Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoppcco Structured version   Visualization version   GIF version

Theorem fucoppcco 49414
Description: The opposite category of functors is compatible with the category of opposite functors in terms of composition. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
fucoppc.o 𝑂 = (oppCat‘𝐶)
fucoppc.p 𝑃 = (oppCat‘𝐷)
fucoppc.q 𝑄 = (𝐶 FuncCat 𝐷)
fucoppc.r 𝑅 = (oppCat‘𝑄)
fucoppc.s 𝑆 = (𝑂 FuncCat 𝑃)
fucoppc.n 𝑁 = (𝐶 Nat 𝐷)
fucoppc.f (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))
fucoppc.g (𝜑𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))
fucoppcco.a (𝜑𝐴 ∈ (𝑋(Hom ‘𝑅)𝑌))
fucoppcco.b (𝜑𝐵 ∈ (𝑌(Hom ‘𝑅)𝑍))
Assertion
Ref Expression
fucoppcco (𝜑 → ((𝑋𝐺𝑍)‘(𝐵(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐴)) = (((𝑌𝐺𝑍)‘𝐵)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐴)))
Distinct variable groups:   𝑥,𝑁,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑄(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem fucoppcco
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fucoppc.s . . 3 𝑆 = (𝑂 FuncCat 𝑃)
2 eqid 2729 . . 3 (𝑂 Nat 𝑃) = (𝑂 Nat 𝑃)
3 fucoppc.o . . . 4 𝑂 = (oppCat‘𝐶)
4 eqid 2729 . . . 4 (Base‘𝐶) = (Base‘𝐶)
53, 4oppcbas 17643 . . 3 (Base‘𝐶) = (Base‘𝑂)
6 eqid 2729 . . 3 (comp‘𝑃) = (comp‘𝑃)
7 eqid 2729 . . 3 (comp‘𝑆) = (comp‘𝑆)
8 fucoppcco.a . . . . 5 (𝜑𝐴 ∈ (𝑋(Hom ‘𝑅)𝑌))
9 fucoppc.q . . . . . . 7 𝑄 = (𝐶 FuncCat 𝐷)
10 fucoppc.n . . . . . . 7 𝑁 = (𝐶 Nat 𝐷)
119, 10fuchom 17890 . . . . . 6 𝑁 = (Hom ‘𝑄)
12 fucoppc.r . . . . . 6 𝑅 = (oppCat‘𝑄)
1311, 12oppchom 17640 . . . . 5 (𝑋(Hom ‘𝑅)𝑌) = (𝑌𝑁𝑋)
148, 13eleqtrdi 2838 . . . 4 (𝜑𝐴 ∈ (𝑌𝑁𝑋))
15 fucoppc.p . . . . 5 𝑃 = (oppCat‘𝐷)
16 fucoppc.f . . . . 5 (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))
1710natrcl 17879 . . . . . . 7 (𝐴 ∈ (𝑌𝑁𝑋) → (𝑌 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐷)))
1814, 17syl 17 . . . . . 6 (𝜑 → (𝑌 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐷)))
1918simprd 495 . . . . 5 (𝜑𝑋 ∈ (𝐶 Func 𝐷))
2018simpld 494 . . . . 5 (𝜑𝑌 ∈ (𝐶 Func 𝐷))
213, 15, 10, 16, 19, 20fucoppclem 49412 . . . 4 (𝜑 → (𝑌𝑁𝑋) = ((𝐹𝑋)(𝑂 Nat 𝑃)(𝐹𝑌)))
2214, 21eleqtrd 2830 . . 3 (𝜑𝐴 ∈ ((𝐹𝑋)(𝑂 Nat 𝑃)(𝐹𝑌)))
23 fucoppcco.b . . . . 5 (𝜑𝐵 ∈ (𝑌(Hom ‘𝑅)𝑍))
2411, 12oppchom 17640 . . . . 5 (𝑌(Hom ‘𝑅)𝑍) = (𝑍𝑁𝑌)
2523, 24eleqtrdi 2838 . . . 4 (𝜑𝐵 ∈ (𝑍𝑁𝑌))
