![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprlem | Structured version Visualization version GIF version |
Description: Lemma for opprbas 20262 and oppradd 20264. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.) |
Ref | Expression |
---|---|
opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
opprlem.2 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
opprlem.3 | ⊢ (𝐸‘ndx) ≠ (.r‘ndx) |
Ref | Expression |
---|---|
opprlem | ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprlem.2 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | opprlem.3 | . . 3 ⊢ (𝐸‘ndx) ≠ (.r‘ndx) | |
3 | 1, 2 | setsnid 17163 | . 2 ⊢ (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
4 | eqid 2727 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | eqid 2727 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
6 | opprbas.1 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
7 | 4, 5, 6 | opprval 20256 | . . 3 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉) |
8 | 7 | fveq2i 6894 | . 2 ⊢ (𝐸‘𝑂) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
9 | 3, 8 | eqtr4i 2758 | 1 ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ≠ wne 2935 〈cop 4630 ‘cfv 6542 (class class class)co 7414 tpos ctpos 8222 sSet csts 17117 Slot cslot 17135 ndxcnx 17147 Basecbs 17165 .rcmulr 17219 opprcoppr 20254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-res 5684 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-tpos 8223 df-sets 17118 df-slot 17136 df-oppr 20255 |
This theorem is referenced by: opprbas 20262 oppradd 20264 |
Copyright terms: Public domain | W3C validator |