Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opprlemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of opprlem 19961 as of 6-Nov-2024. Lemma for opprbas 19963 and oppradd 19965. (Contributed by Mario Carneiro, 1-Dec-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
opprlemOLD.2 | ⊢ 𝐸 = Slot 𝑁 |
opprlemOLD.3 | ⊢ 𝑁 ∈ ℕ |
opprlemOLD.4 | ⊢ 𝑁 < 3 |
Ref | Expression |
---|---|
opprlemOLD | ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprlemOLD.2 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | opprlemOLD.3 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 16995 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 2 | nnrei 12087 | . . . . 5 ⊢ 𝑁 ∈ ℝ |
5 | opprlemOLD.4 | . . . . 5 ⊢ 𝑁 < 3 | |
6 | 4, 5 | ltneii 11193 | . . . 4 ⊢ 𝑁 ≠ 3 |
7 | 1, 2 | ndxarg 16994 | . . . . 5 ⊢ (𝐸‘ndx) = 𝑁 |
8 | mulrndx 17100 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
9 | 7, 8 | neeq12i 3008 | . . . 4 ⊢ ((𝐸‘ndx) ≠ (.r‘ndx) ↔ 𝑁 ≠ 3) |
10 | 6, 9 | mpbir 230 | . . 3 ⊢ (𝐸‘ndx) ≠ (.r‘ndx) |
11 | 3, 10 | setsnid 17007 | . 2 ⊢ (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
12 | eqid 2737 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
13 | eqid 2737 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
14 | opprbas.1 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
15 | 12, 13, 14 | opprval 19957 | . . 3 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉) |
16 | 15 | fveq2i 6832 | . 2 ⊢ (𝐸‘𝑂) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
17 | 11, 16 | eqtr4i 2768 | 1 ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ≠ wne 2941 〈cop 4583 class class class wbr 5096 ‘cfv 6483 (class class class)co 7341 tpos ctpos 8115 < clt 11114 ℕcn 12078 3c3 12134 sSet csts 16961 Slot cslot 16979 ndxcnx 16991 Basecbs 17009 .rcmulr 17060 opprcoppr 19955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-i2m1 11044 ax-1ne0 11045 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-2nd 7904 df-tpos 8116 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-pnf 11116 df-mnf 11117 df-ltxr 11119 df-nn 12079 df-2 12141 df-3 12142 df-sets 16962 df-slot 16980 df-ndx 16992 df-mulr 17073 df-oppr 19956 |
This theorem is referenced by: opprbasOLD 19964 oppraddOLD 19966 |
Copyright terms: Public domain | W3C validator |