| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprlem | Structured version Visualization version GIF version | ||
| Description: Lemma for opprbas 20228 and oppradd 20229. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.) |
| Ref | Expression |
|---|---|
| opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
| opprlem.2 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| opprlem.3 | ⊢ (𝐸‘ndx) ≠ (.r‘ndx) |
| Ref | Expression |
|---|---|
| opprlem | ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprlem.2 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | opprlem.3 | . . 3 ⊢ (𝐸‘ndx) ≠ (.r‘ndx) | |
| 3 | 1, 2 | setsnid 17119 | . 2 ⊢ (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
| 4 | eqid 2729 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | eqid 2729 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | opprbas.1 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
| 7 | 4, 5, 6 | opprval 20223 | . . 3 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉) |
| 8 | 7 | fveq2i 6825 | . 2 ⊢ (𝐸‘𝑂) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
| 9 | 3, 8 | eqtr4i 2755 | 1 ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2925 〈cop 4583 ‘cfv 6482 (class class class)co 7349 tpos ctpos 8158 sSet csts 17074 Slot cslot 17092 ndxcnx 17104 Basecbs 17120 .rcmulr 17162 opprcoppr 20221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-tpos 8159 df-sets 17075 df-slot 17093 df-oppr 20222 |
| This theorem is referenced by: opprbas 20228 oppradd 20229 opprmndb 42504 opprgrpb 42505 opprablb 42506 |
| Copyright terms: Public domain | W3C validator |