Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoppcco Structured version   Visualization version   GIF version

Theorem fucoppcco 49441
Description: The opposite category of functors is compatible with the category of opposite functors in terms of composition. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
fucoppc.o 𝑂 = (oppCat‘𝐶)
fucoppc.p 𝑃 = (oppCat‘𝐷)
fucoppc.q 𝑄 = (𝐶 FuncCat 𝐷)
fucoppc.r 𝑅 = (oppCat‘𝑄)
fucoppc.s 𝑆 = (𝑂 FuncCat 𝑃)
fucoppc.n 𝑁 = (𝐶 Nat 𝐷)
fucoppc.f (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))
fucoppc.g (𝜑𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))
fucoppcco.a (𝜑𝐴 ∈ (𝑋(Hom ‘𝑅)𝑌))
fucoppcco.b (𝜑𝐵 ∈ (𝑌(Hom ‘𝑅)𝑍))
Assertion
Ref Expression
fucoppcco (𝜑 → ((𝑋𝐺𝑍)‘(𝐵(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐴)) = (((𝑌𝐺𝑍)‘𝐵)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐴)))
Distinct variable groups:   𝑥,𝑁,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑄(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem fucoppcco
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fucoppc.s . . 3 𝑆 = (𝑂 FuncCat 𝑃)
2 eqid 2731 . . 3 (𝑂 Nat 𝑃) = (𝑂 Nat 𝑃)
3 fucoppc.o . . . 4 𝑂 = (oppCat‘𝐶)
4 eqid 2731 . . . 4 (Base‘𝐶) = (Base‘𝐶)
53, 4oppcbas 17619 . . 3 (Base‘𝐶) = (Base‘𝑂)
6 eqid 2731 . . 3 (comp‘𝑃) = (comp‘𝑃)
7 eqid 2731 . . 3 (comp‘𝑆) = (comp‘𝑆)
8 fucoppcco.a . . . . 5 (𝜑𝐴 ∈ (𝑋(Hom ‘𝑅)𝑌))
9 fucoppc.q . . . . . . 7 𝑄 = (𝐶 FuncCat 𝐷)
10 fucoppc.n . . . . . . 7 𝑁 = (𝐶 Nat 𝐷)
119, 10fuchom 17866 . . . . . 6 𝑁 = (Hom ‘𝑄)
12 fucoppc.r . . . . . 6 𝑅 = (oppCat‘𝑄)
1311, 12oppchom 17616 . . . . 5 (𝑋(Hom ‘𝑅)𝑌) = (𝑌𝑁𝑋)
148, 13eleqtrdi 2841 . . . 4 (𝜑𝐴 ∈ (𝑌𝑁𝑋))
15 fucoppc.p . . . . 5 𝑃 = (oppCat‘𝐷)
16 fucoppc.f . . . . 5 (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))
