| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucoppcid | Structured version Visualization version GIF version | ||
| Description: The opposite category of functors is compatible with the category of opposite functors in terms of identity morphism. (Contributed by Zhi Wang, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| fucoppc.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| fucoppc.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| fucoppc.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| fucoppc.r | ⊢ 𝑅 = (oppCat‘𝑄) |
| fucoppc.s | ⊢ 𝑆 = (𝑂 FuncCat 𝑃) |
| fucoppc.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| fucoppc.f | ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) |
| fucoppc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) |
| fucoppcid.x | ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| fucoppcid | ⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppcid.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) | |
| 2 | 1 | func1st2nd 49081 | . . . . 5 ⊢ (𝜑 → (1st ‘𝑋)(𝐶 Func 𝐷)(2nd ‘𝑋)) |
| 3 | 2 | funcrcl3 49085 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 4 | fucoppc.p | . . . . 5 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (Id‘𝐷) = (Id‘𝐷) | |
| 6 | 4, 5 | oppcid 17646 | . . . 4 ⊢ (𝐷 ∈ Cat → (Id‘𝑃) = (Id‘𝐷)) |
| 7 | 3, 6 | syl 17 | . . 3 ⊢ (𝜑 → (Id‘𝑃) = (Id‘𝐷)) |
| 8 | fucoppc.f | . . . 4 ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) | |
| 9 | 8, 1 | opf11 49408 | . . 3 ⊢ (𝜑 → (1st ‘(𝐹‘𝑋)) = (1st ‘𝑋)) |
| 10 | 7, 9 | coeq12d 5811 | . 2 ⊢ (𝜑 → ((Id‘𝑃) ∘ (1st ‘(𝐹‘𝑋))) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 11 | fucoppc.s | . . 3 ⊢ 𝑆 = (𝑂 FuncCat 𝑃) | |
| 12 | eqid 2729 | . . 3 ⊢ (Id‘𝑆) = (Id‘𝑆) | |
| 13 | eqid 2729 | . . 3 ⊢ (Id‘𝑃) = (Id‘𝑃) | |
| 14 | fucoppc.o | . . . . . . 7 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 15 | 14, 4 | oppff1 49153 | . . . . . 6 ⊢ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) |
| 16 | f1f 6724 | . . . . . 6 ⊢ (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃)) | |
| 17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) |
| 18 | 8 | feq1d 6638 | . . . . 5 ⊢ (𝜑 → (𝐹:(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) ↔ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃))) |
| 19 | 17, 18 | mpbiri 258 | . . . 4 ⊢ (𝜑 → 𝐹:(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃)) |
| 20 | 19, 1 | ffvelcdmd 7023 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (𝑂 Func 𝑃)) |
| 21 | 11, 12, 13, 20 | fucid 17900 | . 2 ⊢ (𝜑 → ((Id‘𝑆)‘(𝐹‘𝑋)) = ((Id‘𝑃) ∘ (1st ‘(𝐹‘𝑋)))) |
| 22 | fucoppc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) | |
| 23 | fucoppc.q | . . . . . . 7 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 24 | 2 | funcrcl2 49084 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 25 | 23, 24, 3 | fuccat 17899 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ Cat) |
| 26 | fucoppc.r | . . . . . . 7 ⊢ 𝑅 = (oppCat‘𝑄) | |
| 27 | eqid 2729 | . . . . . . 7 ⊢ (Id‘𝑄) = (Id‘𝑄) | |
| 28 | 26, 27 | oppcid 17646 | . . . . . 6 ⊢ (𝑄 ∈ Cat → (Id‘𝑅) = (Id‘𝑄)) |
| 29 | 25, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → (Id‘𝑅) = (Id‘𝑄)) |
| 30 | 29 | fveq1d 6828 | . . . 4 ⊢ (𝜑 → ((Id‘𝑅)‘𝑋) = ((Id‘𝑄)‘𝑋)) |
| 31 | 23, 27, 5, 1 | fucid 17900 | . . . 4 ⊢ (𝜑 → ((Id‘𝑄)‘𝑋) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 32 | 30, 31 | eqtrd 2764 | . . 3 ⊢ (𝜑 → ((Id‘𝑅)‘𝑋) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 33 | fucoppc.n | . . . 4 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 34 | 23, 33, 5, 1 | fucidcl 17894 | . . 3 ⊢ (𝜑 → ((Id‘𝐷) ∘ (1st ‘𝑋)) ∈ (𝑋𝑁𝑋)) |
| 35 | 22, 1, 1, 32, 34 | opf2 49411 | . 2 ⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 36 | 10, 21, 35 | 3eqtr4rd 2775 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 I cid 5517 ↾ cres 5625 ∘ ccom 5627 ⟶wf 6482 –1-1→wf1 6483 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 1st c1st 7929 2nd c2nd 7930 Catccat 17589 Idccid 17590 oppCatcoppc 17636 Func cfunc 17780 Nat cnat 17870 FuncCat cfuc 17871 oppFunc coppf 49127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-fz 13430 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-hom 17204 df-cco 17205 df-cat 17593 df-cid 17594 df-oppc 17637 df-func 17784 df-nat 17872 df-fuc 17873 df-oppf 49128 |
| This theorem is referenced by: fucoppc 49415 |
| Copyright terms: Public domain | W3C validator |