MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri2 Structured version   Visualization version   GIF version

Theorem ordtri2 6336
Description: A trichotomy law for ordinals. (Contributed by NM, 25-Nov-1995.)
Assertion
Ref Expression
ordtri2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))

Proof of Theorem ordtri2
StepHypRef Expression
1 ordsseleq 6330 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴)))
2 eqcom 2738 . . . . . . 7 (𝐵 = 𝐴𝐴 = 𝐵)
32orbi2i 912 . . . . . 6 ((𝐵𝐴𝐵 = 𝐴) ↔ (𝐵𝐴𝐴 = 𝐵))
4 orcom 870 . . . . . 6 ((𝐵𝐴𝐴 = 𝐵) ↔ (𝐴 = 𝐵𝐵𝐴))
53, 4bitri 275 . . . . 5 ((𝐵𝐴𝐵 = 𝐴) ↔ (𝐴 = 𝐵𝐵𝐴))
61, 5bitrdi 287 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴 ↔ (𝐴 = 𝐵𝐵𝐴)))
7 ordtri1 6334 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
86, 7bitr3d 281 . . 3 ((Ord 𝐵 ∧ Ord 𝐴) → ((𝐴 = 𝐵𝐵𝐴) ↔ ¬ 𝐴𝐵))
98ancoms 458 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 = 𝐵𝐵𝐴) ↔ ¬ 𝐴𝐵))
109con2bid 354 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wss 3897  Ord word 6300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-ord 6304
This theorem is referenced by:  ordtri3  6337  ord0eln0  6357  ord1eln01  8406  ord2eln012  8407  oaord  8457  omord2  8477  oeord  8498  nnaord  8529  nnmord  8542  noextenddif  27602
  Copyright terms: Public domain W3C validator