1710natrcl 17855 . . . . . . 7 (𝐴 ∈ (𝑌𝑁𝑋) → (𝑌 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐷)))
1814, 17syl 17 . . . . . 6 (𝜑 → (𝑌 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐷)))
1918simprd 495 . . . . 5 (𝜑𝑋 ∈ (𝐶 Func 𝐷))
2018simpld 494 . . . . 5 (𝜑𝑌 ∈ (𝐶 Func 𝐷))
213, 15, 10, 16, 19, 20fucoppclem 49439 . . . 4 (𝜑 → (𝑌𝑁𝑋) = ((𝐹𝑋)(𝑂 Nat 𝑃)(𝐹𝑌)))
2214, 21eleqtrd 2833 . . 3 (𝜑𝐴 ∈ ((𝐹𝑋)(𝑂 Nat 𝑃)(𝐹𝑌)))
23 fucoppcco.b . . . . 5 (𝜑𝐵 ∈ (𝑌(Hom ‘𝑅)𝑍))
2411, 12oppchom 17616 . . . . 5 (𝑌(Hom ‘𝑅)𝑍) = (𝑍𝑁𝑌)
2523, 24eleqtrdi 2841 . . . 4 (𝜑𝐵 ∈ (𝑍𝑁𝑌))
2610natrcl 17855 . . . . . . 7 (𝐵 ∈ (𝑍𝑁𝑌) → (𝑍 ∈ (𝐶 Func 𝐷) ∧ 𝑌 ∈ (𝐶 Func 𝐷)))
2725, 26syl 17 . . . . . 6 (𝜑 → (𝑍 ∈ (𝐶 Func 𝐷) ∧ 𝑌 ∈ (𝐶 Func 𝐷)))
2827simpld 494 . . . . 5 (𝜑𝑍 ∈ (𝐶 Func 𝐷))
293, 15, 10, 16, 20, 28fucoppclem 49439 . . . 4 (𝜑 → (𝑍𝑁𝑌) = ((𝐹𝑌)(𝑂 Nat 𝑃)(𝐹𝑍)))
3025, 29eleqtrd 2833 . . 3 (𝜑𝐵 ∈ ((𝐹𝑌)(𝑂 Nat 𝑃)(𝐹𝑍)))
311, 2, 5, 6, 7, 22, 30fucco 17867 . 2 (𝜑 → (𝐵(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))𝐴) = (𝑧 ∈ (Base‘𝐶) ↦ ((𝐵𝑧)(⟨((1st ‘(𝐹𝑋))‘𝑧), ((1st ‘(𝐹𝑌))‘𝑧)⟩(comp‘𝑃)((1st ‘(𝐹𝑍))‘𝑧))(𝐴𝑧))))
32 fucoppc.g . . . 4 (𝜑𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))
33 eqidd 2732 . . . 4 (𝜑𝐵 = 𝐵)
3432, 20, 28, 33, 25opf2 49438 . . 3 (𝜑 → ((𝑌𝐺𝑍)‘𝐵) = 𝐵)
35 eqidd 2732 . . . 4 (𝜑𝐴 = 𝐴)
3632, 19, 20, 35, 14opf2 49438 . . 3 (𝜑 → ((𝑋𝐺𝑌)‘𝐴) = 𝐴)
3734, 36oveq12d 7359 . 2 (𝜑 → (((𝑌𝐺𝑍)‘𝐵)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐴)) = (𝐵(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))𝐴))
38 eqid 2731 . . . 4 (comp‘𝐷) = (comp‘𝐷)
39 eqid 2731 . . . 4 (comp‘𝑄) = (comp‘𝑄)
409, 10, 4, 38, 39, 25, 14fucco 17867 . . 3 (𝜑 → (𝐴(⟨𝑍, 𝑌⟩(comp‘𝑄)𝑋)𝐵) = (𝑧 ∈ (Base‘𝐶) ↦ ((𝐴𝑧)(⟨((1st𝑍)‘𝑧), ((1st𝑌)‘𝑧)⟩(comp‘𝐷)((1st𝑋)‘𝑧))(𝐵𝑧))))
419fucbas 17865 . . . . 5 (𝐶 Func 𝐷) = (Base‘𝑄)
