![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprlemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of opprlem 20155 as of 6-Nov-2024. Lemma for opprbas 20157 and oppradd 20159. (Contributed by Mario Carneiro, 1-Dec-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
opprbas.1 | β’ π = (opprβπ ) |
opprlemOLD.2 | β’ πΈ = Slot π |
opprlemOLD.3 | β’ π β β |
opprlemOLD.4 | β’ π < 3 |
Ref | Expression |
---|---|
opprlemOLD | β’ (πΈβπ ) = (πΈβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprlemOLD.2 | . . . 4 β’ πΈ = Slot π | |
2 | opprlemOLD.3 | . . . 4 β’ π β β | |
3 | 1, 2 | ndxid 17130 | . . 3 β’ πΈ = Slot (πΈβndx) |
4 | 2 | nnrei 12221 | . . . . 5 β’ π β β |
5 | opprlemOLD.4 | . . . . 5 β’ π < 3 | |
6 | 4, 5 | ltneii 11327 | . . . 4 β’ π β 3 |
7 | 1, 2 | ndxarg 17129 | . . . . 5 β’ (πΈβndx) = π |
8 | mulrndx 17238 | . . . . 5 β’ (.rβndx) = 3 | |
9 | 7, 8 | neeq12i 3008 | . . . 4 β’ ((πΈβndx) β (.rβndx) β π β 3) |
10 | 6, 9 | mpbir 230 | . . 3 β’ (πΈβndx) β (.rβndx) |
11 | 3, 10 | setsnid 17142 | . 2 β’ (πΈβπ ) = (πΈβ(π sSet β¨(.rβndx), tpos (.rβπ )β©)) |
12 | eqid 2733 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
13 | eqid 2733 | . . . 4 β’ (.rβπ ) = (.rβπ ) | |
14 | opprbas.1 | . . . 4 β’ π = (opprβπ ) | |
15 | 12, 13, 14 | opprval 20151 | . . 3 β’ π = (π sSet β¨(.rβndx), tpos (.rβπ )β©) |
16 | 15 | fveq2i 6895 | . 2 β’ (πΈβπ) = (πΈβ(π sSet β¨(.rβndx), tpos (.rβπ )β©)) |
17 | 11, 16 | eqtr4i 2764 | 1 β’ (πΈβπ ) = (πΈβπ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 β wcel 2107 β wne 2941 β¨cop 4635 class class class wbr 5149 βcfv 6544 (class class class)co 7409 tpos ctpos 8210 < clt 11248 βcn 12212 3c3 12268 sSet csts 17096 Slot cslot 17114 ndxcnx 17126 Basecbs 17144 .rcmulr 17198 opprcoppr 20149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-i2m1 11178 ax-1ne0 11179 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-nn 12213 df-2 12275 df-3 12276 df-sets 17097 df-slot 17115 df-ndx 17127 df-mulr 17211 df-oppr 20150 |
This theorem is referenced by: opprbasOLD 20158 oppraddOLD 20160 |
Copyright terms: Public domain | W3C validator |