![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprbas | Structured version Visualization version GIF version |
Description: Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.) |
Ref | Expression |
---|---|
opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
opprbas.2 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
opprbas | ⊢ 𝐵 = (Base‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprbas.2 | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | opprbas.1 | . . 3 ⊢ 𝑂 = (oppr‘𝑅) | |
3 | baseid 17146 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
4 | basendxnmulrndx 17239 | . . 3 ⊢ (Base‘ndx) ≠ (.r‘ndx) | |
5 | 2, 3, 4 | opprlem 20154 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑂) |
6 | 1, 5 | eqtri 2760 | 1 ⊢ 𝐵 = (Base‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ‘cfv 6543 Basecbs 17143 opprcoppr 20148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-mulr 17210 df-oppr 20149 |
This theorem is referenced by: opprring 20160 opprringb 20161 oppr0 20162 oppr1 20163 opprneg 20164 opprsubg 20165 mulgass3 20166 1unit 20187 opprunit 20190 crngunit 20191 unitmulcl 20193 unitgrp 20196 unitnegcl 20210 unitpropd 20230 opprirred 20235 rhmopp 20287 elrhmunit 20288 opprnzr 20298 subrguss 20333 subrgunit 20336 opprsubrg 20339 isdrng2 20370 opprdrng 20388 isdrngrd 20390 isdrngrdOLD 20392 issrngd 20468 isridl 20858 ridl1 20861 2idlcpbl 20870 crngridl 20875 opprdomn 20918 fidomndrng 20925 psropprmul 21759 invrvald 22177 ply1divalg2 25655 isdrng4 32390 crngmxidl 32580 opprabs 32591 oppreqg 32592 opprnsg 32593 opprlidlabs 32594 opprmxidlabs 32596 opprqusbas 32597 opprqusplusg 32598 opprqus0g 32599 opprqusmulr 32600 opprqus1r 32601 opprqusdrng 32602 qsdrngi 32604 qsdrng 32606 ldualsbase 37998 lduallmodlem 38017 lcdsbase 40466 opprrng 46664 opprrngb 46665 opprsubrng 46728 rngridlmcl 46739 isridlrng 46741 2idlcpblrng 46756 |
Copyright terms: Public domain | W3C validator |