Proof of Theorem ply1rem
| Step | Hyp | Ref
| Expression |
| 1 | | ply1rem.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ NzRing) |
| 2 | | nzrring 20481 |
. . . . . . . . 9
⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| 3 | 1, 2 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 4 | | ply1rem.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 5 | | ply1rem.p |
. . . . . . . . . . 11
⊢ 𝑃 = (Poly1‘𝑅) |
| 6 | | ply1rem.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑃) |
| 7 | | ply1rem.k |
. . . . . . . . . . 11
⊢ 𝐾 = (Base‘𝑅) |
| 8 | | ply1rem.x |
. . . . . . . . . . 11
⊢ 𝑋 = (var1‘𝑅) |
| 9 | | ply1rem.m |
. . . . . . . . . . 11
⊢ − =
(-g‘𝑃) |
| 10 | | ply1rem.a |
. . . . . . . . . . 11
⊢ 𝐴 = (algSc‘𝑃) |
| 11 | | ply1rem.g |
. . . . . . . . . . 11
⊢ 𝐺 = (𝑋 − (𝐴‘𝑁)) |
| 12 | | ply1rem.o |
. . . . . . . . . . 11
⊢ 𝑂 = (eval1‘𝑅) |
| 13 | | ply1rem.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 14 | | ply1rem.3 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ 𝐾) |
| 15 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(Monic1p‘𝑅) = (Monic1p‘𝑅) |
| 16 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(deg1‘𝑅) = (deg1‘𝑅) |
| 17 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 18 | 5, 6, 7, 8, 9, 10,
11, 12, 1, 13, 14, 15, 16, 17 | ply1remlem 26127 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 ∈ (Monic1p‘𝑅) ∧
((deg1‘𝑅)‘𝐺) = 1 ∧ (◡(𝑂‘𝐺) “ {(0g‘𝑅)}) = {𝑁})) |
| 19 | 18 | simp1d 1142 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ (Monic1p‘𝑅)) |
| 20 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Unic1p‘𝑅) = (Unic1p‘𝑅) |
| 21 | 20, 15 | mon1puc1p 26113 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈
(Monic1p‘𝑅)) → 𝐺 ∈ (Unic1p‘𝑅)) |
| 22 | 3, 19, 21 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ (Unic1p‘𝑅)) |
| 23 | | ply1rem.e |
. . . . . . . . 9
⊢ 𝐸 = (rem1p‘𝑅) |
| 24 | 23, 5, 6, 20, 16 | r1pdeglt 26122 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ (Unic1p‘𝑅)) →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) < ((deg1‘𝑅)‘𝐺)) |
| 25 | 3, 4, 22, 24 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) < ((deg1‘𝑅)‘𝐺)) |
| 26 | 18 | simp2d 1143 |
. . . . . . 7
⊢ (𝜑 →
((deg1‘𝑅)‘𝐺) = 1) |
| 27 | 25, 26 | breqtrd 5150 |
. . . . . 6
⊢ (𝜑 →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) < 1) |
| 28 | | 1e0p1 12755 |
. . . . . 6
⊢ 1 = (0 +
1) |
| 29 | 27, 28 | breqtrdi 5165 |
. . . . 5
⊢ (𝜑 →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) < (0 + 1)) |
| 30 | | 0nn0 12521 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
| 31 | | nn0leltp1 12657 |
. . . . . 6
⊢
((((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∧ 0 ∈
ℕ0) → (((deg1‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔
((deg1‘𝑅)‘(𝐹𝐸𝐺)) < (0 + 1))) |
| 32 | 30, 31 | mpan2 691 |
. . . . 5
⊢
(((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 →
(((deg1‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔
((deg1‘𝑅)‘(𝐹𝐸𝐺)) < (0 + 1))) |
| 33 | 29, 32 | syl5ibrcom 247 |
. . . 4
⊢ (𝜑 →
(((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0)) |
| 34 | | elsni 4623 |
. . . . . 6
⊢
(((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) = -∞) |
| 35 | | 0xr 11287 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
