![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > preimaicomnf | Structured version Visualization version GIF version |
Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
preimaicomnf.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
preimaicomnf.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
preimaicomnf | ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preimaicomnf.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
2 | 1 | ffnd 6748 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | fncnvima2 7094 | . . 3 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞[,)𝐵)}) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞[,)𝐵)}) |
5 | mnfxr 11347 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → -∞ ∈ ℝ*) |
7 | preimaicomnf.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
8 | 7 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → 𝐵 ∈ ℝ*) |
9 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → (𝐹‘𝑥) ∈ (-∞[,)𝐵)) | |
10 | icoltub 45426 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → (𝐹‘𝑥) < 𝐵) | |
11 | 6, 8, 9, 10 | syl3anc 1371 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → (𝐹‘𝑥) < 𝐵) |
12 | 11 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (-∞[,)𝐵) → (𝐹‘𝑥) < 𝐵)) |
13 | 5 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → -∞ ∈ ℝ*) |
14 | 7 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → 𝐵 ∈ ℝ*) |
15 | 1 | ffvelcdmda 7118 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ*) |
16 | 15 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → (𝐹‘𝑥) ∈ ℝ*) |
17 | 15 | mnfled 13198 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -∞ ≤ (𝐹‘𝑥)) |
18 | 17 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → -∞ ≤ (𝐹‘𝑥)) |
19 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → (𝐹‘𝑥) < 𝐵) | |
20 | 13, 14, 16, 18, 19 | elicod 13457 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → (𝐹‘𝑥) ∈ (-∞[,)𝐵)) |
21 | 20 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) < 𝐵 → (𝐹‘𝑥) ∈ (-∞[,)𝐵))) |
22 | 12, 21 | impbid 212 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (-∞[,)𝐵) ↔ (𝐹‘𝑥) < 𝐵)) |
23 | 22 | rabbidva 3450 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞[,)𝐵)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
24 | 4, 23 | eqtrd 2780 | 1 ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 class class class wbr 5166 ◡ccnv 5699 “ cima 5703 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 -∞cmnf 11322 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 [,)cico 13409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ico 13413 |
This theorem is referenced by: preimaioomnf 46640 |
Copyright terms: Public domain | W3C validator |