Proof of Theorem ply1rem
Step | Hyp | Ref
| Expression |
1 | | ply1rem.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ NzRing) |
2 | | nzrring 20532 |
. . . . . . . . 9
⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
3 | 1, 2 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
4 | | ply1rem.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
5 | | ply1rem.p |
. . . . . . . . . . 11
⊢ 𝑃 = (Poly1‘𝑅) |
6 | | ply1rem.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑃) |
7 | | ply1rem.k |
. . . . . . . . . . 11
⊢ 𝐾 = (Base‘𝑅) |
8 | | ply1rem.x |
. . . . . . . . . . 11
⊢ 𝑋 = (var1‘𝑅) |
9 | | ply1rem.m |
. . . . . . . . . . 11
⊢ − =
(-g‘𝑃) |
10 | | ply1rem.a |
. . . . . . . . . . 11
⊢ 𝐴 = (algSc‘𝑃) |
11 | | ply1rem.g |
. . . . . . . . . . 11
⊢ 𝐺 = (𝑋 − (𝐴‘𝑁)) |
12 | | ply1rem.o |
. . . . . . . . . . 11
⊢ 𝑂 = (eval1‘𝑅) |
13 | | ply1rem.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ CRing) |
14 | | ply1rem.3 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ 𝐾) |
15 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Monic1p‘𝑅) = (Monic1p‘𝑅) |
16 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (
deg1 ‘𝑅) =
( deg1 ‘𝑅) |
17 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(0g‘𝑅) = (0g‘𝑅) |
18 | 5, 6, 7, 8, 9, 10,
11, 12, 1, 13, 14, 15, 16, 17 | ply1remlem 25327 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 ∈ (Monic1p‘𝑅) ∧ (( deg1
‘𝑅)‘𝐺) = 1 ∧ (◡(𝑂‘𝐺) “ {(0g‘𝑅)}) = {𝑁})) |
19 | 18 | simp1d 1141 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ (Monic1p‘𝑅)) |
20 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Unic1p‘𝑅) = (Unic1p‘𝑅) |
21 | 20, 15 | mon1puc1p 25315 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈
(Monic1p‘𝑅)) → 𝐺 ∈ (Unic1p‘𝑅)) |
22 | 3, 19, 21 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ (Unic1p‘𝑅)) |
23 | | ply1rem.e |
. . . . . . . . 9
⊢ 𝐸 = (rem1p‘𝑅) |
24 | 23, 5, 6, 20, 16 | r1pdeglt 25323 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ (Unic1p‘𝑅)) → (( deg1
‘𝑅)‘(𝐹𝐸𝐺)) < (( deg1 ‘𝑅)‘𝐺)) |
25 | 3, 4, 22, 24 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → (( deg1
‘𝑅)‘(𝐹𝐸𝐺)) < (( deg1 ‘𝑅)‘𝐺)) |
26 | 18 | simp2d 1142 |
. . . . . . 7
⊢ (𝜑 → (( deg1
‘𝑅)‘𝐺) = 1) |
27 | 25, 26 | breqtrd 5100 |
. . . . . 6
⊢ (𝜑 → (( deg1
‘𝑅)‘(𝐹𝐸𝐺)) < 1) |
28 | | 1e0p1 12479 |
. . . . . 6
⊢ 1 = (0 +
1) |
29 | 27, 28 | breqtrdi 5115 |
. . . . 5
⊢ (𝜑 → (( deg1
‘𝑅)‘(𝐹𝐸𝐺)) < (0 + 1)) |
30 | | 0nn0 12248 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
31 | | nn0leltp1 12379 |
. . . . . 6
⊢ ((((
deg1 ‘𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∧ 0 ∈
ℕ0) → ((( deg1 ‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (( deg1
‘𝑅)‘(𝐹𝐸𝐺)) < (0 + 1))) |
32 | 30, 31 | mpan2 688 |
. . . . 5
⊢ (((
deg1 ‘𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 → (((
deg1 ‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (( deg1
‘𝑅)‘(𝐹𝐸𝐺)) < (0 + 1))) |
33 | 29, 32 | syl5ibrcom 246 |
. . . 4
⊢ (𝜑 → ((( deg1
‘𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 → ((
deg1 ‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0)) |
34 | | elsni 4578 |
. . . . . 6
⊢ (((
deg1 ‘𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} → ((
deg1 ‘𝑅)‘(𝐹𝐸𝐺)) = -∞) |
35 | | 0xr 11022 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
