)
676, 51ringcl 20135 . . . . . . . 8 ((𝑃 ∈ Ring ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵)
6862, 64, 66, 67syl3anc 1373 . . . . . . 7 (𝜑 → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵)
69 eqid 2729 . . . . . . . 8 (+g‘(𝑅s 𝐾)) = (+g‘(𝑅s 𝐾))
706, 52, 69ghmlin 19100 . . . . . . 7 ((𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐾)) ∧ ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵 ∧ (𝐹𝐸𝐺) ∈ 𝐵) → (𝑂‘(((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))(+g‘(𝑅s 𝐾))(𝑂‘(𝐹𝐸𝐺))))
7160, 68, 41, 70syl3anc 1373 . . . . . 6 (𝜑 → (𝑂‘(((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)(+g𝑃)(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))(+g‘(𝑅s 𝐾))(𝑂‘(𝐹𝐸𝐺))))
72 eqid 2729 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
737fvexi 6836 . . . . . . . 8 𝐾 ∈ V
7473a1i 11 . . . . . . 7 (𝜑𝐾 ∈ V)
756, 72rhmf 20370 . . . . . . . . 9 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
7658, 75syl 17 . . . . . . . 8 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
7776, 68ffvelcdmd 7019 . . . . . . 7 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∈ (Base‘(𝑅s 𝐾)))
7876, 41ffvelcdmd 7019 . . . . . . 7 (𝜑 → (𝑂‘(𝐹𝐸𝐺)) ∈ (Base‘(𝑅s 𝐾)))
79 eqid 2729 . . . . . . 7 (+g𝑅) = (+g𝑅)
8056, 72, 1, 74, 77, 78, 79, 69pwsplusgval 17394 . . . . . 6 (𝜑 → ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))(+g‘(𝑅s 𝐾))(𝑂‘(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘f (+g𝑅)(𝑂‘(𝐹𝐸𝐺))))
8155, 71, 803eqtrd 2768 . . . . 5 (𝜑 → (𝑂𝐹) = ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘f (+g𝑅)(𝑂‘(𝐹𝐸𝐺))))
8281fveq1d 6824 . . . 4 (𝜑 → ((𝑂𝐹)‘𝑁) = (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘f (+g𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁))
8356, 7, 72, 1, 74, 77pwselbas 17393 . . . . . . 7 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)):𝐾𝐾)
8483ffnd 6653 . . . . . 6 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) Fn 𝐾)
8556, 7, 72, 1, 74, 78pwselbas 17393 . . . . . . 7 (𝜑 → (𝑂‘(𝐹𝐸𝐺)):𝐾𝐾)
8685ffnd 6653 . . . . . 6 (𝜑 → (𝑂‘(𝐹𝐸𝐺)) Fn 𝐾)
87 fnfvof 7630 . . . . . 6 ((((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) Fn 𝐾 ∧ (𝑂‘(𝐹𝐸𝐺)) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑁𝐾)) → (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘f (+g𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)))
8884, 86, 74, 14, 87syl22anc 838 . . . . 5 (𝜑 → (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘f (+g𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)))
89 eqid 2729 . . . . . . . . . . 11 (.r‘(𝑅s 𝐾)) = (.r‘(𝑅s 𝐾))
906, 51, 89rhmmul 20371 . . . . . . . . . 10 ((𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)))
9158, 64, 66, 90syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)))
9276, 64ffvelcdmd 7019 . . . . . . . . . 10 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)) ∈ (Base‘(𝑅s 𝐾)))
9376, 66ffvelcdmd 7019 . . . . . . . . . 10 (𝜑 → (𝑂𝐺) ∈ (Base‘(𝑅s 𝐾)))
94 eqid 2729 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
9556, 72, 1, 74, 92, 93, 94, 89pwsmulrval 17395 . . . . . . . . 9 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺))(.r‘(𝑅s 𝐾))(𝑂𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺)))
9691, 95eqtrd 2764 . . . . . . . 8 (𝜑 → (𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺)))
9796fveq1d 6824 . . . . . . 7 (𝜑 → ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑁))
9856, 7, 72, 1, 74, 92pwselbas 17393 . . . . . . . . 9 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)):𝐾𝐾)
9998ffnd 6653 . . . . . . . 8 (𝜑 → (𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾)
10056, 7, 72, 1, 74, 93pwselbas 17393 . . . . . . . . 9 (𝜑 → (𝑂𝐺):𝐾𝐾)
101100ffnd 6653 . . . . . . . 8 (𝜑 → (𝑂𝐺) Fn 𝐾)
102 fnfvof 7630 . . . . . . . 8 ((((𝑂‘(𝐹(quot1p𝑅)𝐺)) Fn 𝐾 ∧ (𝑂𝐺) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑁𝐾)) → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)((𝑂𝐺)‘𝑁)))
10399, 101, 74, 14, 102syl22anc 838 . . . . . . 7 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺)) ∘f (.r𝑅)(𝑂𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)((𝑂𝐺)‘𝑁)))
104 snidg 4612 . . . . . . . . . . . . 13 (𝑁𝐾𝑁 ∈ {𝑁})
10514, 104syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ {𝑁})
10618simp3d 1144 . . . . . . . . . . . 12 (𝜑 → ((𝑂𝐺) “ {(0g𝑅)}) = {𝑁})
107105, 106eleqtrrd 2831 . . . . . . . . . . 11 (𝜑𝑁 ∈ ((𝑂𝐺) “ {(0g𝑅)}))
108 fniniseg 6994 . . . . . . . . . . . 12 ((𝑂𝐺) Fn 𝐾 → (𝑁 ∈ ((𝑂𝐺) “ {(0g𝑅)}) ↔ (𝑁𝐾 ∧ ((𝑂𝐺)‘𝑁) = (0g𝑅))))
109101, 108syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 ∈ ((𝑂𝐺) “ {(0g𝑅)}) ↔ (𝑁𝐾 ∧ ((𝑂𝐺)‘𝑁) = (0g𝑅))))