| 36 | | mnfle 13156 |
. . . . . . 7
⊢ (0 ∈
ℝ* → -∞ ≤ 0) |
| 37 | 35, 36 | ax-mp 5 |
. . . . . 6
⊢ -∞
≤ 0 |
| 38 | 34, 37 | eqbrtrdi 5163 |
. . . . 5
⊢
(((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0) |
| 39 | 38 | a1i 11 |
. . . 4
⊢ (𝜑 →
(((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞} →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0)) |
| 40 | 23, 5, 6, 20 | r1pcl 26121 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ (Unic1p‘𝑅)) → (𝐹𝐸𝐺) ∈ 𝐵) |
| 41 | 3, 4, 22, 40 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → (𝐹𝐸𝐺) ∈ 𝐵) |
| 42 | 16, 5, 6 | deg1cl 26045 |
. . . . . 6
⊢ ((𝐹𝐸𝐺) ∈ 𝐵 → ((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪
{-∞})) |
| 43 | 41, 42 | syl 17 |
. . . . 5
⊢ (𝜑 →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪
{-∞})) |
| 44 | | elun 4133 |
. . . . 5
⊢
(((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ (ℕ0 ∪
{-∞}) ↔ (((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∨
((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞})) |
| 45 | 43, 44 | sylib 218 |
. . . 4
⊢ (𝜑 →
(((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ ℕ0 ∨
((deg1‘𝑅)‘(𝐹𝐸𝐺)) ∈ {-∞})) |
| 46 | 33, 39, 45 | mpjaod 860 |
. . 3
⊢ (𝜑 →
((deg1‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0) |
| 47 | 16, 5, 6, 10 | deg1le0 26073 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝐹𝐸𝐺) ∈ 𝐵) → (((deg1‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0)))) |
| 48 | 3, 41, 47 | syl2anc 584 |
. . 3
⊢ (𝜑 →
(((deg1‘𝑅)‘(𝐹𝐸𝐺)) ≤ 0 ↔ (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0)))) |
| 49 | 46, 48 | mpbid 232 |
. 2
⊢ (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) |
| 50 | | eqid 2736 |
. . . . . . . . 9
⊢
(quot1p‘𝑅) = (quot1p‘𝑅) |
| 51 | | eqid 2736 |
. . . . . . . . 9
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 52 | | eqid 2736 |
. . . . . . . . 9
⊢
(+g‘𝑃) = (+g‘𝑃) |
| 53 | 5, 6, 20, 50, 23, 51, 52 | r1pid 26123 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ (Unic1p‘𝑅)) → 𝐹 = (((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)(+g‘𝑃)(𝐹𝐸𝐺))) |
| 54 | 3, 4, 22, 53 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → 𝐹 = (((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)(+g‘𝑃)(𝐹𝐸𝐺))) |
| 55 | 54 | fveq2d 6885 |
. . . . . 6
⊢ (𝜑 → (𝑂‘𝐹) = (𝑂‘(((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)(+g‘𝑃)(𝐹𝐸𝐺)))) |
| 56 | | eqid 2736 |
. . . . . . . . . 10
⊢ (𝑅 ↑s 𝐾) = (𝑅 ↑s 𝐾) |
| 57 | 12, 5, 56, 7 | evl1rhm 22275 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾))) |
| 58 | 13, 57 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾))) |
| 59 | | rhmghm 20449 |
. . . . . . . 8
⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾)) → 𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐾))) |
| 60 | 58, 59 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐾))) |
| 61 | 5 | ply1ring 22188 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 62 | 3, 61 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ Ring) |
| 63 | 50, 5, 6, 20 | q1pcl 26119 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ (Unic1p‘𝑅)) → (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵) |
| 64 | 3, 4, 22, 63 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵) |
| 65 | 5, 6, 15 | mon1pcl 26107 |