36 | | mnfle 12870 |
. . . . . . 7
⊢ (0 ∈
ℝ* → -∞ ≤ 0) |
37 | 35, 36 | ax-mp 5 |
. . . . . 6
⊢ -∞
≤ 0 |
38 | 34, 37 | eqbrtrdi 5113 |
. . . . 5
⊢ (((
deg1 ‘𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} → ((
deg1 ‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0) |
39 | 38 | a1i 11 |
. . . 4
⊢ (𝜑 → ((( deg1
‘𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} → ((
deg1 ‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0)) |
40 | 23, 5, 6, 20 | r1pcl 25322 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ (Unic1p‘𝑅)) → (𝐹𝐸𝐺) ∈ 𝐵) |
41 | 3, 4, 22, 40 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → (𝐹𝐸𝐺) ∈ 𝐵) |
42 | 16, 5, 6 | deg1cl 25248 |
. . . . . 6
⊢ ((𝐹𝐸𝐺) ∈ 𝐵 → (( deg1 ‘𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪
{-∞})) |
43 | 41, 42 | syl 17 |
. . . . 5
⊢ (𝜑 → (( deg1
‘𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪
{-∞})) |
44 | | elun 4083 |
. . . . 5
⊢ (((
deg1 ‘𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪
{-∞}) ↔ ((( deg1 ‘𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∨ ((
deg1 ‘𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞})) |
45 | 43, 44 | sylib 217 |
. . . 4
⊢ (𝜑 → ((( deg1
‘𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∨ ((
deg1 ‘𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞})) |
46 | 33, 39, 45 | mpjaod 857 |
. . 3
⊢ (𝜑 → (( deg1
‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0) |
47 | 16, 5, 6, 10 | deg1le0 25276 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝐹𝐸𝐺) ∈ 𝐵) → ((( deg1 ‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0)))) |
48 | 3, 41, 47 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((( deg1
‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0)))) |
49 | 46, 48 | mpbid 231 |
. 2
⊢ (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) |
50 | | eqid 2738 |
. . . . . . . . 9
⊢
(quot1p‘𝑅) = (quot1p‘𝑅) |
51 | | eqid 2738 |
. . . . . . . . 9
⊢
(.r‘𝑃) = (.r‘𝑃) |
52 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘𝑃) = (+g‘𝑃) |
53 | 5, 6, 20, 50, 23, 51, 52 | r1pid 25324 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ (Unic1p‘𝑅)) → 𝐹 = (((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)(+g‘𝑃)(𝐹𝐸𝐺))) |
54 | 3, 4, 22, 53 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → 𝐹 = (((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)(+g‘𝑃)(𝐹𝐸𝐺))) |
55 | 54 | fveq2d 6778 |
. . . . . 6
⊢ (𝜑 → (𝑂‘𝐹) = (𝑂‘(((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)(+g‘𝑃)(𝐹𝐸𝐺)))) |
56 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑅 ↑s 𝐾) = (𝑅 ↑s 𝐾) |
57 | 12, 5, 56, 7 | evl1rhm 21498 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾))) |
58 | 13, 57 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾))) |
59 | | rhmghm 19969 |
. . . . . . . 8
⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾)) → 𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐾))) |
60 | 58, 59 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐾))) |
61 | 5 | ply1ring 21419 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
62 | 3, 61 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ Ring) |
63 | 50, 5, 6, 20 | q1pcl 25320 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ (Unic1p‘𝑅)) → (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵) |
