![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsuctopon | Structured version Visualization version GIF version |
Description: One of the topologies on an ordinal number is its successor. (Contributed by Chen-Pang He, 7-Nov-2015.) |
Ref | Expression |
---|---|
onsuctopon | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ (TopOn‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsuctop 33334 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ Top) | |
2 | eloni 6068 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | ordunisuc 7394 | . . . 4 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | |
4 | 3 | eqcomd 2799 | . . 3 ⊢ (Ord 𝐴 → 𝐴 = ∪ suc 𝐴) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝐴 ∈ On → 𝐴 = ∪ suc 𝐴) |
6 | istopon 21192 | . 2 ⊢ (suc 𝐴 ∈ (TopOn‘𝐴) ↔ (suc 𝐴 ∈ Top ∧ 𝐴 = ∪ suc 𝐴)) | |
7 | 1, 5, 6 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ (TopOn‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1520 ∈ wcel 2079 ∪ cuni 4739 Ord word 6057 Oncon0 6058 suc csuc 6060 ‘cfv 6217 Topctop 21173 TopOnctopon 21190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-sbc 3702 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-ord 6061 df-on 6062 df-suc 6064 df-iota 6181 df-fun 6219 df-fv 6225 df-topgen 16534 df-top 21174 df-topon 21191 df-bases 21226 |
This theorem is referenced by: onsuct0 33342 |
Copyright terms: Public domain | W3C validator |