Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsuctopon Structured version   Visualization version   GIF version

Theorem onsuctopon 33895
Description: One of the topologies on an ordinal number is its successor. (Contributed by Chen-Pang He, 7-Nov-2015.)
Assertion
Ref Expression
onsuctopon (𝐴 ∈ On → suc 𝐴 ∈ (TopOn‘𝐴))

Proof of Theorem onsuctopon
StepHypRef Expression
1 onsuctop 33894 . 2 (𝐴 ∈ On → suc 𝐴 ∈ Top)
2 eloni 6169 . . 3 (𝐴 ∈ On → Ord 𝐴)
3 ordunisuc 7527 . . . 4 (Ord 𝐴 suc 𝐴 = 𝐴)
43eqcomd 2804 . . 3 (Ord 𝐴𝐴 = suc 𝐴)
52, 4syl 17 . 2 (𝐴 ∈ On → 𝐴 = suc 𝐴)
6 istopon 21517 . 2 (suc 𝐴 ∈ (TopOn‘𝐴) ↔ (suc 𝐴 ∈ Top ∧ 𝐴 = suc 𝐴))
71, 5, 6sylanbrc 586 1 (𝐴 ∈ On → suc 𝐴 ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111   cuni 4800  Ord word 6158  Oncon0 6159  suc csuc 6161  cfv 6324  Topctop 21498  TopOnctopon 21515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fv 6332  df-topgen 16709  df-top 21499  df-topon 21516  df-bases 21551
This theorem is referenced by:  onsuct0  33902
  Copyright terms: Public domain W3C validator