MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1fval Structured version   Visualization version   GIF version

Theorem evls1fval 22235
Description: Value of the univariate polynomial evaluation map function. (Contributed by AV, 7-Sep-2019.)
Hypotheses
Ref Expression
evls1fval.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1fval.e 𝐸 = (1o evalSub 𝑆)
evls1fval.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
evls1fval ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
Distinct variable group:   𝑥,𝐵,𝑦
Allowed substitution hints:   𝑄(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem evls1fval
Dummy variables 𝑏 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1fval.q . 2 𝑄 = (𝑆 evalSub1 𝑅)
2 elex 3458 . . . 4 (𝑆𝑉𝑆 ∈ V)
32adantr 480 . . 3 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → 𝑆 ∈ V)
4 simpr 484 . . 3 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → 𝑅 ∈ 𝒫 𝐵)
5 ovex 7385 . . . . . 6 (𝐵m (𝐵m 1o)) ∈ V
65mptex 7163 . . . . 5 (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∈ V
7 fvex 6841 . . . . 5 (𝐸𝑅) ∈ V
86, 7coex 7866 . . . 4 ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)) ∈ V
98a1i 11 . . 3 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)) ∈ V)
10 fveq2 6828 . . . . . . . 8 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
1110adantr 480 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘𝑠) = (Base‘𝑆))
12 evls1fval.b . . . . . . 7 𝐵 = (Base‘𝑆)
1311, 12eqtr4di 2786 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘𝑠) = 𝐵)
1413csbeq1d 3850 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = 𝐵 / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
1512fvexi 6842 . . . . . . 7 𝐵 ∈ V
1615a1i 11 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝐵 ∈ V)
17 id 22 . . . . . . . . . 10 (𝑏 = 𝐵𝑏 = 𝐵)
18 oveq1 7359 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑏m 1o) = (𝐵m 1o))
1917, 18oveq12d 7370 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑏m (𝑏m 1o)) = (𝐵m (𝐵m 1o)))
20 mpteq1 5182 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑦𝑏 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦})))
2120coeq2d 5806 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦}))) = (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
2219, 21mpteq12dv 5180 . . . . . . . 8 (𝑏 = 𝐵 → (𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))))
2322coeq1d 5805 . . . . . . 7 (𝑏 = 𝐵 → ((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
2423adantl 481 . . . . . 6 (((𝑠 = 𝑆𝑟 = 𝑅) ∧ 𝑏 = 𝐵) → ((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
2516, 24csbied 3882 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝐵 / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
26 oveq2 7360 . . . . . . . . 9 (𝑠 = 𝑆 → (1o evalSub 𝑠) = (1o evalSub 𝑆))
27 evls1fval.e . . . . . . . . 9 𝐸 = (1o evalSub 𝑆)
2826, 27eqtr4di 2786 . . . . . . . 8 (𝑠 = 𝑆 → (1o evalSub 𝑠) = 𝐸)
2928adantr 480 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → (1o evalSub 𝑠) = 𝐸)
30 simpr 484 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑅)
3129, 30fveq12d 6835 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → ((1o evalSub 𝑠)‘𝑟) = (𝐸𝑅))
3231coeq2d 5806 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
3314, 25, 323eqtrd 2772 . . . 4 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
3410, 12eqtr4di 2786 . . . . 5 (𝑠 = 𝑆 → (Base‘𝑠) = 𝐵)
3534pweqd 4566 . . . 4 (𝑠 = 𝑆 → 𝒫 (Base‘𝑠) = 𝒫 𝐵)
36 df-evls1 22231 . . . 4 evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
3733, 35, 36ovmpox 7505 . . 3 ((𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 𝐵 ∧ ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)) ∈ V) → (𝑆 evalSub1 𝑅) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
383, 4, 9, 37syl3anc 1373 . 2 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → (𝑆 evalSub1 𝑅) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
391, 38eqtrid 2780 1 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  csb 3846  𝒫 cpw 4549  {csn 4575  cmpt 5174   × cxp 5617  ccom 5623  cfv 6486  (class class class)co 7352  1oc1o 8384  m cmap 8756  Basecbs 17122   evalSub ces 22008   evalSub1 ces1 22229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-evls1 22231
This theorem is referenced by:  evls1val  22236  evls1rhm  22238  evls1sca  22239  evl1fval1lem  22246
  Copyright terms: Public domain W3C validator