MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprlem Structured version   Visualization version   GIF version

Theorem opprlem 20258
Description: Lemma for opprbas 20259 and oppradd 20260. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
opprlem.2 𝐸 = Slot (𝐸‘ndx)
opprlem.3 (𝐸‘ndx) ≠ (.r‘ndx)
Assertion
Ref Expression
opprlem (𝐸𝑅) = (𝐸𝑂)

Proof of Theorem opprlem
StepHypRef Expression
1 opprlem.2 . . 3 𝐸 = Slot (𝐸‘ndx)
2 opprlem.3 . . 3 (𝐸‘ndx) ≠ (.r‘ndx)
31, 2setsnid 17185 . 2 (𝐸𝑅) = (𝐸‘(𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑅)⟩))
4 eqid 2730 . . . 4 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2730 . . . 4 (.r𝑅) = (.r𝑅)
6 opprbas.1 . . . 4 𝑂 = (oppr𝑅)
74, 5, 6opprval 20254 . . 3 𝑂 = (𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑅)⟩)
87fveq2i 6864 . 2 (𝐸𝑂) = (𝐸‘(𝑅 sSet ⟨(.r‘ndx), tpos (.r𝑅)⟩))
93, 8eqtr4i 2756 1 (𝐸𝑅) = (𝐸𝑂)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wne 2926  cop 4598  cfv 6514  (class class class)co 7390  tpos ctpos 8207   sSet csts 17140  Slot cslot 17158  ndxcnx 17170  Basecbs 17186  .rcmulr 17228  opprcoppr 20252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-tpos 8208  df-sets 17141  df-slot 17159  df-oppr 20253
This theorem is referenced by:  opprbas  20259  oppradd  20260  opprmndb  42506  opprgrpb  42507  opprablb  42508
  Copyright terms: Public domain W3C validator