MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofonr Structured version   Visualization version   GIF version

Theorem cofonr 8730
Description: Inverse cofinality law for ordinals. Contrast with cofcutr 27976 for surreals. (Contributed by Scott Fenton, 20-Jan-2025.)
Hypotheses
Ref Expression
cofonr.1 (𝜑𝐴 ∈ On)
cofonr.2 (𝜑𝐴 = {𝑥 ∈ On ∣ 𝑋𝑥})
Assertion
Ref Expression
cofonr (𝜑 → ∀𝑦𝐴𝑧𝑋 𝑦𝑧)
Distinct variable groups:   𝑥,𝐴   𝑧,𝐴   𝑥,𝑋   𝑧,𝑋   𝜑,𝑥,𝑦   𝜑,𝑧,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝑋(𝑦)

Proof of Theorem cofonr
StepHypRef Expression
1 cofonr.1 . . . . . . . 8 (𝜑𝐴 ∈ On)
2 onss 7820 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ⊆ On)
31, 2syl 17 . . . . . . 7 (𝜑𝐴 ⊆ On)
43sselda 4008 . . . . . 6 ((𝜑𝑦𝐴) → 𝑦 ∈ On)
5 eloni 6405 . . . . . 6 (𝑦 ∈ On → Ord 𝑦)
6 ordirr 6413 . . . . . 6 (Ord 𝑦 → ¬ 𝑦𝑦)
74, 5, 63syl 18 . . . . 5 ((𝜑𝑦𝐴) → ¬ 𝑦𝑦)
8 cofonr.2 . . . . . . . . 9 (𝜑𝐴 = {𝑥 ∈ On ∣ 𝑋𝑥})
98adantr 480 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝐴 = {𝑥 ∈ On ∣ 𝑋𝑥})
109adantr 480 . . . . . . 7 (((𝜑𝑦𝐴) ∧ 𝑋𝑦) → 𝐴 = {𝑥 ∈ On ∣ 𝑋𝑥})
114adantr 480 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑋𝑦) → 𝑦 ∈ On)
12 simpr 484 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑋𝑦) → 𝑋𝑦)
13 sseq2 4035 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑋𝑥𝑋𝑦))
1413elrab 3708 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ On ∣ 𝑋𝑥} ↔ (𝑦 ∈ On ∧ 𝑋𝑦))
1511, 12, 14sylanbrc 582 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑋𝑦) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑋𝑥})
16 intss1 4987 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ On ∣ 𝑋𝑥} → {𝑥 ∈ On ∣ 𝑋𝑥} ⊆ 𝑦)
1715, 16syl 17 . . . . . . 7 (((𝜑𝑦𝐴) ∧ 𝑋𝑦) → {𝑥 ∈ On ∣ 𝑋𝑥} ⊆ 𝑦)
1810, 17eqsstrd 4047 . . . . . 6 (((𝜑𝑦𝐴) ∧ 𝑋𝑦) → 𝐴𝑦)
19 simplr 768 . . . . . 6 (((𝜑𝑦𝐴) ∧ 𝑋𝑦) → 𝑦𝐴)
2018, 19sseldd 4009 . . . . 5 (((𝜑𝑦𝐴) ∧ 𝑋𝑦) → 𝑦𝑦)
217, 20mtand 815 . . . 4 ((𝜑𝑦𝐴) → ¬ 𝑋𝑦)
22 dfss3 3997 . . . 4 (𝑋𝑦 ↔ ∀𝑧𝑋 𝑧𝑦)
2321, 22sylnib 328 . . 3 ((𝜑𝑦𝐴) → ¬ ∀𝑧𝑋 𝑧𝑦)
248, 1eqeltrrd 2845 . . . . . . . . . 10 (𝜑 {𝑥 ∈ On ∣ 𝑋𝑥} ∈ On)
25 onintrab2 7833 . . . . . . . . . 10 (∃𝑥 ∈ On 𝑋𝑥 {𝑥 ∈ On ∣ 𝑋𝑥} ∈ On)
2624, 25sylibr 234 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ On 𝑋𝑥)
2726adantr 480 . . . . . . . 8 ((𝜑𝑦𝐴) → ∃𝑥 ∈ On 𝑋𝑥)
28 onss 7820 . . . . . . . . . . 11 (𝑥 ∈ On → 𝑥 ⊆ On)
2928adantl 481 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑥 ∈ On) → 𝑥 ⊆ On)
30 sstr 4017 . . . . . . . . . . 11 ((𝑋𝑥𝑥 ⊆ On) → 𝑋 ⊆ On)
3130expcom 413 . . . . . . . . . 10 (𝑥 ⊆ On → (𝑋𝑥𝑋 ⊆ On))
3229, 31syl 17 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑥 ∈ On) → (𝑋𝑥𝑋 ⊆ On))
3332rexlimdva 3161 . . . . . . . 8 ((𝜑𝑦𝐴) → (∃𝑥 ∈ On 𝑋𝑥𝑋 ⊆ On))
3427, 33mpd 15 . . . . . . 7 ((𝜑𝑦𝐴) → 𝑋 ⊆ On)
3534sselda 4008 . . . . . 6 (((𝜑𝑦𝐴) ∧ 𝑧𝑋) → 𝑧 ∈ On)
36 ontri1 6429 . . . . . 6 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦𝑧 ↔ ¬ 𝑧𝑦))
374, 35, 36syl2an2r 684 . . . . 5 (((𝜑𝑦𝐴) ∧ 𝑧𝑋) → (𝑦𝑧 ↔ ¬ 𝑧𝑦))
3837rexbidva 3183 . . . 4 ((𝜑𝑦𝐴) → (∃𝑧𝑋 𝑦𝑧 ↔ ∃𝑧𝑋 ¬ 𝑧𝑦))
39 rexnal 3106 . . . 4 (∃𝑧𝑋 ¬ 𝑧𝑦 ↔ ¬ ∀𝑧𝑋 𝑧𝑦)
4038, 39bitrdi 287 . . 3 ((𝜑𝑦𝐴) → (∃𝑧𝑋 𝑦𝑧 ↔ ¬ ∀𝑧𝑋 𝑧𝑦))
4123, 40mpbird 257 . 2 ((𝜑𝑦𝐴) → ∃𝑧𝑋 𝑦𝑧)
4241ralrimiva 3152 1 (𝜑 → ∀𝑦𝐴𝑧𝑋 𝑦𝑧)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  wss 3976   cint 4970  Ord word 6394  Oncon0 6395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399
This theorem is referenced by:  naddunif  8749
  Copyright terms: Public domain W3C validator