| Step | Hyp | Ref
| Expression |
| 1 | | fucoppc.s |
. . 3
⊢ 𝑆 = (𝑂 FuncCat 𝑃) |
| 2 | | eqid 2730 |
. . 3
⊢ (𝑂 Nat 𝑃) = (𝑂 Nat 𝑃) |
| 3 | | fucoppc.o |
. . . 4
⊢ 𝑂 = (oppCat‘𝐶) |
| 4 | | eqid 2730 |
. . . 4
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 5 | 3, 4 | oppcbas 17685 |
. . 3
⊢
(Base‘𝐶) =
(Base‘𝑂) |
| 6 | | eqid 2730 |
. . 3
⊢
(comp‘𝑃) =
(comp‘𝑃) |
| 7 | | eqid 2730 |
. . 3
⊢
(comp‘𝑆) =
(comp‘𝑆) |
| 8 | | fucoppcco.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (𝑋(Hom ‘𝑅)𝑌)) |
| 9 | | fucoppc.q |
. . . . . . 7
⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| 10 | | fucoppc.n |
. . . . . . 7
⊢ 𝑁 = (𝐶 Nat 𝐷) |
| 11 | 9, 10 | fuchom 17932 |
. . . . . 6
⊢ 𝑁 = (Hom ‘𝑄) |
| 12 | | fucoppc.r |
. . . . . 6
⊢ 𝑅 = (oppCat‘𝑄) |
| 13 | 11, 12 | oppchom 17682 |
. . . . 5
⊢ (𝑋(Hom ‘𝑅)𝑌) = (𝑌𝑁𝑋) |
| 14 | 8, 13 | eleqtrdi 2839 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ (𝑌𝑁𝑋)) |
| 15 | | fucoppc.p |
. . . . 5
⊢ 𝑃 = (oppCat‘𝐷) |
| 16 | | fucoppc.f |
. . . . 5
⊢ (𝜑 → 𝐹 = (oppFunc ↾ (𝐶 Func 𝐷))) |
| 17 | 10 | natrcl 17921 |
. . . . . . 7
⊢ (𝐴 ∈ (𝑌𝑁𝑋) → (𝑌 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐷))) |
| 18 | 14, 17 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑌 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐷))) |
| 19 | 18 | simprd 495 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) |
| 20 | 18 | simpld 494 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ (𝐶 Func 𝐷)) |
| 21 | 3, 15, 10, 16, 19, 20 | fucoppclem 49376 |
. . . 4
⊢ (𝜑 → (𝑌𝑁𝑋) = ((𝐹‘𝑋)(𝑂 Nat 𝑃)(𝐹‘𝑌))) |
| 22 | 14, 21 | eleqtrd 2831 |
. . 3
⊢ (𝜑 → 𝐴 ∈ ((𝐹‘𝑋)(𝑂 Nat 𝑃)(𝐹‘𝑌))) |
| 23 | | fucoppcco.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ (𝑌(Hom ‘𝑅)𝑍)) |
| 24 | 11, 12 | oppchom 17682 |
. . . . 5
⊢ (𝑌(Hom ‘𝑅)𝑍) = (𝑍𝑁𝑌) |
| 25 | 23, 24 | eleqtrdi 2839 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ (𝑍𝑁𝑌)) |
| 26 | 10 | natrcl 17921 |
. . . . . . 7
⊢ (𝐵 ∈ (𝑍𝑁𝑌) → (𝑍 ∈ (𝐶 Func 𝐷) ∧ 𝑌 ∈ (𝐶 Func 𝐷))) |
| 27 | 25, 26 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑍 ∈ (𝐶 Func 𝐷) ∧ 𝑌 ∈ (𝐶 Func 𝐷))) |
| 28 | 27 | simpld 494 |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ (𝐶 Func 𝐷)) |
| 29 | 3, 15, 10, 16, 20, 28 | fucoppclem 49376 |
. . . 4
⊢ (𝜑 → (𝑍𝑁𝑌) = ((𝐹‘𝑌)(𝑂 Nat 𝑃)(𝐹‘𝑍))) |
| 30 | 25, 29 | eleqtrd 2831 |
. . 3
⊢ (𝜑 → 𝐵 ∈ ((𝐹‘𝑌)(𝑂 Nat 𝑃)(𝐹‘𝑍))) |
| 31 | 1, 2, 5, 6, 7, 22,
30 | fucco 17933 |
. 2
