![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovmpox | Structured version Visualization version GIF version |
Description: The value of an operation class abstraction. Variant of ovmpoga 7575 which does not require 𝐷 and 𝑥 to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.) |
Ref | Expression |
---|---|
ovmpox.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
ovmpox.2 | ⊢ (𝑥 = 𝐴 → 𝐷 = 𝐿) |
ovmpox.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
Ref | Expression |
---|---|
ovmpox | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3480 | . 2 ⊢ (𝑆 ∈ 𝐻 → 𝑆 ∈ V) | |
2 | ovmpox.3 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V) → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) |
4 | ovmpox.1 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) | |
5 | 4 | adantl 480 | . . 3 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
6 | ovmpox.2 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐷 = 𝐿) | |
7 | 6 | adantl 480 | . . 3 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V) ∧ 𝑥 = 𝐴) → 𝐷 = 𝐿) |
8 | simp1 1133 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V) → 𝐴 ∈ 𝐶) | |
9 | simp2 1134 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V) → 𝐵 ∈ 𝐿) | |
10 | simp3 1135 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V) → 𝑆 ∈ V) | |
11 | 3, 5, 7, 8, 9, 10 | ovmpodx 7572 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
12 | 1, 11 | syl3an3 1162 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐿 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3461 (class class class)co 7419 ∈ cmpo 7421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 |
This theorem is referenced by: evls1fval 22263 ptbasfi 23529 scutval 27779 tglngval 28427 extdgval 33477 igenval 37665 isisubgr 47334 lcoop 47665 |
Copyright terms: Public domain | W3C validator |