MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofonr Structured version   Visualization version   GIF version

Theorem cofonr 8699
Description: Inverse cofinality law for ordinals. Contrast with cofcutr 27862 for surreals. (Contributed by Scott Fenton, 20-Jan-2025.)
Hypotheses
Ref Expression
cofonr.1 (𝜑𝐴 ∈ On)
cofonr.2 (𝜑𝐴 = {𝑥 ∈ On ∣ 𝑋𝑥})
Assertion
Ref Expression
cofonr (𝜑 → ∀𝑦𝐴𝑧𝑋 𝑦𝑧)
Distinct variable groups:   𝑥,𝐴   𝑧,𝐴   𝑥,𝑋   𝑧,𝑋   𝜑,𝑥,𝑦   𝜑,𝑧,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝑋(𝑦)

Proof of Theorem cofonr
StepHypRef Expression
1 cofonr.1 . . . . . . . 8 (𝜑𝐴 ∈ On)
2 onss 7791 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ⊆ On)
31, 2syl 17 . . . . . . 7 (𝜑𝐴 ⊆ On)
43sselda 3980 . . . . . 6 ((𝜑𝑦𝐴) → 𝑦 ∈ On)
5 eloni 6382 . . . . . 6 (𝑦 ∈ On → Ord 𝑦)
6 ordirr 6390 . . . . . 6 (Ord 𝑦 → ¬ 𝑦𝑦)
74, 5, 63syl 18 . . . . 5 ((𝜑𝑦𝐴) → ¬ 𝑦𝑦)
8 cofonr.2 . . . . . . . . 9 (𝜑𝐴 = {𝑥 ∈ On ∣ 𝑋𝑥})
98adantr 479 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝐴 = {𝑥 ∈ On ∣ 𝑋𝑥})
109adantr 479 . . . . . . 7 (((𝜑𝑦𝐴) ∧ 𝑋𝑦) → 𝐴 = {𝑥 ∈ On ∣ 𝑋𝑥})
114adantr 479 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑋𝑦) → 𝑦 ∈ On)
12 simpr 483 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑋𝑦) → 𝑋𝑦)
13 sseq2 4006 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑋𝑥𝑋𝑦))
1413elrab 3682 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ On ∣ 𝑋𝑥} ↔ (𝑦 ∈ On ∧ 𝑋𝑦))
1511, 12, 14sylanbrc 581 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑋𝑦) → 𝑦 ∈ {𝑥 ∈ On ∣ 𝑋𝑥})
16 intss1 4968 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ On ∣ 𝑋𝑥} → {𝑥 ∈ On ∣ 𝑋𝑥} ⊆ 𝑦)
1715, 16syl 17 . . . . . . 7 (((𝜑𝑦𝐴) ∧ 𝑋𝑦) → {𝑥 ∈ On ∣ 𝑋𝑥} ⊆ 𝑦)
1810, 17eqsstrd 4018 . . . . . 6 (((𝜑𝑦𝐴) ∧ 𝑋𝑦) → 𝐴𝑦)
19 simplr 767 . . . . . 6 (((𝜑𝑦𝐴) ∧ 𝑋𝑦) → 𝑦𝐴)
2018, 19sseldd 3981 . . . . 5 (((𝜑𝑦𝐴) ∧ 𝑋𝑦) → 𝑦𝑦)
217, 20mtand 814 . . . 4 ((𝜑𝑦𝐴) → ¬ 𝑋𝑦)
22 dfss3 3968 . . . 4 (𝑋𝑦 ↔ ∀𝑧𝑋 𝑧𝑦)
2321, 22sylnib 327 . . 3 ((𝜑𝑦𝐴) → ¬ ∀𝑧𝑋 𝑧𝑦)
248, 1eqeltrrd 2829 . . . . . . . . . 10 (𝜑 {𝑥 ∈ On ∣ 𝑋𝑥} ∈ On)
25 onintrab2 7804 . . . . . . . . . 10 (∃𝑥 ∈ On 𝑋𝑥 {𝑥 ∈ On ∣ 𝑋𝑥} ∈ On)
2624, 25sylibr 233 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ On 𝑋𝑥)
2726adantr 479 . . . . . . . 8 ((𝜑𝑦𝐴) → ∃𝑥 ∈ On 𝑋𝑥)
28 onss 7791 . . . . . . . . . . 11 (𝑥 ∈ On → 𝑥 ⊆ On)
2928adantl 480 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑥 ∈ On) → 𝑥 ⊆ On)
30 sstr 3988 . . . . . . . . . . 11 ((𝑋𝑥𝑥 ⊆ On) → 𝑋 ⊆ On)
3130expcom 412 . . . . . . . . . 10 (𝑥 ⊆ On → (𝑋𝑥𝑋 ⊆ On))
3229, 31syl 17 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑥 ∈ On) → (𝑋𝑥𝑋 ⊆ On))
3332rexlimdva 3151 . . . . . . . 8 ((𝜑𝑦𝐴) → (∃𝑥 ∈ On 𝑋𝑥𝑋 ⊆ On))
3427, 33mpd 15 . . . . . . 7 ((𝜑𝑦𝐴) → 𝑋 ⊆ On)
3534sselda 3980 . . . . . 6 (((𝜑𝑦𝐴) ∧ 𝑧𝑋) → 𝑧 ∈ On)
36 ontri1 6406 . . . . . 6 ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦𝑧 ↔ ¬ 𝑧𝑦))
374, 35, 36syl2an2r 683 . . . . 5 (((𝜑𝑦𝐴) ∧ 𝑧𝑋) → (𝑦𝑧 ↔ ¬ 𝑧𝑦))
3837rexbidva 3172 . . . 4 ((𝜑𝑦𝐴) → (∃𝑧𝑋 𝑦𝑧 ↔ ∃𝑧𝑋 ¬ 𝑧𝑦))
39 rexnal 3096 . . . 4 (∃𝑧𝑋 ¬ 𝑧𝑦 ↔ ¬ ∀𝑧𝑋 𝑧𝑦)
4038, 39bitrdi 286 . . 3 ((𝜑𝑦𝐴) → (∃𝑧𝑋 𝑦𝑧 ↔ ¬ ∀𝑧𝑋 𝑧𝑦))
4123, 40mpbird 256 . 2 ((𝜑𝑦𝐴) → ∃𝑧𝑋 𝑦𝑧)
4241ralrimiva 3142 1 (𝜑 → ∀𝑦𝐴𝑧𝑋 𝑦𝑧)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3057  wrex 3066  {crab 3428  wss 3947   cint 4951  Ord word 6371  Oncon0 6372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-br 5151  df-opab 5213  df-tr 5268  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-ord 6375  df-on 6376
This theorem is referenced by:  naddunif  8718
  Copyright terms: Public domain W3C validator