| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtri2 | Structured version Visualization version GIF version | ||
| Description: A trichotomy law for ordinals. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| ordtri2 | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsseleq 6381 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) | |
| 2 | eqcom 2742 | . . . . . . 7 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
| 3 | 2 | orbi2i 912 | . . . . . 6 ⊢ ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ (𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵)) |
| 4 | orcom 870 | . . . . . 6 ⊢ ((𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
| 5 | 3, 4 | bitri 275 | . . . . 5 ⊢ ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
| 6 | 1, 5 | bitrdi 287 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ 𝐴 ↔ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 7 | ordtri1 6385 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
| 8 | 6, 7 | bitr3d 281 | . . 3 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → ((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
| 9 | 8 | ancoms 458 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
| 10 | 9 | con2bid 354 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 Ord word 6351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 |
| This theorem is referenced by: ordtri3 6388 ord0eln0 6408 ord1eln01 8508 ord2eln012 8509 oaord 8559 omord2 8579 oeord 8600 nnaord 8631 nnmord 8644 noextenddif 27632 |
| Copyright terms: Public domain | W3C validator |