MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprlem Structured version   Visualization version   GIF version

Theorem opprlem 20260
Description: Lemma for opprbas 20262 and oppradd 20264. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
opprlem.2 𝐸 = Slot (𝐸‘ndx)
opprlem.3 (𝐸‘ndx) ≠ (.r‘ndx)
Assertion
Ref Expression
opprlem (𝐸𝑅) = (𝐸𝑂)

Proof of Theorem opprlem
StepHypRef Expression
1 opprlem.2 . . 3 𝐸 = Slot (𝐸‘ndx)
2 opprlem.3 . . 3 (𝐸‘ndx) ≠ (.r‘ndx)
31, 2setsnid 17163 . 2 (𝐸𝑅) = (𝐸‘(𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑅)⟩))
4 eqid 2727 . . . 4 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2727 . . . 4 (.r𝑅) = (.r𝑅)
6 opprbas.1 . . . 4 𝑂 = (oppr𝑅)
74, 5, 6opprval 20256 . . 3 𝑂 = (𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑅)⟩)
87fveq2i 6894 . 2 (𝐸𝑂) = (𝐸‘(𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑅)⟩))
93, 8eqtr4i 2758 1 (𝐸𝑅) = (𝐸𝑂)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wne 2935  cop 4630  cfv 6542  (class class class)co 7414  tpos ctpos 8222   sSet csts 17117  Slot cslot 17135  ndxcnx 17147  Basecbs 17165  .rcmulr 17219  opprcoppr 20254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-res 5684  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-tpos 8223  df-sets 17118  df-slot 17136  df-oppr 20255
This theorem is referenced by:  opprbas  20262  oppradd  20264
  Copyright terms: Public domain W3C validator