Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsuctopon Structured version   Visualization version   GIF version

Theorem onsuctopon 36417
Description: One of the topologies on an ordinal number is its successor. (Contributed by Chen-Pang He, 7-Nov-2015.)
Assertion
Ref Expression
onsuctopon (𝐴 ∈ On → suc 𝐴 ∈ (TopOn‘𝐴))

Proof of Theorem onsuctopon
StepHypRef Expression
1 onsuctop 36416 . 2 (𝐴 ∈ On → suc 𝐴 ∈ Top)
2 eloni 6396 . . 3 (𝐴 ∈ On → Ord 𝐴)
3 ordunisuc 7852 . . . 4 (Ord 𝐴 suc 𝐴 = 𝐴)
43eqcomd 2741 . . 3 (Ord 𝐴𝐴 = suc 𝐴)
52, 4syl 17 . 2 (𝐴 ∈ On → 𝐴 = suc 𝐴)
6 istopon 22934 . 2 (suc 𝐴 ∈ (TopOn‘𝐴) ↔ (suc 𝐴 ∈ Top ∧ 𝐴 = suc 𝐴))
71, 5, 6sylanbrc 583 1 (𝐴 ∈ On → suc 𝐴 ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106   cuni 4912  Ord word 6385  Oncon0 6386  suc csuc 6388  cfv 6563  Topctop 22915  TopOnctopon 22932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fv 6571  df-topgen 17490  df-top 22916  df-topon 22933  df-bases 22969
This theorem is referenced by:  onsuct0  36424
  Copyright terms: Public domain W3C validator