MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1fval Structured version   Visualization version   GIF version

Theorem evls1fval 20165
Description: Value of the univariate polynomial evaluation map function. (Contributed by AV, 7-Sep-2019.)
Hypotheses
Ref Expression
evls1fval.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1fval.e 𝐸 = (1o evalSub 𝑆)
evls1fval.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
evls1fval ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
Distinct variable group:   𝑥,𝐵,𝑦
Allowed substitution hints:   𝑄(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem evls1fval
Dummy variables 𝑏 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1fval.q . 2 𝑄 = (𝑆 evalSub1 𝑅)
2 elex 3455 . . . 4 (𝑆𝑉𝑆 ∈ V)
32adantr 481 . . 3 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → 𝑆 ∈ V)
4 simpr 485 . . 3 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → 𝑅 ∈ 𝒫 𝐵)
5 ovex 7048 . . . . . 6 (𝐵𝑚 (𝐵𝑚 1o)) ∈ V
65mptex 6852 . . . . 5 (𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∈ V
7 fvex 6551 . . . . 5 (𝐸𝑅) ∈ V
86, 7coex 7491 . . . 4 ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)) ∈ V
98a1i 11 . . 3 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)) ∈ V)
10 fveq2 6538 . . . . . . . 8 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
1110adantr 481 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘𝑠) = (Base‘𝑆))
12 evls1fval.b . . . . . . 7 𝐵 = (Base‘𝑆)
1311, 12syl6eqr 2849 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘𝑠) = 𝐵)
1413csbeq1d 3815 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = 𝐵 / 𝑏((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
1512fvexi 6552 . . . . . . 7 𝐵 ∈ V
1615a1i 11 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝐵 ∈ V)
17 id 22 . . . . . . . . . 10 (𝑏 = 𝐵𝑏 = 𝐵)
18 oveq1 7023 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑏𝑚 1o) = (𝐵𝑚 1o))
1917, 18oveq12d 7034 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑏𝑚 (𝑏𝑚 1o)) = (𝐵𝑚 (𝐵𝑚 1o)))
20 mpteq1 5048 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑦𝑏 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦})))
2120coeq2d 5619 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦}))) = (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
2219, 21mpteq12dv 5045 . . . . . . . 8 (𝑏 = 𝐵 → (𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))))
2322coeq1d 5618 . . . . . . 7 (𝑏 = 𝐵 → ((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
2423adantl 482 . . . . . 6 (((𝑠 = 𝑆𝑟 = 𝑅) ∧ 𝑏 = 𝐵) → ((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
2516, 24csbied 3844 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝐵 / 𝑏((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
26 oveq2 7024 . . . . . . . . 9 (𝑠 = 𝑆 → (1o evalSub 𝑠) = (1o evalSub 𝑆))
27 evls1fval.e . . . . . . . . 9 𝐸 = (1o evalSub 𝑆)
2826, 27syl6eqr 2849 . . . . . . . 8 (𝑠 = 𝑆 → (1o evalSub 𝑠) = 𝐸)
2928adantr 481 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → (1o evalSub 𝑠) = 𝐸)
30 simpr 485 . . . . . . 7 ((𝑠 = 𝑆𝑟 = 𝑅) → 𝑟 = 𝑅)
3129, 30fveq12d 6545 . . . . . 6 ((𝑠 = 𝑆𝑟 = 𝑅) → ((1o evalSub 𝑠)‘𝑟) = (𝐸𝑅))
3231coeq2d 5619 . . . . 5 ((𝑠 = 𝑆𝑟 = 𝑅) → ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
3314, 25, 323eqtrd 2835 . . . 4 ((𝑠 = 𝑆𝑟 = 𝑅) → (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
3410, 12syl6eqr 2849 . . . . 5 (𝑠 = 𝑆 → (Base‘𝑠) = 𝐵)
3534pweqd 4458 . . . 4 (𝑠 = 𝑆 → 𝒫 (Base‘𝑠) = 𝒫 𝐵)
36 df-evls1 20161 . . . 4 evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
3733, 35, 36ovmpox 7159 . . 3 ((𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 𝐵 ∧ ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)) ∈ V) → (𝑆 evalSub1 𝑅) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
383, 4, 9, 37syl3anc 1364 . 2 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → (𝑆 evalSub1 𝑅) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
391, 38syl5eq 2843 1 ((𝑆𝑉𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  Vcvv 3437  csb 3811  𝒫 cpw 4453  {csn 4472  cmpt 5041   × cxp 5441  ccom 5447  cfv 6225  (class class class)co 7016  1oc1o 7946  𝑚 cmap 8256  Basecbs 16312   evalSub ces 19971   evalSub1 ces1 20159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-evls1 20161
This theorem is referenced by:  evls1val  20166  evls1rhm  20168  evls1sca  20169  evl1fval1lem  20175
  Copyright terms: Public domain W3C validator