MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1fval Structured version   Visualization version   GIF version

Theorem evls1fval 21395
Description: Value of the univariate polynomial evaluation map function. (Contributed by AV, 7-Sep-2019.)
Hypotheses
Ref Expression
evls1fval.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1fval.e 𝐸 = (1o evalSub 𝑆)
evls1fval.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
evls1fval ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
Distinct variable group:   𝑥,𝐵,𝑦
Allowed substitution hints:   𝑄(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem evls1fval
Dummy variables 𝑏 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1fval.q . 2 𝑄 = (𝑆 evalSub1 𝑅)
2 elex 3440 . . . 4 (𝑆𝑉𝑆 ∈ V)
32adantr 480 . . 3 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → 𝑆 ∈ V)
4 simpr 484 . . 3 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → 𝑅 ∈ 𝒫 𝐵)
5 ovex 7288 . . . . . 6 (𝐵m (𝐵m 1o)) ∈ V
65mptex 7081 . . . . 5 (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∈ V
7 fvex 6769 . . . . 5 (𝐸𝑅) ∈ V
86, 7coex 7751 . . . 4 ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)) ∈ V
98a1i 11 . . 3 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)) ∈ V)
10 fveq2 6756 . . . . . . . 8 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
1110adantr 480 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘𝑠) = (Base‘𝑆))
12 evls1fval.b . . . . . . 7 𝐵 = (Base‘𝑆)
1311, 12eqtr4di 2797 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘𝑠) = 𝐵)
1413csbeq1d 3832 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = 𝐵 / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
1512fvexi 6770 . . . . . . 7 𝐵 ∈ V
1615a1i 11 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝐵 ∈ V)
17 id 22 . . . . . . . . . 10 (𝑏 = 𝐵𝑏 = 𝐵)
18 oveq1 7262 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑏m 1o) = (𝐵m 1o))
1917, 18oveq12d 7273 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑏m (𝑏m 1o)) = (𝐵m (𝐵m 1o)))
20 mpteq1 5163 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑦𝑏 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦})))
2120coeq2d 5760 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦}))) = (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
2219, 21mpteq12dv 5161 . . . . . . . 8 (𝑏 = 𝐵 → (𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))))
2322coeq1d 5759 . . . . . . 7 (𝑏 = 𝐵 → ((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
2423adantl 481 . . . . . 6 (((𝑠 = 𝑆𝑟 = 𝑅) ∧ 𝑏 = 𝐵) → ((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
2516, 24csbied 3866 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝐵 / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
26 oveq2 7263 . . . . . . . . 9 (𝑠 = 𝑆 → (1o evalSub 𝑠) = (1o evalSub 𝑆))
27 evls1fval.e . . . . . . . . 9 𝐸 = (1o evalSub 𝑆)
2826, 27eqtr4di 2797 . . . . . . . 8 (𝑠 = 𝑆 → (1o evalSub 𝑠) = 𝐸)
2928adantr 480 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → (1o evalSub 𝑠) = 𝐸)
30 simpr 484 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑅)
3129, 30fveq12d 6763 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → ((1o evalSub 𝑠)‘𝑟) = (𝐸𝑅))
3231coeq2d 5760 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
3314, 25, 323eqtrd 2782 . . . 4 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
3410, 12eqtr4di 2797 . . . . 5 (𝑠 = 𝑆 → (Base‘𝑠) = 𝐵)
3534pweqd 4549 . . . 4 (𝑠 = 𝑆 → 𝒫 (Base‘𝑠) = 𝒫 𝐵)
36 df-evls1 21391 . . . 4 evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
3733, 35, 36ovmpox 7404 . . 3 ((𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 𝐵 ∧ ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)) ∈ V) → (𝑆 evalSub1 𝑅) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
383, 4, 9, 37syl3anc 1369 . 2 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → (𝑆 evalSub1 𝑅) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
391, 38eqtrid 2790 1 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  csb 3828  𝒫 cpw 4530  {csn 4558  cmpt 5153   × cxp 5578  ccom 5584  cfv 6418  (class class class)co 7255  1oc1o 8260  m cmap 8573  Basecbs 16840   evalSub ces 21190   evalSub1 ces1 21389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-evls1 21391
This theorem is referenced by:  evls1val  21396  evls1rhm  21398  evls1sca  21399  evl1fval1lem  21406
  Copyright terms: Public domain W3C validator