Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimaicomnf Structured version   Visualization version   GIF version

Theorem preimaicomnf 46726
Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimaicomnf.1 (𝜑𝐹:𝐴⟶ℝ*)
preimaicomnf.2 (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
preimaicomnf (𝜑 → (𝐹 “ (-∞[,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) < 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem preimaicomnf
StepHypRef Expression
1 preimaicomnf.1 . . . 4 (𝜑𝐹:𝐴⟶ℝ*)
21ffnd 6737 . . 3 (𝜑𝐹 Fn 𝐴)
3 fncnvima2 7081 . . 3 (𝐹 Fn 𝐴 → (𝐹 “ (-∞[,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (-∞[,)𝐵)})
42, 3syl 17 . 2 (𝜑 → (𝐹 “ (-∞[,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (-∞[,)𝐵)})
5 mnfxr 11318 . . . . . . 7 -∞ ∈ ℝ*
65a1i 11 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ∈ (-∞[,)𝐵)) → -∞ ∈ ℝ*)
7 preimaicomnf.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
87ad2antrr 726 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ∈ (-∞[,)𝐵)) → 𝐵 ∈ ℝ*)
9 simpr 484 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ∈ (-∞[,)𝐵)) → (𝐹𝑥) ∈ (-∞[,)𝐵))
10 icoltub 45521 . . . . . 6 ((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐹𝑥) ∈ (-∞[,)𝐵)) → (𝐹𝑥) < 𝐵)
116, 8, 9, 10syl3anc 1373 . . . . 5 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ∈ (-∞[,)𝐵)) → (𝐹𝑥) < 𝐵)
1211ex 412 . . . 4 ((𝜑𝑥𝐴) → ((𝐹𝑥) ∈ (-∞[,)𝐵) → (𝐹𝑥) < 𝐵))
135a1i 11 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) < 𝐵) → -∞ ∈ ℝ*)
147ad2antrr 726 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) < 𝐵) → 𝐵 ∈ ℝ*)
151ffvelcdmda 7104 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ*)
1615adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) < 𝐵) → (𝐹𝑥) ∈ ℝ*)
1715mnfled 13178 . . . . . . 7 ((𝜑𝑥𝐴) → -∞ ≤ (𝐹𝑥))
1817adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) < 𝐵) → -∞ ≤ (𝐹𝑥))
19 simpr 484 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) < 𝐵) → (𝐹𝑥) < 𝐵)
2013, 14, 16, 18, 19elicod 13437 . . . . 5 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) < 𝐵) → (𝐹𝑥) ∈ (-∞[,)𝐵))
2120ex 412 . . . 4 ((𝜑𝑥𝐴) → ((𝐹𝑥) < 𝐵 → (𝐹𝑥) ∈ (-∞[,)𝐵)))
2212, 21impbid 212 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥) ∈ (-∞[,)𝐵) ↔ (𝐹𝑥) < 𝐵))
2322rabbidva 3443 . 2 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) ∈ (-∞[,)𝐵)} = {𝑥𝐴 ∣ (𝐹𝑥) < 𝐵})
244, 23eqtrd 2777 1 (𝜑 → (𝐹 “ (-∞[,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) < 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436   class class class wbr 5143  ccnv 5684  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  -∞cmnf 11293  *cxr 11294   < clt 11295  cle 11296  [,)cico 13389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-ico 13393
This theorem is referenced by:  preimaioomnf  46734
  Copyright terms: Public domain W3C validator