64 | 3, 4, 22, 63 | syl3anc 1370 |
. . . . . . . 8
⊢ (𝜑 → (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵) |
65 | 5, 6, 15 | mon1pcl 25309 |
. . . . . . . . 9
⊢ (𝐺 ∈
(Monic1p‘𝑅) → 𝐺 ∈ 𝐵) |
66 | 19, 65 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
67 | 6, 51 | ringcl 19800 |
. . . . . . . 8
⊢ ((𝑃 ∈ Ring ∧ (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) |
68 | 62, 64, 66, 67 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) |
69 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘(𝑅 ↑s 𝐾)) = (+g‘(𝑅 ↑s 𝐾)) |
70 | 6, 52, 69 | ghmlin 18839 |
. . . . . . 7
⊢ ((𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐾)) ∧ ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵 ∧ (𝐹𝐸𝐺) ∈ 𝐵) → (𝑂‘(((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)(+g‘𝑃)(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))(+g‘(𝑅 ↑s 𝐾))(𝑂‘(𝐹𝐸𝐺)))) |
71 | 60, 68, 41, 70 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → (𝑂‘(((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)(+g‘𝑃)(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))(+g‘(𝑅 ↑s 𝐾))(𝑂‘(𝐹𝐸𝐺)))) |
72 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘(𝑅
↑s 𝐾)) = (Base‘(𝑅 ↑s 𝐾)) |
73 | 7 | fvexi 6788 |
. . . . . . . 8
⊢ 𝐾 ∈ V |
74 | 73 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ V) |
75 | 6, 72 | rhmf 19970 |
. . . . . . . . 9
⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅 ↑s 𝐾))) |
76 | 58, 75 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑂:𝐵⟶(Base‘(𝑅 ↑s 𝐾))) |
77 | 76, 68 | ffvelrnd 6962 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∈ (Base‘(𝑅 ↑s 𝐾))) |
78 | 76, 41 | ffvelrnd 6962 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘(𝐹𝐸𝐺)) ∈ (Base‘(𝑅 ↑s 𝐾))) |
79 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝑅) = (+g‘𝑅) |
80 | 56, 72, 1, 74, 77, 78, 79, 69 | pwsplusgval 17201 |
. . . . . 6
⊢ (𝜑 → ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))(+g‘(𝑅 ↑s 𝐾))(𝑂‘(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∘f
(+g‘𝑅)(𝑂‘(𝐹𝐸𝐺)))) |
81 | 55, 71, 80 | 3eqtrd 2782 |
. . . . 5
⊢ (𝜑 → (𝑂‘𝐹) = ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∘f
(+g‘𝑅)(𝑂‘(𝐹𝐸𝐺)))) |
82 | 81 | fveq1d 6776 |
. . . 4
⊢ (𝜑 → ((𝑂‘𝐹)‘𝑁) = (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∘f
(+g‘𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁)) |
83 | 56, 7, 72, 1, 74, 77 | pwselbas 17200 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)):𝐾⟶𝐾) |
84 | 83 | ffnd 6601 |
. . . . . 6
⊢ (𝜑 → (𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) Fn 𝐾) |
85 | 56, 7, 72, 1, 74, 78 | pwselbas 17200 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘(𝐹𝐸𝐺)):𝐾⟶𝐾) |
86 | 85 | ffnd 6601 |
. . . . . 6
⊢ (𝜑 → (𝑂‘(𝐹𝐸𝐺)) Fn 𝐾) |
87 | | fnfvof 7550 |
. . . . . 6
⊢ ((((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) Fn 𝐾 ∧ (𝑂‘(𝐹𝐸𝐺)) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑁 ∈ 𝐾)) → (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∘f
(+g‘𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))‘𝑁)(+g‘𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁))) |
88 | 84, 86, 74, 14, 87 | syl22anc 836 |
. . . . 5
⊢ (𝜑 → (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∘f
