![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > preimaicomnf | Structured version Visualization version GIF version |
Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
preimaicomnf.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
preimaicomnf.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
preimaicomnf | ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preimaicomnf.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
2 | 1 | ffnd 6666 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | fncnvima2 7008 | . . 3 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞[,)𝐵)}) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞[,)𝐵)}) |
5 | mnfxr 11170 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → -∞ ∈ ℝ*) |
7 | preimaicomnf.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
8 | 7 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → 𝐵 ∈ ℝ*) |
9 | simpr 485 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → (𝐹‘𝑥) ∈ (-∞[,)𝐵)) | |
10 | icoltub 43640 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → (𝐹‘𝑥) < 𝐵) | |
11 | 6, 8, 9, 10 | syl3anc 1371 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → (𝐹‘𝑥) < 𝐵) |
12 | 11 | ex 413 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (-∞[,)𝐵) → (𝐹‘𝑥) < 𝐵)) |
13 | 5 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → -∞ ∈ ℝ*) |
14 | 7 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → 𝐵 ∈ ℝ*) |
15 | 1 | ffvelcdmda 7031 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ*) |
16 | 15 | adantr 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → (𝐹‘𝑥) ∈ ℝ*) |
17 | 15 | mnfled 43521 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -∞ ≤ (𝐹‘𝑥)) |
18 | 17 | adantr 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → -∞ ≤ (𝐹‘𝑥)) |
19 | simpr 485 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → (𝐹‘𝑥) < 𝐵) | |
20 | 13, 14, 16, 18, 19 | elicod 13268 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → (𝐹‘𝑥) ∈ (-∞[,)𝐵)) |
21 | 20 | ex 413 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) < 𝐵 → (𝐹‘𝑥) ∈ (-∞[,)𝐵))) |
22 | 12, 21 | impbid 211 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (-∞[,)𝐵) ↔ (𝐹‘𝑥) < 𝐵)) |
23 | 22 | rabbidva 3412 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞[,)𝐵)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
24 | 4, 23 | eqtrd 2777 | 1 ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3405 class class class wbr 5103 ◡ccnv 5630 “ cima 5634 Fn wfn 6488 ⟶wf 6489 ‘cfv 6493 (class class class)co 7351 -∞cmnf 11145 ℝ*cxr 11146 < clt 11147 ≤ cle 11148 [,)cico 13220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 ax-cnex 11065 ax-resscn 11066 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-br 5104 df-opab 5166 df-mpt 5187 df-id 5529 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-ov 7354 df-oprab 7355 df-mpo 7356 df-er 8606 df-en 8842 df-dom 8843 df-sdom 8844 df-pnf 11149 df-mnf 11150 df-xr 11151 df-ltxr 11152 df-le 11153 df-ico 13224 |
This theorem is referenced by: preimaioomnf 44854 |
Copyright terms: Public domain | W3C validator |