![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtri2 | Structured version Visualization version GIF version |
Description: A trichotomy law for ordinals. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
ordtri2 | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsseleq 5895 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) | |
2 | eqcom 2778 | . . . . . . 7 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
3 | 2 | orbi2i 896 | . . . . . 6 ⊢ ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ (𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵)) |
4 | orcom 857 | . . . . . 6 ⊢ ((𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
5 | 3, 4 | bitri 264 | . . . . 5 ⊢ ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
6 | 1, 5 | syl6bb 276 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ 𝐴 ↔ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
7 | ordtri1 5899 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
8 | 6, 7 | bitr3d 270 | . . 3 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → ((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
9 | 8 | ancoms 455 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
10 | 9 | con2bid 343 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∨ wo 834 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 Ord word 5865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-tr 4887 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-ord 5869 |
This theorem is referenced by: ordtri3 5902 ord0eln0 5922 oaord 7781 omord2 7801 oeord 7822 nnaord 7853 nnmord 7866 noextenddif 32158 |
Copyright terms: Public domain | W3C validator |