Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimaicomnf Structured version   Visualization version   GIF version

Theorem preimaicomnf 46667
Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
preimaicomnf.1 (𝜑𝐹:𝐴⟶ℝ*)
preimaicomnf.2 (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
preimaicomnf (𝜑 → (𝐹 “ (-∞[,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) < 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem preimaicomnf
StepHypRef Expression
1 preimaicomnf.1 . . . 4 (𝜑𝐹:𝐴⟶ℝ*)
21ffnd 6738 . . 3 (𝜑𝐹 Fn 𝐴)
3 fncnvima2 7081 . . 3 (𝐹 Fn 𝐴 → (𝐹 “ (-∞[,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (-∞[,)𝐵)})
42, 3syl 17 . 2 (𝜑 → (𝐹 “ (-∞[,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ (-∞[,)𝐵)})
5 mnfxr 11316 . . . . . . 7 -∞ ∈ ℝ*
65a1i 11 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ∈ (-∞[,)𝐵)) → -∞ ∈ ℝ*)
7 preimaicomnf.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
87ad2antrr 726 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ∈ (-∞[,)𝐵)) → 𝐵 ∈ ℝ*)
9 simpr 484 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ∈ (-∞[,)𝐵)) → (𝐹𝑥) ∈ (-∞[,)𝐵))
10 icoltub 45461 . . . . . 6 ((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐹𝑥) ∈ (-∞[,)𝐵)) → (𝐹𝑥) < 𝐵)
116, 8, 9, 10syl3anc 1370 . . . . 5 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) ∈ (-∞[,)𝐵)) → (𝐹𝑥) < 𝐵)
1211ex 412 . . . 4 ((𝜑𝑥𝐴) → ((𝐹𝑥) ∈ (-∞[,)𝐵) → (𝐹𝑥) < 𝐵))
135a1i 11 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) < 𝐵) → -∞ ∈ ℝ*)
147ad2antrr 726 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) < 𝐵) → 𝐵 ∈ ℝ*)
151ffvelcdmda 7104 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ*)
1615adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) < 𝐵) → (𝐹𝑥) ∈ ℝ*)
1715mnfled 13175 . . . . . . 7 ((𝜑𝑥𝐴) → -∞ ≤ (𝐹𝑥))
1817adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) < 𝐵) → -∞ ≤ (𝐹𝑥))
19 simpr 484 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) < 𝐵) → (𝐹𝑥) < 𝐵)
2013, 14, 16, 18, 19elicod 13434 . . . . 5 (((𝜑𝑥𝐴) ∧ (𝐹𝑥) < 𝐵) → (𝐹𝑥) ∈ (-∞[,)𝐵))
2120ex 412 . . . 4 ((𝜑𝑥𝐴) → ((𝐹𝑥) < 𝐵 → (𝐹𝑥) ∈ (-∞[,)𝐵)))
2212, 21impbid 212 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥) ∈ (-∞[,)𝐵) ↔ (𝐹𝑥) < 𝐵))
2322rabbidva 3440 . 2 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) ∈ (-∞[,)𝐵)} = {𝑥𝐴 ∣ (𝐹𝑥) < 𝐵})
244, 23eqtrd 2775 1 (𝜑 → (𝐹 “ (-∞[,)𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) < 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {crab 3433   class class class wbr 5148  ccnv 5688  cima 5692   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  -∞cmnf 11291  *cxr 11292   < clt 11293  cle 11294  [,)cico 13386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-ico 13390
This theorem is referenced by:  preimaioomnf  46675
  Copyright terms: Public domain W3C validator