![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > preimaicomnf | Structured version Visualization version GIF version |
Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
preimaicomnf.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
preimaicomnf.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
preimaicomnf | ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preimaicomnf.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
2 | 1 | ffnd 6343 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | fncnvima2 6654 | . . 3 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞[,)𝐵)}) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞[,)𝐵)}) |
5 | mnfxr 10494 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → -∞ ∈ ℝ*) |
7 | preimaicomnf.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
8 | 7 | ad2antrr 713 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → 𝐵 ∈ ℝ*) |
9 | simpr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → (𝐹‘𝑥) ∈ (-∞[,)𝐵)) | |
10 | icoltub 41194 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → (𝐹‘𝑥) < 𝐵) | |
11 | 6, 8, 9, 10 | syl3anc 1351 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) ∈ (-∞[,)𝐵)) → (𝐹‘𝑥) < 𝐵) |
12 | 11 | ex 405 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (-∞[,)𝐵) → (𝐹‘𝑥) < 𝐵)) |
13 | 5 | a1i 11 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → -∞ ∈ ℝ*) |
14 | 7 | ad2antrr 713 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → 𝐵 ∈ ℝ*) |
15 | 1 | ffvelrnda 6674 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ*) |
16 | 15 | adantr 473 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → (𝐹‘𝑥) ∈ ℝ*) |
17 | 15 | mnfled 41069 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -∞ ≤ (𝐹‘𝑥)) |
18 | 17 | adantr 473 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → -∞ ≤ (𝐹‘𝑥)) |
19 | simpr 477 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → (𝐹‘𝑥) < 𝐵) | |
20 | 13, 14, 16, 18, 19 | elicod 12600 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝐹‘𝑥) < 𝐵) → (𝐹‘𝑥) ∈ (-∞[,)𝐵)) |
21 | 20 | ex 405 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) < 𝐵 → (𝐹‘𝑥) ∈ (-∞[,)𝐵))) |
22 | 12, 21 | impbid 204 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (-∞[,)𝐵) ↔ (𝐹‘𝑥) < 𝐵)) |
23 | 22 | rabbidva 3399 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ (-∞[,)𝐵)} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
24 | 4, 23 | eqtrd 2811 | 1 ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2048 {crab 3089 class class class wbr 4927 ◡ccnv 5403 “ cima 5407 Fn wfn 6181 ⟶wf 6182 ‘cfv 6186 (class class class)co 6974 -∞cmnf 10468 ℝ*cxr 10469 < clt 10470 ≤ cle 10471 [,)cico 12553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2747 ax-sep 5058 ax-nul 5065 ax-pow 5117 ax-pr 5184 ax-un 7277 ax-cnex 10387 ax-resscn 10388 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2756 df-cleq 2768 df-clel 2843 df-nfc 2915 df-ne 2965 df-nel 3071 df-ral 3090 df-rex 3091 df-rab 3094 df-v 3414 df-sbc 3681 df-csb 3786 df-dif 3831 df-un 3833 df-in 3835 df-ss 3842 df-nul 4178 df-if 4349 df-pw 4422 df-sn 4440 df-pr 4442 df-op 4446 df-uni 4711 df-br 4928 df-opab 4990 df-mpt 5007 df-id 5309 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-ov 6977 df-oprab 6978 df-mpo 6979 df-er 8085 df-en 8303 df-dom 8304 df-sdom 8305 df-pnf 10472 df-mnf 10473 df-xr 10474 df-ltxr 10475 df-le 10476 df-ico 12557 |
This theorem is referenced by: preimaioomnf 42407 |
Copyright terms: Public domain | W3C validator |