2610natrcl 17879 . . . . . . 7 (𝐵 ∈ (𝑍𝑁𝑌) → (𝑍 ∈ (𝐶 Func 𝐷) ∧ 𝑌 ∈ (𝐶 Func 𝐷)))
2725, 26syl 17 . . . . . 6 (𝜑 → (𝑍 ∈ (𝐶 Func 𝐷) ∧ 𝑌 ∈ (𝐶 Func 𝐷)))
2827simpld 494 . . . . 5 (𝜑𝑍 ∈ (𝐶 Func 𝐷))
293, 15, 10, 16, 20, 28fucoppclem 49412 . . . 4 (𝜑 → (𝑍𝑁𝑌) = ((𝐹𝑌)(𝑂 Nat 𝑃)(𝐹𝑍)))
3025, 29eleqtrd 2830 . . 3 (𝜑𝐵 ∈ ((𝐹𝑌)(𝑂 Nat 𝑃)(𝐹𝑍)))
311, 2, 5, 6, 7, 22, 30fucco 17891 . 2 (𝜑 → (𝐵(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))𝐴) = (𝑧 ∈ (Base‘𝐶) ↦ ((𝐵𝑧)(⟨((1st ‘(𝐹𝑋))‘𝑧), ((1st ‘(𝐹𝑌))‘𝑧)⟩(comp‘𝑃)((1st ‘(𝐹𝑍))‘𝑧))(𝐴𝑧))))
32 fucoppc.g . . . 4 (𝜑𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))
33 eqidd 2730 . . . 4 (𝜑𝐵 = 𝐵)
3432, 20, 28, 33, 25opf2 49411 . . 3 (𝜑 → ((𝑌𝐺𝑍)‘𝐵) = 𝐵)
35 eqidd 2730 . . . 4 (𝜑𝐴 = 𝐴)
3632, 19, 20, 35, 14opf2 49411 . . 3 (𝜑 → ((𝑋𝐺𝑌)‘𝐴) = 𝐴)
3734, 36oveq12d 7371 . 2 (𝜑 → (((𝑌𝐺𝑍)‘𝐵)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐴)) = (𝐵(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))𝐴))
38 eqid 2729 . . . 4 (comp‘𝐷) = (comp‘𝐷)
39 eqid 2729 . . . 4 (comp‘𝑄) = (comp‘𝑄)
409, 10, 4, 38, 39, 25, 14fucco 17891 . . 3 (𝜑 → (𝐴(⟨𝑍, 𝑌⟩(comp‘𝑄)𝑋)𝐵) = (𝑧 ∈ (Base‘𝐶) ↦ ((𝐴𝑧)(⟨((1st𝑍)‘𝑧), ((1st𝑌)‘𝑧)⟩(comp‘𝐷)((1st𝑋)‘𝑧))(𝐵𝑧))))
419fucbas 17889 . . . . 5 (𝐶 Func 𝐷) = (Base‘𝑄)
4241, 39, 12, 19, 20, 28oppcco 17642 . . . 4 (𝜑 → (𝐵(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐴) = (𝐴(⟨𝑍, 𝑌⟩(comp‘𝑄)𝑋)𝐵))
439, 10, 39, 25, 14fuccocl 17893 . . . 4 (𝜑 → (𝐴(⟨𝑍, 𝑌⟩(comp‘𝑄)𝑋)𝐵) ∈ (𝑍𝑁𝑋))
4432, 19, 28, 42, 43opf2 49411 . . 3 (𝜑 → ((𝑋𝐺𝑍)‘(𝐵(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐴)) = (𝐴(⟨𝑍, 𝑌⟩(comp‘𝑄)𝑋)𝐵))
4516, 19opf11 49408 . . . . . . . . . 10 (𝜑 → (1st ‘(𝐹𝑋)) = (1st𝑋))
4645fveq1d 6828 . . . . . . . . 9 (𝜑 → ((1st ‘(𝐹𝑋))‘𝑧) = ((1st𝑋)‘𝑧))
4716, 20opf11 49408 . . . . . . . . . 10 (𝜑 → (1st ‘(𝐹𝑌)) = (1st𝑌))
4847fveq1d 6828 . . . . . . . . 9 (𝜑 → ((1st ‘(𝐹𝑌))‘𝑧) = ((1st𝑌)‘𝑧))
4946, 48opeq12d 4835 . . . . . . . 8 (𝜑 → ⟨((1st ‘(𝐹𝑋))‘𝑧), ((1st ‘(𝐹𝑌))‘𝑧)⟩ = ⟨((1st𝑋)‘𝑧), ((1st𝑌)‘𝑧)⟩)
5016, 28opf11 49408 . . . . . . . . 9 (𝜑 → (1st ‘(𝐹𝑍)) = (1st𝑍))
5150fveq1d 6828 . . . . . . . 8 (𝜑 → ((1st ‘(𝐹𝑍))‘𝑧) = ((1st𝑍)‘𝑧))
5249, 51oveq12d 7371 . . . . . . 7 (𝜑 → (⟨((1st ‘(𝐹𝑋))‘𝑧), ((1st ‘(𝐹𝑌))‘𝑧)⟩(comp‘𝑃)((1st ‘(𝐹𝑍))‘𝑧)) = (⟨((1st𝑋)‘𝑧), ((1st𝑌)‘𝑧)⟩(comp‘𝑃)((1st𝑍)‘𝑧)))
5352oveqd 7370 . . . . . 6 (𝜑 → ((𝐵𝑧)(⟨((1st ‘(𝐹𝑋))‘𝑧), ((1st ‘(𝐹𝑌))‘𝑧)⟩(comp‘𝑃)((1st ‘(𝐹𝑍))‘𝑧))(𝐴𝑧)) = ((𝐵𝑧)(⟨((1st𝑋)‘𝑧), ((1st𝑌)‘𝑧)⟩(comp‘𝑃)((1st𝑍)‘𝑧))(𝐴𝑧)))
