| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucoppcid | Structured version Visualization version GIF version | ||
| Description: The opposite category of functors is compatible with the category of opposite functors in terms of identity morphism. (Contributed by Zhi Wang, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| fucoppc.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| fucoppc.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| fucoppc.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| fucoppc.r | ⊢ 𝑅 = (oppCat‘𝑄) |
| fucoppc.s | ⊢ 𝑆 = (𝑂 FuncCat 𝑃) |
| fucoppc.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| fucoppc.f | ⊢ (𝜑 → 𝐹 = (oppFunc ↾ (𝐶 Func 𝐷))) |
| fucoppc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) |
| fucoppcid.x | ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| fucoppcid | ⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppcid.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) | |
| 2 | 1 | func1st2nd 49053 | . . . . 5 ⊢ (𝜑 → (1st ‘𝑋)(𝐶 Func 𝐷)(2nd ‘𝑋)) |
| 3 | 2 | funcrcl3 49057 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 4 | fucoppc.p | . . . . 5 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 5 | eqid 2730 | . . . . 5 ⊢ (Id‘𝐷) = (Id‘𝐷) | |
| 6 | 4, 5 | oppcid 17688 | . . . 4 ⊢ (𝐷 ∈ Cat → (Id‘𝑃) = (Id‘𝐷)) |
| 7 | 3, 6 | syl 17 | . . 3 ⊢ (𝜑 → (Id‘𝑃) = (Id‘𝐷)) |
| 8 | fucoppc.f | . . . 4 ⊢ (𝜑 → 𝐹 = (oppFunc ↾ (𝐶 Func 𝐷))) | |
| 9 | 8, 1 | opf11 49372 | . . 3 ⊢ (𝜑 → (1st ‘(𝐹‘𝑋)) = (1st ‘𝑋)) |
| 10 | 7, 9 | coeq12d 5830 | . 2 ⊢ (𝜑 → ((Id‘𝑃) ∘ (1st ‘(𝐹‘𝑋))) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 11 | fucoppc.s | . . 3 ⊢ 𝑆 = (𝑂 FuncCat 𝑃) | |
| 12 | eqid 2730 | . . 3 ⊢ (Id‘𝑆) = (Id‘𝑆) | |
| 13 | eqid 2730 | . . 3 ⊢ (Id‘𝑃) = (Id‘𝑃) | |
| 14 | fucoppc.o | . . . . . . 7 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 15 | 14, 4 | oppff1 49125 | . . . . . 6 ⊢ (oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) |
| 16 | f1f 6758 | . . . . . 6 ⊢ ((oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) → (oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃)) | |
| 17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ (oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) |
| 18 | 8 | feq1d 6672 | . . . . 5 ⊢ (𝜑 → (𝐹:(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) ↔ (oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃))) |
| 19 | 17, 18 | mpbiri 258 | . . . 4 ⊢ (𝜑 → 𝐹:(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃)) |
| 20 | 19, 1 | ffvelcdmd 7059 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (𝑂 Func 𝑃)) |
| 21 | 11, 12, 13, 20 | fucid 17942 | . 2 ⊢ (𝜑 → ((Id‘𝑆)‘(𝐹‘𝑋)) = ((Id‘𝑃) ∘ (1st ‘(𝐹‘𝑋)))) |
| 22 | fucoppc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) | |
| 23 | fucoppc.q | . . . . . . 7 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 24 | 2 | funcrcl2 49056 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 25 | 23, 24, 3 | fuccat 17941 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ Cat) |
| 26 | fucoppc.r | . . . . . . 7 ⊢ 𝑅 = (oppCat‘𝑄) | |
| 27 | eqid 2730 | . . . . . . 7 ⊢ (Id‘𝑄) = (Id‘𝑄) | |
| 28 | 26, 27 | oppcid 17688 | . . . . . 6 ⊢ (𝑄 ∈ Cat → (Id‘𝑅) = (Id‘𝑄)) |
| 29 | 25, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → (Id‘𝑅) = (Id‘𝑄)) |
| 30 | 29 | fveq1d 6862 | . . . 4 ⊢ (𝜑 → ((Id‘𝑅)‘𝑋) = ((Id‘𝑄)‘𝑋)) |
| 31 | 23, 27, 5, 1 | fucid 17942 | . . . 4 ⊢ (𝜑 → ((Id‘𝑄)‘𝑋) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 32 | 30, 31 | eqtrd 2765 | . . 3 ⊢ (𝜑 → ((Id‘𝑅)‘𝑋) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 33 | fucoppc.n | . . . 4 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 34 | 23, 33, 5, 1 | fucidcl 17936 | . . 3 ⊢ (𝜑 → ((Id‘𝐷) ∘ (1st ‘𝑋)) ∈ (𝑋𝑁𝑋)) |
| 35 | 22, 1, 1, 32, 34 | opf2 49375 | . 2 ⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 36 | 10, 21, 35 | 3eqtr4rd 2776 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 I cid 5534 ↾ cres 5642 ∘ ccom 5644 ⟶wf 6509 –1-1→wf1 6510 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 1st c1st 7968 2nd c2nd 7969 Catccat 17631 Idccid 17632 oppCatcoppc 17678 Func cfunc 17822 Nat cnat 17912 FuncCat cfuc 17913 oppFunccoppf 49099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-oppc 17679 df-func 17826 df-nat 17914 df-fuc 17915 df-oppf 49100 |
| This theorem is referenced by: fucoppc 49379 |
| Copyright terms: Public domain | W3C validator |