110107, 109mpbid 232 . . . . . . . . . 10 (𝜑 → (𝑁𝐾 ∧ ((𝑂𝐺)‘𝑁) = (0g𝑅)))
111110simprd 495 . . . . . . . . 9 (𝜑 → ((𝑂𝐺)‘𝑁) = (0g𝑅))
112111oveq2d 7365 . . . . . . . 8 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)((𝑂𝐺)‘𝑁)) = (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)(0g𝑅)))
11398, 14ffvelcdmd 7019 . . . . . . . . 9 (𝜑 → ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁) ∈ 𝐾)
1147, 94, 17ringrz 20179 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁) ∈ 𝐾) → (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)(0g𝑅)) = (0g𝑅))
1153, 113, 114syl2anc 584 . . . . . . . 8 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)(0g𝑅)) = (0g𝑅))
116112, 115eqtrd 2764 . . . . . . 7 (𝜑 → (((𝑂‘(𝐹(quot1p𝑅)𝐺))‘𝑁)(.r𝑅)((𝑂𝐺)‘𝑁)) = (0g𝑅))
11797, 103, 1163eqtrd 2768 . . . . . 6 (𝜑 → ((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁) = (0g𝑅))
118117oveq1d 7364 . . . . 5 (𝜑 → (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))‘𝑁)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((0g𝑅)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)))
119 ringgrp 20123 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1203, 119syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
12185, 14ffvelcdmd 7019 . . . . . 6 (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) ∈ 𝐾)
1227, 79, 17grplid 18846 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑂‘(𝐹𝐸𝐺))‘𝑁) ∈ 𝐾) → ((0g𝑅)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁))
123120, 121, 122syl2anc 584 . . . . 5 (𝜑 → ((0g𝑅)(+g𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁))
12488, 118, 1233eqtrd 2768 . . . 4 (𝜑 → (((𝑂‘((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∘f (+g𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁))
12549fveq2d 6826 . . . . . . 7 (𝜑 → (𝑂‘(𝐹𝐸𝐺)) = (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))))
126 eqid 2729 . . . . . . . . . . 11 (coe1‘(𝐹𝐸𝐺)) = (coe1‘(𝐹𝐸𝐺))
127126, 6, 5, 7coe1f 22094 . . . . . . . . . 10 ((𝐹𝐸𝐺) ∈ 𝐵 → (coe1‘(𝐹𝐸𝐺)):ℕ0𝐾)
12841, 127syl 17 . . . . . . . . 9 (𝜑 → (coe1‘(𝐹𝐸𝐺)):ℕ0𝐾)
129 ffvelcdm 7015 . . . . . . . . 9 (((coe1‘(𝐹𝐸𝐺)):ℕ0𝐾 ∧ 0 ∈ ℕ0) → ((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾)
130128, 30, 129sylancl 586 . . . . . . . 8 (𝜑 → ((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾)
13112, 5, 7, 10evl1sca 22219 . . . . . . . 8 ((𝑅 ∈ CRing ∧ ((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾) → (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)}))
13213, 130, 131syl2anc 584 . . . . . . 7 (𝜑 → (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)}))
133125, 132eqtrd 2764 . . . . . 6 (𝜑 → (𝑂‘(𝐹𝐸𝐺)) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)}))
134133fveq1d 6824 . . . . 5 (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) = ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁))
135 fvex 6835 . . . . . . 7 ((coe1‘(𝐹𝐸𝐺))‘0) ∈ V
136135fvconst2 7140 . . . . . 6 (𝑁𝐾 → ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0))
13714, 136syl 17 . . . . 5 (𝜑 → ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0))
138134, 137eqtrd 2764 . . . 4 (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0))
13982, 124, 1383eqtrd 2768 . . 3 (𝜑 → ((𝑂𝐹)‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0))
140139fveq2d 6826 . 2 (𝜑 → (𝐴‘((𝑂𝐹)‘𝑁)) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0)))
14149, 140eqtr4d 2767 1 (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((𝑂𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3436  cun 3901  {csn 4577   class class class wbr 5092   × cxp 5617  ccnv 5618  cima 5622   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  0cc0 11009  1c1 11010   + caddc 11012  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  0cn0 12384  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  0gc0g 17343  s cpws 17350  Grpcgrp 18812  -gcsg 18814   GrpHom cghm 19091  Ringcrg 20118  CRingccrg 20119   RingHom crh 20354  NzRingcnzr 20397  algSccascl 21759  var1cv1 22058  Poly1cpl1 22059  coe1cco1 22060  eval1ce1 22199  deg1cdg1 25957  Monic1pcmn1 26029  Unic1pcuc1p 26030  quot1pcq1p 26031  rem1pcr1p 26032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-lmod 20765  df-lss 20835  df-lsp 20875  df-cnfld 21262  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-evl1 22201  df-mdeg 25958  df-deg1 25959  df-mon1 26034  df-uc1p 26035  df-q1p 26036  df-r1p 26037
This theorem is referenced by:  facth1  26070
  Copyright terms: Public domain W3C validator