MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpox Structured version   Visualization version   GIF version

Theorem ovmpox 7586
Description: The value of an operation class abstraction. Variant of ovmpoga 7587 which does not require 𝐷 and 𝑥 to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypotheses
Ref Expression
ovmpox.1 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
ovmpox.2 (𝑥 = 𝐴𝐷 = 𝐿)
ovmpox.3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpox ((𝐴𝐶𝐵𝐿𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐿,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem ovmpox
StepHypRef Expression
1 elex 3499 . 2 (𝑆𝐻𝑆 ∈ V)
2 ovmpox.3 . . . 4 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
32a1i 11 . . 3 ((𝐴𝐶𝐵𝐿𝑆 ∈ V) → 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
4 ovmpox.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
54adantl 481 . . 3 (((𝐴𝐶𝐵𝐿𝑆 ∈ V) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
6 ovmpox.2 . . . 4 (𝑥 = 𝐴𝐷 = 𝐿)
76adantl 481 . . 3 (((𝐴𝐶𝐵𝐿𝑆 ∈ V) ∧ 𝑥 = 𝐴) → 𝐷 = 𝐿)
8 simp1 1135 . . 3 ((𝐴𝐶𝐵𝐿𝑆 ∈ V) → 𝐴𝐶)
9 simp2 1136 . . 3 ((𝐴𝐶𝐵𝐿𝑆 ∈ V) → 𝐵𝐿)
10 simp3 1137 . . 3 ((𝐴𝐶𝐵𝐿𝑆 ∈ V) → 𝑆 ∈ V)
113, 5, 7, 8, 9, 10ovmpodx 7584 . 2 ((𝐴𝐶𝐵𝐿𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆)
121, 11syl3an3 1164 1 ((𝐴𝐶𝐵𝐿𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  (class class class)co 7431  cmpo 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436
This theorem is referenced by:  evls1fval  22339  ptbasfi  23605  scutval  27860  tglngval  28574  extdgval  33682  igenval  38048  isisubgr  47786  gpgov  47937  lcoop  48257
  Copyright terms: Public domain W3C validator