Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opprlemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of opprlem 19757 as of 6-Nov-2024. Lemma for opprbas 19759 and oppradd 19761. (Contributed by Mario Carneiro, 1-Dec-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
opprlemOLD.2 | ⊢ 𝐸 = Slot 𝑁 |
opprlemOLD.3 | ⊢ 𝑁 ∈ ℕ |
opprlemOLD.4 | ⊢ 𝑁 < 3 |
Ref | Expression |
---|---|
opprlemOLD | ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprlemOLD.2 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | opprlemOLD.3 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 16801 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 2 | nnrei 11887 | . . . . 5 ⊢ 𝑁 ∈ ℝ |
5 | opprlemOLD.4 | . . . . 5 ⊢ 𝑁 < 3 | |
6 | 4, 5 | ltneii 10993 | . . . 4 ⊢ 𝑁 ≠ 3 |
7 | 1, 2 | ndxarg 16800 | . . . . 5 ⊢ (𝐸‘ndx) = 𝑁 |
8 | mulrndx 16904 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
9 | 7, 8 | neeq12i 3010 | . . . 4 ⊢ ((𝐸‘ndx) ≠ (.r‘ndx) ↔ 𝑁 ≠ 3) |
10 | 6, 9 | mpbir 234 | . . 3 ⊢ (𝐸‘ndx) ≠ (.r‘ndx) |
11 | 3, 10 | setsnid 16813 | . 2 ⊢ (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
12 | eqid 2739 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
13 | eqid 2739 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
14 | opprbas.1 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
15 | 12, 13, 14 | opprval 19753 | . . 3 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉) |
16 | 15 | fveq2i 6756 | . 2 ⊢ (𝐸‘𝑂) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
17 | 11, 16 | eqtr4i 2770 | 1 ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2112 ≠ wne 2943 〈cop 4564 class class class wbr 5070 ‘cfv 6415 (class class class)co 7252 tpos ctpos 8009 < clt 10915 ℕcn 11878 3c3 11934 sSet csts 16767 Slot cslot 16785 ndxcnx 16797 Basecbs 16815 .rcmulr 16864 opprcoppr 19751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-i2m1 10845 ax-1ne0 10846 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-tpos 8010 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-pnf 10917 df-mnf 10918 df-ltxr 10920 df-nn 11879 df-2 11941 df-3 11942 df-sets 16768 df-slot 16786 df-ndx 16798 df-mulr 16877 df-oppr 19752 |
This theorem is referenced by: opprbasOLD 19760 oppraddOLD 19762 |
Copyright terms: Public domain | W3C validator |