MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri2 Structured version   Visualization version   GIF version

Theorem ordtri2 6367
Description: A trichotomy law for ordinals. (Contributed by NM, 25-Nov-1995.)
Assertion
Ref Expression
ordtri2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))

Proof of Theorem ordtri2
StepHypRef Expression
1 ordsseleq 6361 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴)))
2 eqcom 2736 . . . . . . 7 (𝐵 = 𝐴𝐴 = 𝐵)
32orbi2i 912 . . . . . 6 ((𝐵𝐴𝐵 = 𝐴) ↔ (𝐵𝐴𝐴 = 𝐵))
4 orcom 870 . . . . . 6 ((𝐵𝐴𝐴 = 𝐵) ↔ (𝐴 = 𝐵𝐵𝐴))
53, 4bitri 275 . . . . 5 ((𝐵𝐴𝐵 = 𝐴) ↔ (𝐴 = 𝐵𝐵𝐴))
61, 5bitrdi 287 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴 ↔ (𝐴 = 𝐵𝐵𝐴)))
7 ordtri1 6365 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
86, 7bitr3d 281 . . 3 ((Ord 𝐵 ∧ Ord 𝐴) → ((𝐴 = 𝐵𝐵𝐴) ↔ ¬ 𝐴𝐵))
98ancoms 458 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 = 𝐵𝐵𝐴) ↔ ¬ 𝐴𝐵))
109con2bid 354 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wss 3914  Ord word 6331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335
This theorem is referenced by:  ordtri3  6368  ord0eln0  6388  ord1eln01  8460  ord2eln012  8461  oaord  8511  omord2  8531  oeord  8552  nnaord  8583  nnmord  8596  noextenddif  27580
  Copyright terms: Public domain W3C validator