⊢ (𝜑 → (𝐵(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))𝐴) = (𝑧 ∈ (Base‘𝐶) ↦ ((𝐵‘𝑧)(〈((1st ‘(𝐹‘𝑋))‘𝑧), ((1st ‘(𝐹‘𝑌))‘𝑧)〉(comp‘𝑃)((1st ‘(𝐹‘𝑍))‘𝑧))(𝐴‘𝑧)))) |
| 32 | | fucoppc.g |
. . . 4
⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) |
| 33 | | eqidd 2731 |
. . . 4
⊢ (𝜑 → 𝐵 = 𝐵) |
| 34 | 32, 20, 28, 33, 25 | opf2 49375 |
. . 3
⊢ (𝜑 → ((𝑌𝐺𝑍)‘𝐵) = 𝐵) |
| 35 | | eqidd 2731 |
. . . 4
⊢ (𝜑 → 𝐴 = 𝐴) |
| 36 | 32, 19, 20, 35, 14 | opf2 49375 |
. . 3
⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝐴) = 𝐴) |
| 37 | 34, 36 | oveq12d 7407 |
. 2
⊢ (𝜑 → (((𝑌𝐺𝑍)‘𝐵)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐴)) = (𝐵(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))𝐴)) |
| 38 | | eqid 2730 |
. . . 4
⊢
(comp‘𝐷) =
(comp‘𝐷) |
| 39 | | eqid 2730 |
. . . 4
⊢
(comp‘𝑄) =
(comp‘𝑄) |
| 40 | 9, 10, 4, 38, 39, 25, 14 | fucco 17933 |
. . 3
⊢ (𝜑 → (𝐴(〈𝑍, 𝑌〉(comp‘𝑄)𝑋)𝐵) = (𝑧 ∈ (Base‘𝐶) ↦ ((𝐴‘𝑧)(〈((1st ‘𝑍)‘𝑧), ((1st ‘𝑌)‘𝑧)〉(comp‘𝐷)((1st ‘𝑋)‘𝑧))(𝐵‘𝑧)))) |
| 41 | 9 | fucbas 17931 |
. . . . 5
⊢ (𝐶 Func 𝐷) = (Base‘𝑄) |
| 42 | 41, 39, 12, 19, 20, 28 | oppcco 17684 |
. . . 4
⊢ (𝜑 → (𝐵(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐴) = (𝐴(〈𝑍, 𝑌〉(comp‘𝑄)𝑋)𝐵)) |
| 43 | 9, 10, 39, 25, 14 | fuccocl 17935 |
. . . 4
⊢ (𝜑 → (𝐴(〈𝑍, 𝑌〉(comp‘𝑄)𝑋)𝐵) ∈ (𝑍𝑁𝑋)) |
| 44 | 32, 19, 28, 42, 43 | opf2 49375 |
. . 3
⊢ (𝜑 → ((𝑋𝐺𝑍)‘(𝐵(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐴)) = (𝐴(〈𝑍, 𝑌〉(comp‘𝑄)𝑋)𝐵)) |
| 45 | 16, 19 | opf11 49372 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘(𝐹‘𝑋)) = (1st
‘𝑋)) |
| 46 | 45 | fveq1d 6862 |
. . . . . . . . 9
⊢ (𝜑 → ((1st
‘(𝐹‘𝑋))‘𝑧) = ((1st ‘𝑋)‘𝑧)) |
| 47 | 16, 20 | opf11 49372 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘(𝐹‘𝑌)) = (1st
‘𝑌)) |
| 48 | 47 | fveq1d 6862 |
. . . . . . . . 9
⊢ (𝜑 → ((1st
‘(𝐹‘𝑌))‘𝑧) = ((1st ‘𝑌)‘𝑧)) |
| 49 | 46, 48 | opeq12d 4847 |
. . . . . . . 8
⊢ (𝜑 → 〈((1st
‘(𝐹‘𝑋))‘𝑧), ((1st ‘(𝐹‘𝑌))‘𝑧)〉 = 〈((1st ‘𝑋)‘𝑧), ((1st ‘𝑌)‘𝑧)〉) |
| 50 | 16, 28 | opf11 49372 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘(𝐹‘𝑍)) = (1st
‘𝑍)) |
| 51 | 50 | fveq1d 6862 |
. . . . . . . 8
⊢ (𝜑 → ((1st
‘(𝐹‘𝑍))‘𝑧) = ((1st ‘𝑍)‘𝑧)) |
| 52 | 49, 51 | oveq12d 7407 |
. . . . . . 7
⊢ (𝜑 → (〈((1st
‘(𝐹‘𝑋))‘𝑧), ((1st ‘(𝐹‘𝑌))‘𝑧)〉(comp‘𝑃)((1st ‘(𝐹‘𝑍))‘𝑧)) = (〈((1st ‘𝑋)‘𝑧), ((1st ‘𝑌)‘𝑧)〉(comp‘𝑃)((1st ‘𝑍)‘𝑧))) |
| 53 | 52 | oveqd 7406 |
. . . . . 6
⊢ (𝜑 → ((𝐵‘𝑧)(〈((1st ‘(𝐹‘𝑋))‘𝑧), ((1st ‘(𝐹‘𝑌))‘𝑧)〉(comp‘𝑃)((1st ‘(𝐹‘𝑍))‘𝑧))(𝐴‘𝑧)) = ((𝐵‘𝑧)(〈((1st ‘𝑋)‘𝑧), ((1st ‘𝑌)‘𝑧)〉(comp‘𝑃)((1st ‘𝑍)‘𝑧))(𝐴‘𝑧))) |
