| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprbas | Structured version Visualization version GIF version | ||
| Description: Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.) |
| Ref | Expression |
|---|---|
| opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
| opprbas.2 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| opprbas | ⊢ 𝐵 = (Base‘𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.2 | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | opprbas.1 | . . 3 ⊢ 𝑂 = (oppr‘𝑅) | |
| 3 | baseid 17182 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
| 4 | basendxnmulrndx 17259 | . . 3 ⊢ (Base‘ndx) ≠ (.r‘ndx) | |
| 5 | 2, 3, 4 | opprlem 20251 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 6 | 1, 5 | eqtri 2752 | 1 ⊢ 𝐵 = (Base‘𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ‘cfv 6511 Basecbs 17179 opprcoppr 20245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-mulr 17234 df-oppr 20246 |
| This theorem is referenced by: opprrng 20254 opprrngb 20255 opprring 20256 opprringb 20257 oppr0 20258 oppr1 20259 opprneg 20260 opprsubg 20261 mulgass3 20262 1unit 20283 opprunit 20286 crngunit 20287 unitmulcl 20289 unitgrp 20292 unitnegcl 20306 unitpropd 20326 opprirred 20331 rhmopp 20418 elrhmunit 20419 opprsubrng 20468 subrguss 20496 subrgunit 20499 opprsubrg 20502 opprdomnb 20626 isdomn4r 20628 isdrng2 20652 opprdrng 20673 isdrngrd 20675 isdrngrdOLD 20677 fidomndrng 20682 issrngd 20764 rngridlmcl 21127 isridlrng 21129 isridl 21162 ridl1 21169 2idlcpblrng 21181 crngridl 21190 psropprmul 22122 invrvald 22563 ply1divalg2 26044 isunit2 33191 isdrng4 33245 crngmxidl 33440 opprabs 33453 oppreqg 33454 opprnsg 33455 opprlidlabs 33456 opprmxidlabs 33458 opprqusbas 33459 opprqusplusg 33460 opprqus0g 33461 opprqusmulr 33462 opprqus1r 33463 opprqusdrng 33464 qsdrngi 33466 qsdrng 33468 ldualsbase 39126 lduallmodlem 39145 lcdsbase 41594 |
| Copyright terms: Public domain | W3C validator |