. . . . . . . . 9
⊢ (𝐺 ∈
(Monic1p‘𝑅) → 𝐺 ∈ 𝐵) |
| 66 | 19, 65 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| 67 | 6, 51 | ringcl 20215 |
. . . . . . . 8
⊢ ((𝑃 ∈ Ring ∧ (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) |
| 68 | 62, 64, 66, 67 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) |
| 69 | | eqid 2736 |
. . . . . . . 8
⊢
(+g‘(𝑅 ↑s 𝐾)) = (+g‘(𝑅 ↑s 𝐾)) |
| 70 | 6, 52, 69 | ghmlin 19209 |
. . . . . . 7
⊢ ((𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐾)) ∧ ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵 ∧ (𝐹𝐸𝐺) ∈ 𝐵) → (𝑂‘(((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)(+g‘𝑃)(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))(+g‘(𝑅 ↑s 𝐾))(𝑂‘(𝐹𝐸𝐺)))) |
| 71 | 60, 68, 41, 70 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → (𝑂‘(((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)(+g‘𝑃)(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))(+g‘(𝑅 ↑s 𝐾))(𝑂‘(𝐹𝐸𝐺)))) |
| 72 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘(𝑅
↑s 𝐾)) = (Base‘(𝑅 ↑s 𝐾)) |
| 73 | 7 | fvexi 6895 |
. . . . . . . 8
⊢ 𝐾 ∈ V |
| 74 | 73 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ V) |
| 75 | 6, 72 | rhmf 20450 |
. . . . . . . . 9
⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅 ↑s 𝐾))) |
| 76 | 58, 75 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑂:𝐵⟶(Base‘(𝑅 ↑s 𝐾))) |
| 77 | 76, 68 | ffvelcdmd 7080 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∈ (Base‘(𝑅 ↑s 𝐾))) |
| 78 | 76, 41 | ffvelcdmd 7080 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘(𝐹𝐸𝐺)) ∈ (Base‘(𝑅 ↑s 𝐾))) |
| 79 | | eqid 2736 |
. . . . . . 7
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 80 | 56, 72, 1, 74, 77, 78, 79, 69 | pwsplusgval 17509 |
. . . . . 6
⊢ (𝜑 → ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))(+g‘(𝑅 ↑s 𝐾))(𝑂‘(𝐹𝐸𝐺))) = ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∘f
(+g‘𝑅)(𝑂‘(𝐹𝐸𝐺)))) |
| 81 | 55, 71, 80 | 3eqtrd 2775 |
. . . . 5
⊢ (𝜑 → (𝑂‘𝐹) = ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∘f
(+g‘𝑅)(𝑂‘(𝐹𝐸𝐺)))) |
| 82 | 81 | fveq1d 6883 |
. . . 4
⊢ (𝜑 → ((𝑂‘𝐹)‘𝑁) = (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∘f
(+g‘𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁)) |
| 83 | 56, 7, 72, 1, 74, 77 | pwselbas 17508 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)):𝐾⟶𝐾) |
| 84 | 83 | ffnd 6712 |
. . . . . 6
⊢ (𝜑 → (𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) Fn 𝐾) |
| 85 | 56, 7, 72, 1, 74, 78 | pwselbas 17508 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘(𝐹𝐸𝐺)):𝐾⟶𝐾) |
| 86 | 85 | ffnd 6712 |
. . . . . 6
⊢ (𝜑 → (𝑂‘(𝐹𝐸𝐺)) Fn 𝐾) |
| 87 | | fnfvof 7693 |
. . . . . 6
⊢ ((((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) Fn 𝐾 ∧ (𝑂‘(𝐹𝐸𝐺)) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑁 ∈ 𝐾)) → (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∘f
(+g‘𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))‘𝑁)(+g‘𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁))) |
| 88 | 84, 86, 74, 14, 87 | syl22anc 838 |
. . . . 5
⊢ (𝜑 → (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∘f
(+g‘𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))‘𝑁)(+g‘𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁))) |
