| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucoppcid | Structured version Visualization version GIF version | ||
| Description: The opposite category of functors is compatible with the category of opposite functors in terms of identity morphism. (Contributed by Zhi Wang, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| fucoppc.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| fucoppc.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| fucoppc.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| fucoppc.r | ⊢ 𝑅 = (oppCat‘𝑄) |
| fucoppc.s | ⊢ 𝑆 = (𝑂 FuncCat 𝑃) |
| fucoppc.n | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| fucoppc.f | ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) |
| fucoppc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) |
| fucoppcid.x | ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| fucoppcid | ⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppcid.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) | |
| 2 | 1 | func1st2nd 49108 | . . . . 5 ⊢ (𝜑 → (1st ‘𝑋)(𝐶 Func 𝐷)(2nd ‘𝑋)) |
| 3 | 2 | funcrcl3 49112 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 4 | fucoppc.p | . . . . 5 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (Id‘𝐷) = (Id‘𝐷) | |
| 6 | 4, 5 | oppcid 17622 | . . . 4 ⊢ (𝐷 ∈ Cat → (Id‘𝑃) = (Id‘𝐷)) |
| 7 | 3, 6 | syl 17 | . . 3 ⊢ (𝜑 → (Id‘𝑃) = (Id‘𝐷)) |
| 8 | fucoppc.f | . . . 4 ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) | |
| 9 | 8, 1 | opf11 49435 | . . 3 ⊢ (𝜑 → (1st ‘(𝐹‘𝑋)) = (1st ‘𝑋)) |
| 10 | 7, 9 | coeq12d 5799 | . 2 ⊢ (𝜑 → ((Id‘𝑃) ∘ (1st ‘(𝐹‘𝑋))) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 11 | fucoppc.s | . . 3 ⊢ 𝑆 = (𝑂 FuncCat 𝑃) | |
| 12 | eqid 2731 | . . 3 ⊢ (Id‘𝑆) = (Id‘𝑆) | |
| 13 | eqid 2731 | . . 3 ⊢ (Id‘𝑃) = (Id‘𝑃) | |
| 14 | fucoppc.o | . . . . . . 7 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 15 | 14, 4 | oppff1 49180 | . . . . . 6 ⊢ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) |
| 16 | f1f 6714 | . . . . . 6 ⊢ (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃)) | |
| 17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) |
| 18 | 8 | feq1d 6628 | . . . . 5 ⊢ (𝜑 → (𝐹:(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) ↔ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃))) |
| 19 | 17, 18 | mpbiri 258 | . . . 4 ⊢ (𝜑 → 𝐹:(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃)) |
| 20 | 19, 1 | ffvelcdmd 7013 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (𝑂 Func 𝑃)) |
| 21 | 11, 12, 13, 20 | fucid 17876 | . 2 ⊢ (𝜑 → ((Id‘𝑆)‘(𝐹‘𝑋)) = ((Id‘𝑃) ∘ (1st ‘(𝐹‘𝑋)))) |
| 22 | fucoppc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) | |
| 23 | fucoppc.q | . . . . . . 7 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 24 | 2 | funcrcl2 49111 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 25 | 23, 24, 3 | fuccat 17875 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ Cat) |
| 26 | fucoppc.r | . . . . . . 7 ⊢ 𝑅 = (oppCat‘𝑄) | |
| 27 | eqid 2731 | . . . . . . 7 ⊢ (Id‘𝑄) = (Id‘𝑄) | |
| 28 | 26, 27 | oppcid 17622 | . . . . . 6 ⊢ (𝑄 ∈ Cat → (Id‘𝑅) = (Id‘𝑄)) |
| 29 | 25, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → (Id‘𝑅) = (Id‘𝑄)) |
| 30 | 29 | fveq1d 6819 | . . . 4 ⊢ (𝜑 → ((Id‘𝑅)‘𝑋) = ((Id‘𝑄)‘𝑋)) |
| 31 | 23, 27, 5, 1 | fucid 17876 | . . . 4 ⊢ (𝜑 → ((Id‘𝑄)‘𝑋) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 32 | 30, 31 | eqtrd 2766 | . . 3 ⊢ (𝜑 → ((Id‘𝑅)‘𝑋) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 33 | fucoppc.n | . . . 4 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 34 | 23, 33, 5, 1 | fucidcl 17870 | . . 3 ⊢ (𝜑 → ((Id‘𝐷) ∘ (1st ‘𝑋)) ∈ (𝑋𝑁𝑋)) |
| 35 | 22, 1, 1, 32, 34 | opf2 49438 | . 2 ⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝐷) ∘ (1st ‘𝑋))) |
| 36 | 10, 21, 35 | 3eqtr4rd 2777 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 I cid 5505 ↾ cres 5613 ∘ ccom 5615 ⟶wf 6472 –1-1→wf1 6473 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 1st c1st 7914 2nd c2nd 7915 Catccat 17565 Idccid 17566 oppCatcoppc 17612 Func cfunc 17756 Nat cnat 17846 FuncCat cfuc 17847 oppFunc coppf 49154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-hom 17180 df-cco 17181 df-cat 17569 df-cid 17570 df-oppc 17613 df-func 17760 df-nat 17848 df-fuc 17849 df-oppf 49155 |
| This theorem is referenced by: fucoppc 49442 |
| Copyright terms: Public domain | W3C validator |