| 54 | 53 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐶)) → ((𝐵‘𝑧)(〈((1st ‘(𝐹‘𝑋))‘𝑧), ((1st ‘(𝐹‘𝑌))‘𝑧)〉(comp‘𝑃)((1st ‘(𝐹‘𝑍))‘𝑧))(𝐴‘𝑧)) = ((𝐵‘𝑧)(〈((1st ‘𝑋)‘𝑧), ((1st ‘𝑌)‘𝑧)〉(comp‘𝑃)((1st ‘𝑍)‘𝑧))(𝐴‘𝑧))) |
| 55 | | eqid 2730 |
. . . . . 6
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 56 | 19 | func1st2nd 49053 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘𝑋)(𝐶 Func 𝐷)(2nd ‘𝑋)) |
| 57 | 4, 55, 56 | funcf1 17834 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝑋):(Base‘𝐶)⟶(Base‘𝐷)) |
| 58 | 57 | ffvelcdmda 7058 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐶)) → ((1st ‘𝑋)‘𝑧) ∈ (Base‘𝐷)) |
| 59 | 20 | func1st2nd 49053 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘𝑌)(𝐶 Func 𝐷)(2nd ‘𝑌)) |
| 60 | 4, 55, 59 | funcf1 17834 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝑌):(Base‘𝐶)⟶(Base‘𝐷)) |
| 61 | 60 | ffvelcdmda 7058 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐶)) → ((1st ‘𝑌)‘𝑧) ∈ (Base‘𝐷)) |
| 62 | 28 | func1st2nd 49053 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘𝑍)(𝐶 Func 𝐷)(2nd ‘𝑍)) |
| 63 | 4, 55, 62 | funcf1 17834 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝑍):(Base‘𝐶)⟶(Base‘𝐷)) |
| 64 | 63 | ffvelcdmda 7058 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐶)) → ((1st ‘𝑍)‘𝑧) ∈ (Base‘𝐷)) |
| 65 | 55, 38, 15, 58, 61, 64 | oppcco 17684 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐶)) → ((𝐵‘𝑧)(〈((1st ‘𝑋)‘𝑧), ((1st ‘𝑌)‘𝑧)〉(comp‘𝑃)((1st ‘𝑍)‘𝑧))(𝐴‘𝑧)) = ((𝐴‘𝑧)(〈((1st ‘𝑍)‘𝑧), ((1st ‘𝑌)‘𝑧)〉(comp‘𝐷)((1st ‘𝑋)‘𝑧))(𝐵‘𝑧))) |
| 66 | 54, 65 | eqtrd 2765 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐶)) → ((𝐵‘𝑧)(〈((1st ‘(𝐹‘𝑋))‘𝑧), ((1st ‘(𝐹‘𝑌))‘𝑧)〉(comp‘𝑃)((1st ‘(𝐹‘𝑍))‘𝑧))(𝐴‘𝑧)) = ((𝐴‘𝑧)(〈((1st ‘𝑍)‘𝑧), ((1st ‘𝑌)‘𝑧)〉(comp‘𝐷)((1st ‘𝑋)‘𝑧))(𝐵‘𝑧))) |
| 67 | 66 | mpteq2dva 5202 |
. . 3
⊢ (𝜑 → (𝑧 ∈ (Base‘𝐶) ↦ ((𝐵‘𝑧)(〈((1st ‘(𝐹‘𝑋))‘𝑧), ((1st ‘(𝐹‘𝑌))‘𝑧)〉(comp‘𝑃)((1st ‘(𝐹‘𝑍))‘𝑧))(𝐴‘𝑧))) = (𝑧 ∈ (Base‘𝐶) ↦ ((𝐴‘𝑧)(〈((1st ‘𝑍)‘𝑧), ((1st ‘𝑌)‘𝑧)〉(comp‘𝐷)((1st ‘𝑋)‘𝑧))(𝐵‘𝑧)))) |
| 68 | 40, 44, 67 | 3eqtr4d 2775 |
. 2
⊢ (𝜑 → ((𝑋𝐺𝑍)‘(𝐵(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐴)) = (𝑧 ∈ (Base‘𝐶) ↦ ((𝐵‘𝑧)(〈((1st ‘(𝐹‘𝑋))‘𝑧), ((1st ‘(𝐹‘𝑌))‘𝑧)〉(comp‘𝑃)((1st ‘(𝐹‘𝑍))‘𝑧))(𝐴‘𝑧)))) |
| 69 | 31, 37, 68 | 3eqtr4rd 2776 |
1
⊢ (𝜑 → ((𝑋𝐺𝑍)‘(𝐵(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐴)) = (((𝑌𝐺𝑍)‘𝐵)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐴))) |