Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opprlem | Structured version Visualization version GIF version |
Description: Lemma for opprbas 19784 and oppradd 19786. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.) |
Ref | Expression |
---|---|
opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
opprlem.2 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
opprlem.3 | ⊢ (𝐸‘ndx) ≠ (.r‘ndx) |
Ref | Expression |
---|---|
opprlem | ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprlem.2 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | opprlem.3 | . . 3 ⊢ (𝐸‘ndx) ≠ (.r‘ndx) | |
3 | 1, 2 | setsnid 16838 | . 2 ⊢ (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
4 | eqid 2738 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | eqid 2738 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
6 | opprbas.1 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
7 | 4, 5, 6 | opprval 19778 | . . 3 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉) |
8 | 7 | fveq2i 6759 | . 2 ⊢ (𝐸‘𝑂) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
9 | 3, 8 | eqtr4i 2769 | 1 ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ≠ wne 2942 〈cop 4564 ‘cfv 6418 (class class class)co 7255 tpos ctpos 8012 sSet csts 16792 Slot cslot 16810 ndxcnx 16822 Basecbs 16840 .rcmulr 16889 opprcoppr 19776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-tpos 8013 df-sets 16793 df-slot 16811 df-oppr 19777 |
This theorem is referenced by: opprbas 19784 oppradd 19786 |
Copyright terms: Public domain | W3C validator |