MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprlem Structured version   Visualization version   GIF version

Theorem opprlem 19867
Description: Lemma for opprbas 19869 and oppradd 19871. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
opprlem.2 𝐸 = Slot (𝐸‘ndx)
opprlem.3 (𝐸‘ndx) ≠ (.r‘ndx)
Assertion
Ref Expression
opprlem (𝐸𝑅) = (𝐸𝑂)

Proof of Theorem opprlem
StepHypRef Expression
1 opprlem.2 . . 3 𝐸 = Slot (𝐸‘ndx)
2 opprlem.3 . . 3 (𝐸‘ndx) ≠ (.r‘ndx)
31, 2setsnid 16910 . 2 (𝐸𝑅) = (𝐸‘(𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑅)⟩))
4 eqid 2738 . . . 4 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2738 . . . 4 (.r𝑅) = (.r𝑅)
6 opprbas.1 . . . 4 𝑂 = (oppr𝑅)
74, 5, 6opprval 19863 . . 3 𝑂 = (𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑅)⟩)
87fveq2i 6777 . 2 (𝐸𝑂) = (𝐸‘(𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑅)⟩))
93, 8eqtr4i 2769 1 (𝐸𝑅) = (𝐸𝑂)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wne 2943  cop 4567  cfv 6433  (class class class)co 7275  tpos ctpos 8041   sSet csts 16864  Slot cslot 16882  ndxcnx 16894  Basecbs 16912  .rcmulr 16963  opprcoppr 19861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-tpos 8042  df-sets 16865  df-slot 16883  df-oppr 19862
This theorem is referenced by:  opprbas  19869  oppradd  19871
  Copyright terms: Public domain W3C validator