MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprlem Structured version   Visualization version   GIF version

Theorem opprlem 19370
Description: Lemma for opprbas 19371 and oppradd 19372. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
opprlem.2 𝐸 = Slot 𝑁
opprlem.3 𝑁 ∈ ℕ
opprlem.4 𝑁 < 3
Assertion
Ref Expression
opprlem (𝐸𝑅) = (𝐸𝑂)

Proof of Theorem opprlem
StepHypRef Expression
1 opprlem.2 . . . 4 𝐸 = Slot 𝑁
2 opprlem.3 . . . 4 𝑁 ∈ ℕ
31, 2ndxid 16501 . . 3 𝐸 = Slot (𝐸‘ndx)
42nnrei 11639 . . . . 5 𝑁 ∈ ℝ
5 opprlem.4 . . . . 5 𝑁 < 3
64, 5ltneii 10745 . . . 4 𝑁 ≠ 3
71, 2ndxarg 16500 . . . . 5 (𝐸‘ndx) = 𝑁
8 mulrndx 16607 . . . . 5 (.r‘ndx) = 3
97, 8neeq12i 3080 . . . 4 ((𝐸‘ndx) ≠ (.r‘ndx) ↔ 𝑁 ≠ 3)
106, 9mpbir 233 . . 3 (𝐸‘ndx) ≠ (.r‘ndx)
113, 10setsnid 16531 . 2 (𝐸𝑅) = (𝐸‘(𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑅)⟩))
12 eqid 2819 . . . 4 (Base‘𝑅) = (Base‘𝑅)
13 eqid 2819 . . . 4 (.r𝑅) = (.r𝑅)
14 opprbas.1 . . . 4 𝑂 = (oppr𝑅)
1512, 13, 14opprval 19366 . . 3 𝑂 = (𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑅)⟩)
1615fveq2i 6666 . 2 (𝐸𝑂) = (𝐸‘(𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑅)⟩))
1711, 16eqtr4i 2845 1 (𝐸𝑅) = (𝐸𝑂)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1530  wcel 2107  wne 3014  cop 4565   class class class wbr 5057  cfv 6348  (class class class)co 7148  tpos ctpos 7883   < clt 10667  cn 11630  3c3 11685  ndxcnx 16472   sSet csts 16473  Slot cslot 16474  Basecbs 16475  .rcmulr 16558  opprcoppr 19364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-i2m1 10597  ax-1ne0 10598  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-tpos 7884  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-ltxr 10672  df-nn 11631  df-2 11692  df-3 11693  df-ndx 16478  df-slot 16479  df-sets 16482  df-mulr 16571  df-oppr 19365
This theorem is referenced by:  opprbas  19371  oppradd  19372
  Copyright terms: Public domain W3C validator