| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprlem | Structured version Visualization version GIF version | ||
| Description: Lemma for opprbas 20308 and oppradd 20309. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.) |
| Ref | Expression |
|---|---|
| opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
| opprlem.2 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| opprlem.3 | ⊢ (𝐸‘ndx) ≠ (.r‘ndx) |
| Ref | Expression |
|---|---|
| opprlem | ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprlem.2 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | opprlem.3 | . . 3 ⊢ (𝐸‘ndx) ≠ (.r‘ndx) | |
| 3 | 1, 2 | setsnid 17232 | . 2 ⊢ (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
| 4 | eqid 2736 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | eqid 2736 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | opprbas.1 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
| 7 | 4, 5, 6 | opprval 20303 | . . 3 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉) |
| 8 | 7 | fveq2i 6884 | . 2 ⊢ (𝐸‘𝑂) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
| 9 | 3, 8 | eqtr4i 2762 | 1 ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2933 〈cop 4612 ‘cfv 6536 (class class class)co 7410 tpos ctpos 8229 sSet csts 17187 Slot cslot 17205 ndxcnx 17217 Basecbs 17233 .rcmulr 17277 opprcoppr 20301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-res 5671 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-tpos 8230 df-sets 17188 df-slot 17206 df-oppr 20302 |
| This theorem is referenced by: opprbas 20308 oppradd 20309 opprmndb 42501 opprgrpb 42502 opprablb 42503 |
| Copyright terms: Public domain | W3C validator |