MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprlem Structured version   Visualization version   GIF version

Theorem opprlem 20365
Description: Lemma for opprbas 20367 and oppradd 20369. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
opprlem.2 𝐸 = Slot (𝐸‘ndx)
opprlem.3 (𝐸‘ndx) ≠ (.r‘ndx)
Assertion
Ref Expression
opprlem (𝐸𝑅) = (𝐸𝑂)

Proof of Theorem opprlem
StepHypRef Expression
1 opprlem.2 . . 3 𝐸 = Slot (𝐸‘ndx)
2 opprlem.3 . . 3 (𝐸‘ndx) ≠ (.r‘ndx)
31, 2setsnid 17256 . 2 (𝐸𝑅) = (𝐸‘(𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑅)⟩))
4 eqid 2740 . . . 4 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2740 . . . 4 (.r𝑅) = (.r𝑅)
6 opprbas.1 . . . 4 𝑂 = (oppr𝑅)
74, 5, 6opprval 20361 . . 3 𝑂 = (𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑅)⟩)
87fveq2i 6923 . 2 (𝐸𝑂) = (𝐸‘(𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑅)⟩))
93, 8eqtr4i 2771 1 (𝐸𝑅) = (𝐸𝑂)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wne 2946  cop 4654  cfv 6573  (class class class)co 7448  tpos ctpos 8266   sSet csts 17210  Slot cslot 17228  ndxcnx 17240  Basecbs 17258  .rcmulr 17312  opprcoppr 20359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-tpos 8267  df-sets 17211  df-slot 17229  df-oppr 20360
This theorem is referenced by:  opprbas  20367  oppradd  20369  opprmndb  42466  opprgrpb  42467  opprablb  42468
  Copyright terms: Public domain W3C validator