4241, 39, 12, 19, 20, 28oppcco 17618 . . . 4 (𝜑 → (𝐵(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐴) = (𝐴(⟨𝑍, 𝑌⟩(comp‘𝑄)𝑋)𝐵))
439, 10, 39, 25, 14fuccocl 17869 . . . 4 (𝜑 → (𝐴(⟨𝑍, 𝑌⟩(comp‘𝑄)𝑋)𝐵) ∈ (𝑍𝑁𝑋))
4432, 19, 28, 42, 43opf2 49438 . . 3 (𝜑 → ((𝑋𝐺𝑍)‘(𝐵(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐴)) = (𝐴(⟨𝑍, 𝑌⟩(comp‘𝑄)𝑋)𝐵))
4516, 19opf11 49435 . . . . . . . . . 10 (𝜑 → (1st ‘(𝐹𝑋)) = (1st𝑋))
4645fveq1d 6819 . . . . . . . . 9 (𝜑 → ((1st ‘(𝐹𝑋))‘𝑧) = ((1st𝑋)‘𝑧))
4716, 20opf11 49435 . . . . . . . . . 10 (𝜑 → (1st ‘(𝐹𝑌)) = (1st𝑌))
4847fveq1d 6819 . . . . . . . . 9 (𝜑 → ((1st ‘(𝐹𝑌))‘𝑧) = ((1st𝑌)‘𝑧))
4946, 48opeq12d 4828 . . . . . . . 8 (𝜑 → ⟨((1st ‘(𝐹𝑋))‘𝑧), ((1st ‘(𝐹𝑌))‘𝑧)⟩ = ⟨((1st𝑋)‘𝑧), ((1st𝑌)‘𝑧)⟩)
5016, 28opf11 49435 . . . . . . . . 9 (𝜑 → (1st ‘(𝐹𝑍)) = (1st𝑍))
5150fveq1d 6819 . . . . . . . 8 (𝜑 → ((1st ‘(𝐹𝑍))‘𝑧) = ((1st𝑍)‘𝑧))
5249, 51oveq12d 7359 . . . . . . 7 (𝜑 → (⟨((1st ‘(𝐹𝑋))‘𝑧), ((1st ‘(𝐹𝑌))‘𝑧)⟩(comp‘𝑃)((1st ‘(𝐹𝑍))‘𝑧)) = (⟨((1st𝑋)‘𝑧), ((1st𝑌)‘𝑧)⟩(comp‘𝑃)((1st𝑍)‘𝑧)))
5352oveqd 7358 . . . . . 6 (𝜑 → ((𝐵𝑧)(⟨((1st ‘(𝐹𝑋))‘𝑧), ((1st ‘(𝐹𝑌))‘𝑧)⟩(comp‘𝑃)((1st ‘(𝐹𝑍))‘𝑧))(𝐴𝑧)) = ((𝐵𝑧)(⟨((1st𝑋)‘𝑧), ((1st𝑌)‘𝑧)⟩(comp‘𝑃)((1st𝑍)‘𝑧))(𝐴𝑧)))
5453adantr 480 . . . . 5 ((𝜑𝑧 ∈ (Base‘𝐶)) → ((𝐵𝑧)(⟨((1st ‘(𝐹𝑋))‘𝑧), ((1st ‘(𝐹𝑌))‘𝑧)⟩(comp‘𝑃)((1st ‘(𝐹𝑍))‘𝑧))(𝐴𝑧)) = ((𝐵𝑧)(⟨((1st𝑋)‘𝑧), ((1st𝑌)‘𝑧)⟩(comp‘𝑃)((1st𝑍)‘𝑧))(𝐴𝑧)))
55 eqid 2731 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
5619func1st2nd 49108 . . . . . . . 8 (𝜑 → (1st𝑋)(𝐶 Func 𝐷)(2nd𝑋))
574, 55, 56funcf1 17768 . . . . . . 7 (𝜑 → (1st𝑋):(Base‘𝐶)⟶(Base‘𝐷))
5857ffvelcdmda 7012 . . . . . 6 ((𝜑𝑧 ∈ (Base‘𝐶)) → ((1st𝑋)‘𝑧) ∈ (Base‘𝐷))
5920func1st2nd 49108 . . . . . . . 8 (𝜑 → (1st𝑌)(𝐶 Func 𝐷)(2nd𝑌))
604, 55, 59funcf1 17768 . . . . . . 7 (𝜑 → (1st𝑌):(Base‘𝐶)⟶(Base‘𝐷))
