Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovmpodx | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
ovmpodx.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) |
ovmpodx.2 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
ovmpodx.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐿) |
ovmpodx.4 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
ovmpodx.5 | ⊢ (𝜑 → 𝐵 ∈ 𝐿) |
ovmpodx.6 | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
Ref | Expression |
---|---|
ovmpodx | ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpodx.1 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) | |
2 | ovmpodx.2 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) | |
3 | ovmpodx.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐿) | |
4 | ovmpodx.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
5 | ovmpodx.5 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐿) | |
6 | ovmpodx.6 | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
7 | nfv 1917 | . 2 ⊢ Ⅎ𝑥𝜑 | |
8 | nfv 1917 | . 2 ⊢ Ⅎ𝑦𝜑 | |
9 | nfcv 2907 | . 2 ⊢ Ⅎ𝑦𝐴 | |
10 | nfcv 2907 | . 2 ⊢ Ⅎ𝑥𝐵 | |
11 | nfcv 2907 | . 2 ⊢ Ⅎ𝑥𝑆 | |
12 | nfcv 2907 | . 2 ⊢ Ⅎ𝑦𝑆 | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | ovmpodxf 7423 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ∈ cmpo 7277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: ovmpod 7425 ovmpox 7426 dpjfval 19658 fgval 23021 om1val 24193 pi1val 24200 dvfval 25061 dvnfval 25086 taylfval 25518 line 46078 rrxline 46080 |
Copyright terms: Public domain | W3C validator |