| 89 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(.r‘(𝑅 ↑s 𝐾)) = (.r‘(𝑅 ↑s 𝐾)) |
| 90 | 6, 51, 89 | rhmmul 20451 |
. . . . . . . . . 10
⊢ ((𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾)) ∧ (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p‘𝑅)𝐺))(.r‘(𝑅 ↑s 𝐾))(𝑂‘𝐺))) |
| 91 | 58, 64, 66, 90 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → (𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p‘𝑅)𝐺))(.r‘(𝑅 ↑s 𝐾))(𝑂‘𝐺))) |
| 92 | 76, 64 | ffvelcdmd 7080 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑂‘(𝐹(quot1p‘𝑅)𝐺)) ∈ (Base‘(𝑅 ↑s 𝐾))) |
| 93 | 76, 66 | ffvelcdmd 7080 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑂‘𝐺) ∈ (Base‘(𝑅 ↑s 𝐾))) |
| 94 | | eqid 2736 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 95 | 56, 72, 1, 74, 92, 93, 94, 89 | pwsmulrval 17510 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑂‘(𝐹(quot1p‘𝑅)𝐺))(.r‘(𝑅 ↑s 𝐾))(𝑂‘𝐺)) = ((𝑂‘(𝐹(quot1p‘𝑅)𝐺)) ∘f
(.r‘𝑅)(𝑂‘𝐺))) |
| 96 | 91, 95 | eqtrd 2771 |
. . . . . . . 8
⊢ (𝜑 → (𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) = ((𝑂‘(𝐹(quot1p‘𝑅)𝐺)) ∘f
(.r‘𝑅)(𝑂‘𝐺))) |
| 97 | 96 | fveq1d 6883 |
. . . . . . 7
⊢ (𝜑 → ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p‘𝑅)𝐺)) ∘f
(.r‘𝑅)(𝑂‘𝐺))‘𝑁)) |
| 98 | 56, 7, 72, 1, 74, 92 | pwselbas 17508 |
. . . . . . . . 9
⊢ (𝜑 → (𝑂‘(𝐹(quot1p‘𝑅)𝐺)):𝐾⟶𝐾) |
| 99 | 98 | ffnd 6712 |
. . . . . . . 8
⊢ (𝜑 → (𝑂‘(𝐹(quot1p‘𝑅)𝐺)) Fn 𝐾) |
| 100 | 56, 7, 72, 1, 74, 93 | pwselbas 17508 |
. . . . . . . . 9
⊢ (𝜑 → (𝑂‘𝐺):𝐾⟶𝐾) |
| 101 | 100 | ffnd 6712 |
. . . . . . . 8
⊢ (𝜑 → (𝑂‘𝐺) Fn 𝐾) |
| 102 | | fnfvof 7693 |
. . . . . . . 8
⊢ ((((𝑂‘(𝐹(quot1p‘𝑅)𝐺)) Fn 𝐾 ∧ (𝑂‘𝐺) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑁 ∈ 𝐾)) → (((𝑂‘(𝐹(quot1p‘𝑅)𝐺)) ∘f
(.r‘𝑅)(𝑂‘𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)((𝑂‘𝐺)‘𝑁))) |
| 103 | 99, 101, 74, 14, 102 | syl22anc 838 |
. . . . . . 7
⊢ (𝜑 → (((𝑂‘(𝐹(quot1p‘𝑅)𝐺)) ∘f
(.r‘𝑅)(𝑂‘𝐺))‘𝑁) = (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)((𝑂‘𝐺)‘𝑁))) |
| 104 | | snidg 4641 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ 𝐾 → 𝑁 ∈ {𝑁}) |
| 105 | 14, 104 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ {𝑁}) |
| 106 | 18 | simp3d 1144 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡(𝑂‘𝐺) “ {(0g‘𝑅)}) = {𝑁}) |
| 107 | 105, 106 | eleqtrrd 2838 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ (◡(𝑂‘𝐺) “ {(0g‘𝑅)})) |
| 108 | | fniniseg 7055 |
. . . . . . . . . . . 12
⊢ ((𝑂‘𝐺) Fn 𝐾 → (𝑁 ∈ (◡(𝑂‘𝐺) “ {(0g‘𝑅)}) ↔ (𝑁 ∈ 𝐾 ∧ ((𝑂‘𝐺)‘𝑁) = (0g‘𝑅)))) |
| 109 | 101, 108 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 ∈ (◡(𝑂‘𝐺) “ {(0g‘𝑅)}) ↔ (𝑁 ∈ 𝐾 ∧ ((𝑂‘𝐺)‘𝑁) = (0g‘𝑅)))) |
| 110 | 107, 109 | mpbid 232 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 ∈ 𝐾 ∧ ((𝑂‘𝐺)‘𝑁) = (0g‘𝑅))) |
| 111 | 110 | simprd 495 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑂‘𝐺)‘𝑁) = (0g‘𝑅)) |
| 112 | 111 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝜑 → (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)((𝑂‘𝐺)‘𝑁)) = (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)(0g‘𝑅))) |
| 113 | 98, 14 | ffvelcdmd 7080 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁) ∈ 𝐾) |
| 114 | 7, 94, 17 | ringrz 20259 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ ((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁) ∈ 𝐾) → (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 115 | 3, 113, 114 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 116 | 112, 115 | eqtrd 2771 |