5453adantr 480 . . . . 5 ((𝜑𝑧 ∈ (Base‘𝐶)) → ((𝐵𝑧)(⟨((1st ‘(𝐹𝑋))‘𝑧), ((1st ‘(𝐹𝑌))‘𝑧)⟩(comp‘𝑃)((1st ‘(𝐹𝑍))‘𝑧))(𝐴𝑧)) = ((𝐵𝑧)(⟨((1st𝑋)‘𝑧), ((1st𝑌)‘𝑧)⟩(comp‘𝑃)((1st𝑍)‘𝑧))(𝐴𝑧)))
55 eqid 2729 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
5619func1st2nd 49081 . . . . . . . 8 (𝜑 → (1st𝑋)(𝐶 Func 𝐷)(2nd𝑋))
574, 55, 56funcf1 17792 . . . . . . 7 (𝜑 → (1st𝑋):(Base‘𝐶)⟶(Base‘𝐷))
5857ffvelcdmda 7022 . . . . . 6 ((𝜑𝑧 ∈ (Base‘𝐶)) → ((1st𝑋)‘𝑧) ∈ (Base‘𝐷))
5920func1st2nd 49081 . . . . . . . 8 (𝜑 → (1st𝑌)(𝐶 Func 𝐷)(2nd𝑌))
604, 55, 59funcf1 17792 . . . . . . 7 (𝜑 → (1st𝑌):(Base‘𝐶)⟶(Base‘𝐷))
6160ffvelcdmda 7022 . . . . . 6 ((𝜑𝑧 ∈ (Base‘𝐶)) → ((1st𝑌)‘𝑧) ∈ (Base‘𝐷))
6228func1st2nd 49081 . . . . . . . 8 (𝜑 → (1st𝑍)(𝐶 Func 𝐷)(2nd𝑍))
634, 55, 62funcf1 17792 . . . . . . 7 (𝜑 → (1st𝑍):(Base‘𝐶)⟶(Base‘𝐷))
6463ffvelcdmda 7022 . . . . . 6 ((𝜑𝑧 ∈ (Base‘𝐶)) → ((1st𝑍)‘𝑧) ∈ (Base‘𝐷))
6555, 38, 15, 58, 61, 64oppcco 17642 . . . . 5 ((𝜑𝑧 ∈ (Base‘𝐶)) → ((𝐵𝑧)(⟨((1st𝑋)‘𝑧), ((1st𝑌)‘𝑧)⟩(comp‘𝑃)((1st𝑍)‘𝑧))(𝐴𝑧)) = ((𝐴𝑧)(⟨((1st𝑍)‘𝑧), ((1st𝑌)‘𝑧)⟩(comp‘𝐷)((1st𝑋)‘𝑧))(𝐵𝑧)))
6654, 65eqtrd 2764 . . . 4 ((𝜑𝑧 ∈ (Base‘𝐶)) → ((𝐵𝑧)(⟨((1st ‘(𝐹𝑋))‘𝑧), ((1st ‘(𝐹𝑌))‘𝑧)⟩(comp‘𝑃)((1st ‘(𝐹𝑍))‘𝑧))(𝐴𝑧)) = ((𝐴𝑧)(⟨((1st𝑍)‘𝑧), ((1st𝑌)‘𝑧)⟩(comp‘𝐷)((1st𝑋)‘𝑧))(𝐵𝑧)))
6766mpteq2dva 5188 . . 3 (𝜑 → (𝑧 ∈ (Base‘𝐶) ↦ ((𝐵𝑧)(⟨((1st ‘(𝐹𝑋))‘𝑧), ((1st ‘(𝐹𝑌))‘𝑧)⟩(comp‘𝑃)((1st ‘(𝐹𝑍))‘𝑧))(𝐴𝑧))) = (𝑧 ∈ (Base‘𝐶) ↦ ((𝐴𝑧)(⟨((1st𝑍)‘𝑧), ((1st𝑌)‘𝑧)⟩(comp‘𝐷)((1st𝑋)‘𝑧))(𝐵𝑧))))
6840, 44, 673eqtr4d 2774 . 2 (𝜑 → ((𝑋𝐺𝑍)‘(𝐵(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐴)) = (𝑧 ∈ (Base‘𝐶) ↦ ((𝐵𝑧)(⟨((1st ‘(𝐹𝑋))‘𝑧), ((1st ‘(𝐹𝑌))‘𝑧)⟩(comp‘𝑃)((1st ‘(𝐹𝑍))‘𝑧))(𝐴𝑧))))
6931, 37, 683eqtr4rd 2775 1 (𝜑 → ((𝑋𝐺𝑍)‘(𝐵(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐴)) = (((𝑌𝐺𝑍)‘𝐵)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4585  cmpt 5176   I cid 5517  cres 5625  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  Basecbs 17139  Hom chom 17191  compcco 17192  oppCatcoppc 17636   Func cfunc 17780   Nat cnat 17870   FuncCat cfuc 17871   oppFunc coppf 49127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-hom 17204  df-cco 17205  df-cat 17593  df-cid 17594  df-homf 17595  df-comf 17596  df-oppc 17637  df-func 17784  df-nat 17872  df-fuc 17873  df-oppf 49128
This theorem is referenced by:  fucoppc  49415
  Copyright terms: Public domain W3C validator