Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsuctopon Structured version   Visualization version   GIF version

Theorem onsuctopon 36422
Description: One of the topologies on an ordinal number is its successor. (Contributed by Chen-Pang He, 7-Nov-2015.)
Assertion
Ref Expression
onsuctopon (𝐴 ∈ On → suc 𝐴 ∈ (TopOn‘𝐴))

Proof of Theorem onsuctopon
StepHypRef Expression
1 onsuctop 36421 . 2 (𝐴 ∈ On → suc 𝐴 ∈ Top)
2 eloni 6342 . . 3 (𝐴 ∈ On → Ord 𝐴)
3 ordunisuc 7807 . . . 4 (Ord 𝐴 suc 𝐴 = 𝐴)
43eqcomd 2735 . . 3 (Ord 𝐴𝐴 = suc 𝐴)
52, 4syl 17 . 2 (𝐴 ∈ On → 𝐴 = suc 𝐴)
6 istopon 22799 . 2 (suc 𝐴 ∈ (TopOn‘𝐴) ↔ (suc 𝐴 ∈ Top ∧ 𝐴 = suc 𝐴))
71, 5, 6sylanbrc 583 1 (𝐴 ∈ On → suc 𝐴 ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   cuni 4871  Ord word 6331  Oncon0 6332  suc csuc 6334  cfv 6511  Topctop 22780  TopOnctopon 22797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fv 6519  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833
This theorem is referenced by:  onsuct0  36429
  Copyright terms: Public domain W3C validator