![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtri2 | Structured version Visualization version GIF version |
Description: A trichotomy law for ordinals. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
ordtri2 | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsseleq 6393 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) | |
2 | eqcom 2739 | . . . . . . 7 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
3 | 2 | orbi2i 911 | . . . . . 6 ⊢ ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ (𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵)) |
4 | orcom 868 | . . . . . 6 ⊢ ((𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
5 | 3, 4 | bitri 274 | . . . . 5 ⊢ ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
6 | 1, 5 | bitrdi 286 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ 𝐴 ↔ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
7 | ordtri1 6397 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
8 | 6, 7 | bitr3d 280 | . . 3 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → ((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
9 | 8 | ancoms 459 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
10 | 9 | con2bid 354 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 Ord word 6363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 |
This theorem is referenced by: ordtri3 6400 ord0eln0 6419 ord1eln01 8498 ord2eln012 8499 oaord 8549 omord2 8569 oeord 8590 nnaord 8621 nnmord 8634 noextenddif 27395 |
Copyright terms: Public domain | W3C validator |