| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucoppcid | Structured version Visualization version GIF version | ||
| Description: The opposite category of functors is compatible with the category of opposite functors in terms of identity morphism. (Contributed by Zhi Wang, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| fucoppc.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| fucoppc.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| fucoppc.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| fucoppc.r | ⊢ 𝑅 = (oppCat‘𝑄) |
| fucoppc.s | ⊢ 𝑆 = (𝑂 FuncCat 𝑃) |
| fucoppc.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| fucoppc.f | ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) |
| fucoppc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) |
| fucoppcid.x | ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| fucoppcid | ⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppcid.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) | |
| 2 | 1 | func1st2nd 49038 | . . . . 5 ⊢ (𝜑 → (1st ‘𝑋)(𝐶 Func 𝐷)(2nd ‘𝑋)) |
| 3 | 2 | funcrcl3 49042 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 4 | fucoppc.p | . . . . 5 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (Id‘𝐷) = (Id‘𝐷) | |
| 6 | 4, 5 | oppcid 17658 | . . . 4 ⊢ (𝐷 ∈ Cat → (Id‘𝑃) = (Id‘𝐷)) |
| 7 | 3, 6 | syl 17 | . . 3 ⊢ (𝜑 → (Id‘𝑃) = (Id‘𝐷)) |
| 8 | fucoppc.f | . . . 4 ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) | |
| 9 | 8, 1 | opf11 49365 | . . 3 ⊢ (𝜑 → (1st ‘(𝐹‘𝑋)) = (1st ‘𝑋)) |
| 10 | 7, 9 | coeq12d 5818 | . 2 ⊢ (𝜑 → ((Id‘𝑃) ∘ (1st ‘(𝐹‘𝑋))) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 11 | fucoppc.s | . . 3 ⊢ 𝑆 = (𝑂 FuncCat 𝑃) | |
| 12 | eqid 2729 | . . 3 ⊢ (Id‘𝑆) = (Id‘𝑆) | |
| 13 | eqid 2729 | . . 3 ⊢ (Id‘𝑃) = (Id‘𝑃) | |
| 14 | fucoppc.o | . . . . . . 7 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 15 | 14, 4 | oppff1 49110 | . . . . . 6 ⊢ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) |
| 16 | f1f 6738 | . . . . . 6 ⊢ (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃)) | |
| 17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) |
| 18 | 8 | feq1d 6652 | . . . . 5 ⊢ (𝜑 → (𝐹:(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) ↔ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃))) |
| 19 | 17, 18 | mpbiri 258 | . . . 4 ⊢ (𝜑 → 𝐹:(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃)) |
| 20 | 19, 1 | ffvelcdmd 7039 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (𝑂 Func 𝑃)) |
| 21 | 11, 12, 13, 20 | fucid 17912 | . 2 ⊢ (𝜑 → ((Id‘𝑆)‘(𝐹‘𝑋)) = ((Id‘𝑃) ∘ (1st ‘(𝐹‘𝑋)))) |
| 22 | fucoppc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) | |
| 23 | fucoppc.q | . . . . . . 7 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 24 | 2 | funcrcl2 49041 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 25 | 23, 24, 3 | fuccat 17911 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ Cat) |
| 26 | fucoppc.r | . . . . . . 7 ⊢ 𝑅 = (oppCat‘𝑄) | |
| 27 | eqid 2729 | . . . . . . 7 ⊢ (Id‘𝑄) = (Id‘𝑄) | |
| 28 | 26, 27 | oppcid 17658 | . . . . . 6 ⊢ (𝑄 ∈ Cat → (Id‘𝑅) = (Id‘𝑄)) |
| 29 | 25, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → (Id‘𝑅) = (Id‘𝑄)) |
| 30 | 29 | fveq1d 6842 | . . . 4 ⊢ (𝜑 → ((Id‘𝑅)‘𝑋) = ((Id‘𝑄)‘𝑋)) |
| 31 | 23, 27, 5, 1 | fucid 17912 | . . . 4 ⊢ (𝜑 → ((Id‘𝑄)‘𝑋) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 32 | 30, 31 | eqtrd 2764 | . . 3 ⊢ (𝜑 → ((Id‘𝑅)‘𝑋) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 33 | fucoppc.n | . . . 4 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 34 | 23, 33, 5, 1 | fucidcl 17906 | . . 3 ⊢ (𝜑 → ((Id‘𝐷) ∘ (1st ‘𝑋)) ∈ (𝑋𝑁𝑋)) |
| 35 | 22, 1, 1, 32, 34 | opf2 49368 | . 2 ⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 36 | 10, 21, 35 | 3eqtr4rd 2775 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 I cid 5525 ↾ cres 5633 ∘ ccom 5635 ⟶wf 6495 –1-1→wf1 6496 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1st c1st 7945 2nd c2nd 7946 Catccat 17601 Idccid 17602 oppCatcoppc 17648 Func cfunc 17792 Nat cnat 17882 FuncCat cfuc 17883 oppFunc coppf 49084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-cat 17605 df-cid 17606 df-oppc 17649 df-func 17796 df-nat 17884 df-fuc 17885 df-oppf 49085 |
| This theorem is referenced by: fucoppc 49372 |
| Copyright terms: Public domain | W3C validator |