(+g‘𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))‘𝑁)(+g‘𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁))) |
89 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(.r‘(𝑅 ↑s 𝐾)) = (.r‘(𝑅 ↑s 𝐾)) |
90 | 6, 51, 89 | rhmmul 19971 |
. . . . . . . . . 10
⊢ ((𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾)) ∧ (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p‘𝑅)𝐺))(.r‘(𝑅 ↑s 𝐾))(𝑂‘𝐺))) |
91 | 58, 64, 66, 90 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → (𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p‘𝑅)𝐺))(.r‘(𝑅 ↑s 𝐾))(𝑂‘𝐺))) |
92 | 76, 64 | ffvelrnd 6962 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑂‘(𝐹(quot1p‘𝑅)𝐺)) ∈ (Base‘(𝑅 ↑s 𝐾))) |
93 | 76, 66 | ffvelrnd 6962 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑂‘𝐺) ∈ (Base‘(𝑅 ↑s 𝐾))) |
94 | | eqid 2738 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) |
95 | 56, 72, 1, 74, 92, 93, 94, 89 | pwsmulrval 17202 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑂‘(𝐹(quot1p‘𝑅)𝐺))(.r‘(𝑅 ↑s 𝐾))(𝑂‘𝐺)) = ((𝑂‘(𝐹(quot1p‘𝑅)𝐺)) ∘f
(.r‘𝑅)(𝑂‘𝐺))) |
96 | 91, 95 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 → (𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p‘𝑅)𝐺)) ∘f
(.r‘𝑅)(𝑂‘𝐺))) |
97 | 96 | fveq1d 6776 |
. . . . . . 7
⊢ (𝜑 → ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p‘𝑅)𝐺)) ∘f
(.r‘𝑅)(𝑂‘𝐺))‘𝑁)) |
98 | 56, 7, 72, 1, 74, 92 | pwselbas 17200 |
. . . . . . . . 9
⊢ (𝜑 → (𝑂‘(𝐹(quot1p‘𝑅)𝐺)):𝐾⟶𝐾) |
99 | 98 | ffnd 6601 |
. . . . . . . 8
⊢ (𝜑 → (𝑂‘(𝐹(quot1p‘𝑅)𝐺)) Fn 𝐾) |
100 | 56, 7, 72, 1, 74, 93 | pwselbas 17200 |
. . . . . . . . 9
⊢ (𝜑 → (𝑂‘𝐺):𝐾⟶𝐾) |
101 | 100 | ffnd 6601 |
. . . . . . . 8
⊢ (𝜑 → (𝑂‘𝐺) Fn 𝐾) |
102 | | fnfvof 7550 |
. . . . . . . 8
⊢ ((((𝑂‘(𝐹(quot1p‘𝑅)𝐺)) Fn 𝐾 ∧ (𝑂‘𝐺) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑁 ∈ 𝐾)) → (((𝑂‘(𝐹(quot1p‘𝑅)𝐺)) ∘f
(.r‘𝑅)(𝑂‘𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)((𝑂‘𝐺)‘𝑁))) |
103 | 99, 101, 74, 14, 102 | syl22anc 836 |
. . . . . . 7
⊢ (𝜑 → (((𝑂‘(𝐹(quot1p‘𝑅)𝐺)) ∘f
(.r‘𝑅)(𝑂‘𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)((𝑂‘𝐺)‘𝑁))) |
104 | | snidg 4595 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ 𝐾 → 𝑁 ∈ {𝑁}) |
105 | 14, 104 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ {𝑁}) |
106 | 18 | simp3d 1143 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡(𝑂‘𝐺) “ {(0g‘𝑅)}) = {𝑁}) |
107 | 105, 106 | eleqtrrd 2842 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ (◡(𝑂‘𝐺) “ {(0g‘𝑅)})) |
108 | | fniniseg 6937 |
. . . . . . . . . . . 12
⊢ ((𝑂‘𝐺) Fn 𝐾 → (𝑁 ∈ (◡(𝑂‘𝐺) “ {(0g‘𝑅)}) ↔ (𝑁 ∈ 𝐾 ∧ ((𝑂‘𝐺)‘𝑁) = (0g‘𝑅)))) |
109 | 101, 108 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 ∈ (◡(𝑂‘𝐺) “ {(0g‘𝑅)}) ↔ (𝑁 ∈ 𝐾 ∧ ((𝑂‘𝐺)‘𝑁) = (0g‘𝑅)))) |
110 | 107, 109 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 ∈ 𝐾 ∧ ((𝑂‘𝐺)‘𝑁) = (0g‘𝑅))) |
111 | 110 | simprd 496 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑂‘𝐺)‘𝑁) = (0g‘𝑅)) |
112 | 111 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝜑 → (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)((𝑂‘𝐺)‘𝑁)) = (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)(0g‘𝑅))) |
113 | 98, 14 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁) ∈ 𝐾) |
