![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprlem | Structured version Visualization version GIF version |
Description: Lemma for opprbas 20232 and oppradd 20234. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.) |
Ref | Expression |
---|---|
opprbas.1 | β’ π = (opprβπ ) |
opprlem.2 | β’ πΈ = Slot (πΈβndx) |
opprlem.3 | β’ (πΈβndx) β (.rβndx) |
Ref | Expression |
---|---|
opprlem | β’ (πΈβπ ) = (πΈβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprlem.2 | . . 3 β’ πΈ = Slot (πΈβndx) | |
2 | opprlem.3 | . . 3 β’ (πΈβndx) β (.rβndx) | |
3 | 1, 2 | setsnid 17146 | . 2 β’ (πΈβπ ) = (πΈβ(π sSet β¨(.rβndx), tpos (.rβπ )β©)) |
4 | eqid 2730 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
5 | eqid 2730 | . . . 4 β’ (.rβπ ) = (.rβπ ) | |
6 | opprbas.1 | . . . 4 β’ π = (opprβπ ) | |
7 | 4, 5, 6 | opprval 20226 | . . 3 β’ π = (π sSet β¨(.rβndx), tpos (.rβπ )β©) |
8 | 7 | fveq2i 6893 | . 2 β’ (πΈβπ) = (πΈβ(π sSet β¨(.rβndx), tpos (.rβπ )β©)) |
9 | 3, 8 | eqtr4i 2761 | 1 β’ (πΈβπ ) = (πΈβπ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 β wne 2938 β¨cop 4633 βcfv 6542 (class class class)co 7411 tpos ctpos 8212 sSet csts 17100 Slot cslot 17118 ndxcnx 17130 Basecbs 17148 .rcmulr 17202 opprcoppr 20224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-res 5687 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-tpos 8213 df-sets 17101 df-slot 17119 df-oppr 20225 |
This theorem is referenced by: opprbas 20232 oppradd 20234 |
Copyright terms: Public domain | W3C validator |