MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1fval Structured version   Visualization version   GIF version

Theorem evls1fval 20476
Description: Value of the univariate polynomial evaluation map function. (Contributed by AV, 7-Sep-2019.)
Hypotheses
Ref Expression
evls1fval.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1fval.e 𝐸 = (1o evalSub 𝑆)
evls1fval.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
evls1fval ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
Distinct variable group:   𝑥,𝐵,𝑦
Allowed substitution hints:   𝑄(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem evls1fval
Dummy variables 𝑏 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1fval.q . 2 𝑄 = (𝑆 evalSub1 𝑅)
2 elex 3512 . . . 4 (𝑆𝑉𝑆 ∈ V)
32adantr 483 . . 3 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → 𝑆 ∈ V)
4 simpr 487 . . 3 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → 𝑅 ∈ 𝒫 𝐵)
5 ovex 7183 . . . . . 6 (𝐵m (𝐵m 1o)) ∈ V
65mptex 6980 . . . . 5 (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∈ V
7 fvex 6677 . . . . 5 (𝐸𝑅) ∈ V
86, 7coex 7629 . . . 4 ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)) ∈ V
98a1i 11 . . 3 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)) ∈ V)
10 fveq2 6664 . . . . . . . 8 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
1110adantr 483 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘𝑠) = (Base‘𝑆))
12 evls1fval.b . . . . . . 7 𝐵 = (Base‘𝑆)
1311, 12syl6eqr 2874 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘𝑠) = 𝐵)
1413csbeq1d 3886 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = 𝐵 / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
1512fvexi 6678 . . . . . . 7 𝐵 ∈ V
1615a1i 11 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝐵 ∈ V)
17 id 22 . . . . . . . . . 10 (𝑏 = 𝐵𝑏 = 𝐵)
18 oveq1 7157 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑏m 1o) = (𝐵m 1o))
1917, 18oveq12d 7168 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑏m (𝑏m 1o)) = (𝐵m (𝐵m 1o)))
20 mpteq1 5146 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑦𝑏 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦})))
2120coeq2d 5727 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦}))) = (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
2219, 21mpteq12dv 5143 . . . . . . . 8 (𝑏 = 𝐵 → (𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))))
2322coeq1d 5726 . . . . . . 7 (𝑏 = 𝐵 → ((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
2423adantl 484 . . . . . 6 (((𝑠 = 𝑆𝑟 = 𝑅) ∧ 𝑏 = 𝐵) → ((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
2516, 24csbied 3918 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝐵 / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
26 oveq2 7158 . . . . . . . . 9 (𝑠 = 𝑆 → (1o evalSub 𝑠) = (1o evalSub 𝑆))
27 evls1fval.e . . . . . . . . 9 𝐸 = (1o evalSub 𝑆)
2826, 27syl6eqr 2874 . . . . . . . 8 (𝑠 = 𝑆 → (1o evalSub 𝑠) = 𝐸)
2928adantr 483 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → (1o evalSub 𝑠) = 𝐸)
30 simpr 487 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑅)
3129, 30fveq12d 6671 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → ((1o evalSub 𝑠)‘𝑟) = (𝐸𝑅))
3231coeq2d 5727 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
3314, 25, 323eqtrd 2860 . . . 4 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
3410, 12syl6eqr 2874 . . . . 5 (𝑠 = 𝑆 → (Base‘𝑠) = 𝐵)
3534pweqd 4543 . . . 4 (𝑠 = 𝑆 → 𝒫 (Base‘𝑠) = 𝒫 𝐵)
36 df-evls1 20472 . . . 4 evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
3733, 35, 36ovmpox 7297 . . 3 ((𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 𝐵 ∧ ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)) ∈ V) → (𝑆 evalSub1 𝑅) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
383, 4, 9, 37syl3anc 1367 . 2 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → (𝑆 evalSub1 𝑅) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
391, 38syl5eq 2868 1 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  csb 3882  𝒫 cpw 4538  {csn 4560  cmpt 5138   × cxp 5547  ccom 5553  cfv 6349  (class class class)co 7150  1oc1o 8089  m cmap 8400  Basecbs 16477   evalSub ces 20278   evalSub1 ces1 20470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-evls1 20472
This theorem is referenced by:  evls1val  20477  evls1rhm  20479  evls1sca  20480  evl1fval1lem  20487
  Copyright terms: Public domain W3C validator