![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtri2 | Structured version Visualization version GIF version |
Description: A trichotomy law for ordinals. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
ordtri2 | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsseleq 6060 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) | |
2 | eqcom 2785 | . . . . . . 7 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
3 | 2 | orbi2i 896 | . . . . . 6 ⊢ ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ (𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵)) |
4 | orcom 856 | . . . . . 6 ⊢ ((𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵) ↔ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
5 | 3, 4 | bitri 267 | . . . . 5 ⊢ ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
6 | 1, 5 | syl6bb 279 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ 𝐴 ↔ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
7 | ordtri1 6064 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
8 | 6, 7 | bitr3d 273 | . . 3 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → ((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
9 | 8 | ancoms 451 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
10 | 9 | con2bid 347 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∨ wo 833 = wceq 1507 ∈ wcel 2050 ⊆ wss 3831 Ord word 6030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pr 5187 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3684 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-sn 4443 df-pr 4445 df-op 4449 df-uni 4714 df-br 4931 df-opab 4993 df-tr 5032 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-we 5369 df-ord 6034 |
This theorem is referenced by: ordtri3 6067 ord0eln0 6085 oaord 7976 omord2 7996 oeord 8017 nnaord 8048 nnmord 8061 noextenddif 32696 |
Copyright terms: Public domain | W3C validator |