| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucoppcid | Structured version Visualization version GIF version | ||
| Description: The opposite category of functors is compatible with the category of opposite functors in terms of identity morphism. (Contributed by Zhi Wang, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| fucoppc.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| fucoppc.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| fucoppc.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| fucoppc.r | ⊢ 𝑅 = (oppCat‘𝑄) |
| fucoppc.s | ⊢ 𝑆 = (𝑂 FuncCat 𝑃) |
| fucoppc.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| fucoppc.f | ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) |
| fucoppc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) |
| fucoppcid.x | ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| fucoppcid | ⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppcid.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) | |
| 2 | 1 | func1st2nd 49237 | . . . . 5 ⊢ (𝜑 → (1st ‘𝑋)(𝐶 Func 𝐷)(2nd ‘𝑋)) |
| 3 | 2 | funcrcl3 49241 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 4 | fucoppc.p | . . . . 5 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 5 | eqid 2733 | . . . . 5 ⊢ (Id‘𝐷) = (Id‘𝐷) | |
| 6 | 4, 5 | oppcid 17635 | . . . 4 ⊢ (𝐷 ∈ Cat → (Id‘𝑃) = (Id‘𝐷)) |
| 7 | 3, 6 | syl 17 | . . 3 ⊢ (𝜑 → (Id‘𝑃) = (Id‘𝐷)) |
| 8 | fucoppc.f | . . . 4 ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) | |
| 9 | 8, 1 | opf11 49564 | . . 3 ⊢ (𝜑 → (1st ‘(𝐹‘𝑋)) = (1st ‘𝑋)) |
| 10 | 7, 9 | coeq12d 5810 | . 2 ⊢ (𝜑 → ((Id‘𝑃) ∘ (1st ‘(𝐹‘𝑋))) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 11 | fucoppc.s | . . 3 ⊢ 𝑆 = (𝑂 FuncCat 𝑃) | |
| 12 | eqid 2733 | . . 3 ⊢ (Id‘𝑆) = (Id‘𝑆) | |
| 13 | eqid 2733 | . . 3 ⊢ (Id‘𝑃) = (Id‘𝑃) | |
| 14 | fucoppc.o | . . . . . . 7 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 15 | 14, 4 | oppff1 49309 | . . . . . 6 ⊢ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) |
| 16 | f1f 6727 | . . . . . 6 ⊢ (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃)) | |
| 17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) |
| 18 | 8 | feq1d 6641 | . . . . 5 ⊢ (𝜑 → (𝐹:(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) ↔ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃))) |
| 19 | 17, 18 | mpbiri 258 | . . . 4 ⊢ (𝜑 → 𝐹:(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃)) |
| 20 | 19, 1 | ffvelcdmd 7027 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (𝑂 Func 𝑃)) |
| 21 | 11, 12, 13, 20 | fucid 17889 | . 2 ⊢ (𝜑 → ((Id‘𝑆)‘(𝐹‘𝑋)) = ((Id‘𝑃) ∘ (1st ‘(𝐹‘𝑋)))) |
| 22 | fucoppc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) | |
| 23 | fucoppc.q | . . . . . . 7 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 24 | 2 | funcrcl2 49240 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 25 | 23, 24, 3 | fuccat 17888 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ Cat) |
| 26 | fucoppc.r | . . . . . . 7 ⊢ 𝑅 = (oppCat‘𝑄) | |
| 27 | eqid 2733 | . . . . . . 7 ⊢ (Id‘𝑄) = (Id‘𝑄) | |
| 28 | 26, 27 | oppcid 17635 | . . . . . 6 ⊢ (𝑄 ∈ Cat → (Id‘𝑅) = (Id‘𝑄)) |
| 29 | 25, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → (Id‘𝑅) = (Id‘𝑄)) |
| 30 | 29 | fveq1d 6833 | . . . 4 ⊢ (𝜑 → ((Id‘𝑅)‘𝑋) = ((Id‘𝑄)‘𝑋)) |
| 31 | 23, 27, 5, 1 | fucid 17889 | . . . 4 ⊢ (𝜑 → ((Id‘𝑄)‘𝑋) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 32 | 30, 31 | eqtrd 2768 | . . 3 ⊢ (𝜑 → ((Id‘𝑅)‘𝑋) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 33 | fucoppc.n | . . . 4 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 34 | 23, 33, 5, 1 | fucidcl 17883 | . . 3 ⊢ (𝜑 → ((Id‘𝐷) ∘ (1st ‘𝑋)) ∈ (𝑋𝑁𝑋)) |
| 35 | 22, 1, 1, 32, 34 | opf2 49567 | . 2 ⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 36 | 10, 21, 35 | 3eqtr4rd 2779 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 I cid 5515 ↾ cres 5623 ∘ ccom 5625 ⟶wf 6485 –1-1→wf1 6486 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 1st c1st 7928 2nd c2nd 7929 Catccat 17578 Idccid 17579 oppCatcoppc 17625 Func cfunc 17769 Nat cnat 17859 FuncCat cfuc 17860 oppFunc coppf 49283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-hom 17192 df-cco 17193 df-cat 17582 df-cid 17583 df-oppc 17626 df-func 17773 df-nat 17861 df-fuc 17862 df-oppf 49284 |
| This theorem is referenced by: fucoppc 49571 |
| Copyright terms: Public domain | W3C validator |