MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpodx Structured version   Visualization version   GIF version

Theorem ovmpodx 7562
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovmpodx.1 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
ovmpodx.2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
ovmpodx.3 ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐿)
ovmpodx.4 (𝜑𝐴𝐶)
ovmpodx.5 (𝜑𝐵𝐿)
ovmpodx.6 (𝜑𝑆𝑋)
Assertion
Ref Expression
ovmpodx (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑦,𝐴   𝑥,𝐵   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐿(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem ovmpodx
StepHypRef Expression
1 ovmpodx.1 . 2 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
2 ovmpodx.2 . 2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
3 ovmpodx.3 . 2 ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐿)
4 ovmpodx.4 . 2 (𝜑𝐴𝐶)
5 ovmpodx.5 . 2 (𝜑𝐵𝐿)
6 ovmpodx.6 . 2 (𝜑𝑆𝑋)
7 nfv 1916 . 2 𝑥𝜑
8 nfv 1916 . 2 𝑦𝜑
9 nfcv 2902 . 2 𝑦𝐴
10 nfcv 2902 . 2 𝑥𝐵
11 nfcv 2902 . 2 𝑥𝑆
12 nfcv 2902 . 2 𝑦𝑆
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12ovmpodxf 7561 1 (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  (class class class)co 7412  cmpo 7414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417
This theorem is referenced by:  ovmpod  7563  ovmpox  7564  dpjfval  19973  fgval  23694  om1val  24877  pi1val  24884  dvfval  25746  dvnfval  25772  taylfval  26210  line  47582  rrxline  47584
  Copyright terms: Public domain W3C validator