Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimaicomnf Structured version   Visualization version   GIF version

Theorem preimaicomnf 46632
Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimaicomnf.1 (𝜑𝐹:𝐴⟶ℝ*)
preimaicomnf.2 (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
preimaicomnf (𝜑 → (𝐹 “ (-∞[,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) < 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem preimaicomnf
StepHypRef Expression
1 preimaicomnf.1 . . . 4 (𝜑𝐹:𝐴⟶ℝ*)
21ffnd 6748 . . 3 (𝜑𝐹 Fn 𝐴)
3 fncnvima2 7094 . . 3 (𝐹 Fn 𝐴 → (𝐹 “ (-∞[,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (-∞[,)𝐵)})
42, 3syl 17 . 2 (𝜑 → (𝐹 “ (-∞[,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (-∞[,)𝐵)})
5 mnfxr 11347 . . . . . . 7 -∞ ∈ ℝ*
65a1i 11 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ∈ (-∞[,)𝐵)) → -∞ ∈ ℝ*)
7 preimaicomnf.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
87ad2antrr 725 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ∈ (-∞[,)𝐵)) → 𝐵 ∈ ℝ*)
9 simpr 484 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ∈ (-∞[,)𝐵)) → (𝐹𝑥) ∈ (-∞[,)𝐵))
10 icoltub 45426 . . . . . 6 ((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐹𝑥) ∈ (-∞[,)𝐵)) → (𝐹𝑥) < 𝐵)
116, 8, 9, 10syl3anc 1371 . . . . 5 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ∈ (-∞[,)𝐵)) → (𝐹𝑥) < 𝐵)
1211ex 412 . . . 4 ((𝜑𝑥𝐴) → ((𝐹𝑥) ∈ (-∞[,)𝐵) → (𝐹𝑥) < 𝐵))
135a1i 11 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) < 𝐵) → -∞ ∈ ℝ*)
147ad2antrr 725 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) < 𝐵) → 𝐵 ∈ ℝ*)
151ffvelcdmda 7118 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ*)
1615adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) < 𝐵) → (𝐹𝑥) ∈ ℝ*)
1715mnfled 13198 . . . . . . 7 ((𝜑𝑥𝐴) → -∞ ≤ (𝐹𝑥))
1817adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) < 𝐵) → -∞ ≤ (𝐹𝑥))
19 simpr 484 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) < 𝐵) → (𝐹𝑥) < 𝐵)
2013, 14, 16, 18, 19elicod 13457 . . . . 5 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) < 𝐵) → (𝐹𝑥) ∈ (-∞[,)𝐵))
2120ex 412 . . . 4 ((𝜑𝑥𝐴) → ((𝐹𝑥) < 𝐵 → (𝐹𝑥) ∈ (-∞[,)𝐵)))
2212, 21impbid 212 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥) ∈ (-∞[,)𝐵) ↔ (𝐹𝑥) < 𝐵))
2322rabbidva 3450 . 2 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) ∈ (-∞[,)𝐵)} = {𝑥𝐴 ∣ (𝐹𝑥) < 𝐵})
244, 23eqtrd 2780 1 (𝜑 → (𝐹 “ (-∞[,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) < 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443   class class class wbr 5166  ccnv 5699  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  [,)cico 13409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-ico 13413
This theorem is referenced by:  preimaioomnf  46640
  Copyright terms: Public domain W3C validator