6160ffvelcdmda 7012 . . . . . 6 ((𝜑𝑧 ∈ (Base‘𝐶)) → ((1st𝑌)‘𝑧) ∈ (Base‘𝐷))
6228func1st2nd 49108 . . . . . . . 8 (𝜑 → (1st𝑍)(𝐶 Func 𝐷)(2nd𝑍))
634, 55, 62funcf1 17768 . . . . . . 7 (𝜑 → (1st𝑍):(Base‘𝐶)⟶(Base‘𝐷))
6463ffvelcdmda 7012 . . . . . 6 ((𝜑𝑧 ∈ (Base‘𝐶)) → ((1st𝑍)‘𝑧) ∈ (Base‘𝐷))
6555, 38, 15, 58, 61, 64oppcco 17618 . . . . 5 ((𝜑𝑧 ∈ (Base‘𝐶)) → ((𝐵𝑧)(⟨((1st𝑋)‘𝑧), ((1st𝑌)‘𝑧)⟩(comp‘𝑃)((1st𝑍)‘𝑧))(𝐴𝑧)) = ((𝐴𝑧)(⟨((1st𝑍)‘𝑧), ((1st𝑌)‘𝑧)⟩(comp‘𝐷)((1st𝑋)‘𝑧))(𝐵𝑧)))
6654, 65eqtrd 2766 . . . 4 ((𝜑𝑧 ∈ (Base‘𝐶)) → ((𝐵𝑧)(⟨((1st ‘(𝐹𝑋))‘𝑧), ((1st ‘(𝐹𝑌))‘𝑧)⟩(comp‘𝑃)((1st ‘(𝐹𝑍))‘𝑧))(𝐴𝑧)) = ((𝐴𝑧)(⟨((1st𝑍)‘𝑧), ((1st𝑌)‘𝑧)⟩(comp‘𝐷)((1st𝑋)‘𝑧))(𝐵𝑧)))
6766mpteq2dva 5179 . . 3 (𝜑 → (𝑧 ∈ (Base‘𝐶) ↦ ((𝐵𝑧)(⟨((1st ‘(𝐹𝑋))‘𝑧), ((1st ‘(𝐹𝑌))‘𝑧)⟩(comp‘𝑃)((1st ‘(𝐹𝑍))‘𝑧))(𝐴𝑧))) = (𝑧 ∈ (Base‘𝐶) ↦ ((𝐴𝑧)(⟨((1st𝑍)‘𝑧), ((1st𝑌)‘𝑧)⟩(comp‘𝐷)((1st𝑋)‘𝑧))(𝐵𝑧))))
6840, 44, 673eqtr4d 2776 . 2 (𝜑 → ((𝑋𝐺𝑍)‘(𝐵(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐴)) = (𝑧 ∈ (Base‘𝐶) ↦ ((𝐵𝑧)(⟨((1st ‘(𝐹𝑋))‘𝑧), ((1st ‘(𝐹𝑌))‘𝑧)⟩(comp‘𝑃)((1st ‘(𝐹𝑍))‘𝑧))(𝐴𝑧))))
6931, 37, 683eqtr4rd 2777 1 (𝜑 → ((𝑋𝐺𝑍)‘(𝐵(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐴)) = (((𝑌𝐺𝑍)‘𝐵)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4577  cmpt 5167   I cid 5505  cres 5613  cfv 6476  (class class class)co 7341  cmpo 7343  1st c1st 7914  2nd c2nd 7915  Basecbs 17115  Hom chom 17167  compcco 17168  oppCatcoppc 17612   Func cfunc 17756   Nat cnat 17846   FuncCat cfuc 17847   oppFunc coppf 49154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-hom 17180  df-cco 17181  df-cat 17569  df-cid 17570  df-homf 17571  df-comf 17572  df-oppc 17613  df-func 17760  df-nat 17848  df-fuc 17849  df-oppf 49155
This theorem is referenced by:  fucoppc  49442
  Copyright terms: Public domain W3C validator