MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprlem Structured version   Visualization version   GIF version

Theorem opprlem 20230
Description: Lemma for opprbas 20232 and oppradd 20234. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (opprβ€˜π‘…)
opprlem.2 𝐸 = Slot (πΈβ€˜ndx)
opprlem.3 (πΈβ€˜ndx) β‰  (.rβ€˜ndx)
Assertion
Ref Expression
opprlem (πΈβ€˜π‘…) = (πΈβ€˜π‘‚)

Proof of Theorem opprlem
StepHypRef Expression
1 opprlem.2 . . 3 𝐸 = Slot (πΈβ€˜ndx)
2 opprlem.3 . . 3 (πΈβ€˜ndx) β‰  (.rβ€˜ndx)
31, 2setsnid 17146 . 2 (πΈβ€˜π‘…) = (πΈβ€˜(𝑅 sSet ⟨(.rβ€˜ndx), tpos (.rβ€˜π‘…)⟩))
4 eqid 2730 . . . 4 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
5 eqid 2730 . . . 4 (.rβ€˜π‘…) = (.rβ€˜π‘…)
6 opprbas.1 . . . 4 𝑂 = (opprβ€˜π‘…)
74, 5, 6opprval 20226 . . 3 𝑂 = (𝑅 sSet ⟨(.rβ€˜ndx), tpos (.rβ€˜π‘…)⟩)
87fveq2i 6893 . 2 (πΈβ€˜π‘‚) = (πΈβ€˜(𝑅 sSet ⟨(.rβ€˜ndx), tpos (.rβ€˜π‘…)⟩))
93, 8eqtr4i 2761 1 (πΈβ€˜π‘…) = (πΈβ€˜π‘‚)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   β‰  wne 2938  βŸ¨cop 4633  β€˜cfv 6542  (class class class)co 7411  tpos ctpos 8212   sSet csts 17100  Slot cslot 17118  ndxcnx 17130  Basecbs 17148  .rcmulr 17202  opprcoppr 20224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-res 5687  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-tpos 8213  df-sets 17101  df-slot 17119  df-oppr 20225
This theorem is referenced by:  opprbas  20232  oppradd  20234
  Copyright terms: Public domain W3C validator