| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > preimaicomnf | Structured version Visualization version GIF version | ||
| Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| preimaicomnf.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
| preimaicomnf.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| preimaicomnf | ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preimaicomnf.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
| 2 | 1 | ffnd 6657 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | fncnvima2 6999 | . . 3 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞[,)𝐵)}) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞[,)𝐵)}) |
| 5 | mnfxr 11191 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
| 6 | 5 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → -∞ ∈ ℝ*) |
| 7 | preimaicomnf.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 8 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → 𝐵 ∈ ℝ*) |
| 9 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → (𝐹‘𝑥) ∈ (-∞[,)𝐵)) | |
| 10 | icoltub 45490 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → (𝐹‘𝑥) < 𝐵) | |
| 11 | 6, 8, 9, 10 | syl3anc 1373 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → (𝐹‘𝑥) < 𝐵) |
| 12 | 11 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (-∞[,)𝐵) → (𝐹‘𝑥) < 𝐵)) |
| 13 | 5 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → -∞ ∈ ℝ*) |
| 14 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → 𝐵 ∈ ℝ*) |
| 15 | 1 | ffvelcdmda 7022 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ*) |
| 16 | 15 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → (𝐹‘𝑥) ∈ ℝ*) |
| 17 | 15 | mnfled 13056 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -∞ ≤ (𝐹‘𝑥)) |
| 18 | 17 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → -∞ ≤ (𝐹‘𝑥)) |
| 19 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → (𝐹‘𝑥) < 𝐵) | |
| 20 | 13, 14, 16, 18, 19 | elicod 13316 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → (𝐹‘𝑥) ∈ (-∞[,)𝐵)) |
| 21 | 20 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) < 𝐵 → (𝐹‘𝑥) ∈ (-∞[,)𝐵))) |
| 22 | 12, 21 | impbid 212 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (-∞[,)𝐵) ↔ (𝐹‘𝑥) < 𝐵)) |
| 23 | 22 | rabbidva 3403 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞[,)𝐵)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
| 24 | 4, 23 | eqtrd 2764 | 1 ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 class class class wbr 5095 ◡ccnv 5622 “ cima 5626 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 -∞cmnf 11166 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 [,)cico 13268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-ico 13272 |
| This theorem is referenced by: preimaioomnf 46701 |
| Copyright terms: Public domain | W3C validator |