. . . . . . 7
⊢ (𝜑 → (((𝑂‘(𝐹(quot1p‘𝑅)𝐺))‘𝑁)(.r‘𝑅)((𝑂‘𝐺)‘𝑁)) = (0g‘𝑅)) |
| 117 | 97, 103, 116 | 3eqtrd 2775 |
. . . . . 6
⊢ (𝜑 → ((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))‘𝑁) = (0g‘𝑅)) |
| 118 | 117 | oveq1d 7425 |
. . . . 5
⊢ (𝜑 → (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))‘𝑁)(+g‘𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((0g‘𝑅)(+g‘𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁))) |
| 119 | | ringgrp 20203 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 120 | 3, 119 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 121 | 85, 14 | ffvelcdmd 7080 |
. . . . . 6
⊢ (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) ∈ 𝐾) |
| 122 | 7, 79, 17 | grplid 18955 |
. . . . . 6
⊢ ((𝑅 ∈ Grp ∧ ((𝑂‘(𝐹𝐸𝐺))‘𝑁) ∈ 𝐾) → ((0g‘𝑅)(+g‘𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁)) |
| 123 | 120, 121,
122 | syl2anc 584 |
. . . . 5
⊢ (𝜑 →
((0g‘𝑅)(+g‘𝑅)((𝑂‘(𝐹𝐸𝐺))‘𝑁)) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁)) |
| 124 | 88, 118, 123 | 3eqtrd 2775 |
. . . 4
⊢ (𝜑 → (((𝑂‘((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∘f
(+g‘𝑅)(𝑂‘(𝐹𝐸𝐺)))‘𝑁) = ((𝑂‘(𝐹𝐸𝐺))‘𝑁)) |
| 125 | 49 | fveq2d 6885 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘(𝐹𝐸𝐺)) = (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0)))) |
| 126 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(coe1‘(𝐹𝐸𝐺)) = (coe1‘(𝐹𝐸𝐺)) |
| 127 | 126, 6, 5, 7 | coe1f 22152 |
. . . . . . . . . 10
⊢ ((𝐹𝐸𝐺) ∈ 𝐵 → (coe1‘(𝐹𝐸𝐺)):ℕ0⟶𝐾) |
| 128 | 41, 127 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 →
(coe1‘(𝐹𝐸𝐺)):ℕ0⟶𝐾) |
| 129 | | ffvelcdm 7076 |
. . . . . . . . 9
⊢
(((coe1‘(𝐹𝐸𝐺)):ℕ0⟶𝐾 ∧ 0 ∈
ℕ0) → ((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾) |
| 130 | 128, 30, 129 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 →
((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾) |
| 131 | 12, 5, 7, 10 | evl1sca 22277 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧
((coe1‘(𝐹𝐸𝐺))‘0) ∈ 𝐾) → (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})) |
| 132 | 13, 130, 131 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘(𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})) |
| 133 | 125, 132 | eqtrd 2771 |
. . . . . 6
⊢ (𝜑 → (𝑂‘(𝐹𝐸𝐺)) = (𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})) |
| 134 | 133 | fveq1d 6883 |
. . . . 5
⊢ (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) = ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁)) |
| 135 | | fvex 6894 |
. . . . . . 7
⊢
((coe1‘(𝐹𝐸𝐺))‘0) ∈ V |
| 136 | 135 | fvconst2 7201 |
. . . . . 6
⊢ (𝑁 ∈ 𝐾 → ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0)) |
| 137 | 14, 136 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝐾 × {((coe1‘(𝐹𝐸𝐺))‘0)})‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0)) |
| 138 | 134, 137 | eqtrd 2771 |
. . . 4
⊢ (𝜑 → ((𝑂‘(𝐹𝐸𝐺))‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0)) |
| 139 | 82, 124, 138 | 3eqtrd 2775 |
. . 3
⊢ (𝜑 → ((𝑂‘𝐹)‘𝑁) = ((coe1‘(𝐹𝐸𝐺))‘0)) |
| 140 | 139 | fveq2d 6885 |
. 2
⊢ (𝜑 → (𝐴‘((𝑂‘𝐹)‘𝑁)) = (𝐴‘((coe1‘(𝐹𝐸𝐺))‘0))) |
| 141 | 49, 140 | eqtr4d 2774 |
1
⊢ (𝜑 → (𝐹𝐸𝐺) = (𝐴‘((𝑂‘𝐹)‘𝑁))) |