| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpox | Structured version Visualization version GIF version | ||
| Description: The value of an operation class abstraction. Variant of ovmpoga 7500 which does not require 𝐷 and 𝑥 to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| ovmpox.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
| ovmpox.2 | ⊢ (𝑥 = 𝐴 → 𝐷 = 𝐿) |
| ovmpox.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| Ref | Expression |
|---|---|
| ovmpox | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝑆 ∈ 𝐻 → 𝑆 ∈ V) | |
| 2 | ovmpox.3 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V) → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) |
| 4 | ovmpox.1 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
| 6 | ovmpox.2 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐷 = 𝐿) | |
| 7 | 6 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V) ∧ 𝑥 = 𝐴) → 𝐷 = 𝐿) |
| 8 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V) → 𝐴 ∈ 𝐶) | |
| 9 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V) → 𝐵 ∈ 𝐿) | |
| 10 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V) → 𝑆 ∈ V) | |
| 11 | 3, 5, 7, 8, 9, 10 | ovmpodx 7497 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
| 12 | 1, 11 | syl3an3 1165 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 (class class class)co 7346 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: evls1fval 22235 ptbasfi 23497 scutval 27742 tglngval 28530 extdgval 33664 igenval 38107 isisubgr 47899 gpgov 48079 lcoop 48449 |
| Copyright terms: Public domain | W3C validator |