114 | 7, 94, 17 | ringrz 19827 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ ((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁) ∈ 𝐾) → (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
115 | 3, 113, 114 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
116 | 112, 115 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)((𝑂‘𝐺)‘𝑁)) = (0g‘𝑅)) |
117 | 97, 103, 116 | 3eqtrd 2782 |
. . . . . 6
⊢ (𝜑 → ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))‘𝑁) = (0g‘𝑅)) |
118 | 117 | oveq1d 7290 |
. . . . 5
⊢ (𝜑 → (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))‘𝑁)(+g‘𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((0g‘𝑅)(+g‘𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁))) |
119 | | ringgrp 19788 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
120 | 3, 119 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Grp) |
121 | 85, 14 | ffvelrnd 6962 |
. . . . . 6
⊢ (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) ∈ 𝐾) |
122 | 7, 79, 17 | grplid 18609 |
. . . . . 6
⊢ ((𝑅 ∈ Grp ∧ ((𝑂‘(𝐹𝐸𝐺))‘𝑁) ∈ 𝐾) → ((0g‘𝑅)(+g‘𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁)) |
123 | 120, 121,
122 | syl2anc 584 |
. . . . 5
⊢ (𝜑 →
((0g‘𝑅)(+g‘𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁)) |
124 | 88, 118, 123 | 3eqtrd 2782 |
. . . 4
⊢ (𝜑 → (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∘f
(+g‘𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁)) |
125 | 49 | fveq2d 6778 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘(𝐹𝐸𝐺)) = (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0)))) |
126 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(coe1‘(𝐹𝐸𝐺)) = (coe1‘(𝐹𝐸𝐺)) |
127 | 126, 6, 5, 7 | coe1f 21382 |
. . . . . . . . . 10
⊢ ((𝐹𝐸𝐺) ∈ 𝐵 → (coe1‘(𝐹𝐸𝐺)):ℕ0⟶𝐾) |
128 | 41, 127 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 →
(coe1‘(𝐹𝐸𝐺)):ℕ0⟶𝐾) |
129 | | ffvelrn 6959 |
. . . . . . . . 9
⊢
(((coe1‘(𝐹𝐸𝐺)):ℕ0⟶𝐾 ∧ 0 ∈
ℕ0) → ((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾) |
130 | 128, 30, 129 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 →
((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾) |
131 | 12, 5, 7, 10 | evl1sca 21500 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧
((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾) → (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})) |
132 | 13, 130, 131 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})) |
133 | 125, 132 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → (𝑂‘(𝐹𝐸𝐺)) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})) |
134 | 133 | fveq1d 6776 |
. . . . 5
⊢ (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) = ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁)) |
135 | | fvex 6787 |
. . . . . . 7
⊢
((coe1‘(𝐹𝐸𝐺))‘0) ∈ V |
136 | 135 | fvconst2 7079 |
. . . . . 6
⊢ (𝑁 ∈ 𝐾 → ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0)) |
137 | 14, 136 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0)) |
138 | 134, 137 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0)) |
139 | 82, 124, 138 | 3eqtrd 2782 |
. . 3
⊢ (𝜑 → ((𝑂‘𝐹)‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0)) |
140 | 139 | fveq2d 6778 |
. 2
⊢ (𝜑 → (𝐴‘((𝑂‘𝐹)‘𝑁)) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) |
141 | 49, 140 | eqtr4d 2781 |
1
⊢ (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((𝑂‘𝐹)‘𝑁))) |