| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > preimaicomnf | Structured version Visualization version GIF version | ||
| Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| preimaicomnf.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
| preimaicomnf.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| preimaicomnf | ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preimaicomnf.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
| 2 | 1 | ffnd 6692 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | fncnvima2 7036 | . . 3 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞[,)𝐵)}) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞[,)𝐵)}) |
| 5 | mnfxr 11238 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
| 6 | 5 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → -∞ ∈ ℝ*) |
| 7 | preimaicomnf.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 8 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → 𝐵 ∈ ℝ*) |
| 9 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → (𝐹‘𝑥) ∈ (-∞[,)𝐵)) | |
| 10 | icoltub 45513 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → (𝐹‘𝑥) < 𝐵) | |
| 11 | 6, 8, 9, 10 | syl3anc 1373 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → (𝐹‘𝑥) < 𝐵) |
| 12 | 11 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (-∞[,)𝐵) → (𝐹‘𝑥) < 𝐵)) |
| 13 | 5 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → -∞ ∈ ℝ*) |
| 14 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → 𝐵 ∈ ℝ*) |
| 15 | 1 | ffvelcdmda 7059 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ*) |
| 16 | 15 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → (𝐹‘𝑥) ∈ ℝ*) |
| 17 | 15 | mnfled 13103 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -∞ ≤ (𝐹‘𝑥)) |
| 18 | 17 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → -∞ ≤ (𝐹‘𝑥)) |
| 19 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → (𝐹‘𝑥) < 𝐵) | |
| 20 | 13, 14, 16, 18, 19 | elicod 13363 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → (𝐹‘𝑥) ∈ (-∞[,)𝐵)) |
| 21 | 20 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) < 𝐵 → (𝐹‘𝑥) ∈ (-∞[,)𝐵))) |
| 22 | 12, 21 | impbid 212 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (-∞[,)𝐵) ↔ (𝐹‘𝑥) < 𝐵)) |
| 23 | 22 | rabbidva 3415 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞[,)𝐵)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
| 24 | 4, 23 | eqtrd 2765 | 1 ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 class class class wbr 5110 ◡ccnv 5640 “ cima 5644 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 -∞cmnf 11213 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 [,)cico 13315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-ico 13319 |
| This theorem is referenced by: preimaioomnf 46724 |
| Copyright terms: Public domain | W3C validator |