![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtri2 | Structured version Visualization version GIF version |
Description: A trichotomy law for ordinals. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
ordtri2 | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsseleq 6424 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) | |
2 | eqcom 2747 | . . . . . . 7 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
3 | 2 | orbi2i 911 | . . . . . 6 ⊢ ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ (𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵)) |
4 | orcom 869 | . . . . . 6 ⊢ ((𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
5 | 3, 4 | bitri 275 | . . . . 5 ⊢ ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
6 | 1, 5 | bitrdi 287 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ 𝐴 ↔ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
7 | ordtri1 6428 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
8 | 6, 7 | bitr3d 281 | . . 3 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → ((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
9 | 8 | ancoms 458 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
10 | 9 | con2bid 354 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 Ord word 6394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 |
This theorem is referenced by: ordtri3 6431 ord0eln0 6450 ord1eln01 8552 ord2eln012 8553 oaord 8603 omord2 8623 oeord 8644 nnaord 8675 nnmord 8688 noextenddif 27731 |
Copyright terms: Public domain | W3C validator |