Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-oelim2 Structured version   Visualization version   GIF version

Theorem rp-oelim2 43257
Description: The power of an ordinal at least as large as two with a limit ordinal on thr right is a limit ordinal. Lemma 3.21 of [Schloeder] p. 10. See oelimcl 8606. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
rp-oelim2 (((𝐴 ∈ On ∧ 1o𝐴) ∧ (Lim 𝐵𝐵𝑉)) → Lim (𝐴o 𝐵))

Proof of Theorem rp-oelim2
StepHypRef Expression
1 ondif2 8508 . . 3 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
21biimpri 228 . 2 ((𝐴 ∈ On ∧ 1o𝐴) → 𝐴 ∈ (On ∖ 2o))
3 pm3.22 459 . 2 ((Lim 𝐵𝐵𝑉) → (𝐵𝑉 ∧ Lim 𝐵))
4 oelimcl 8606 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝑉 ∧ Lim 𝐵)) → Lim (𝐴o 𝐵))
52, 3, 4syl2an 596 1 (((𝐴 ∈ On ∧ 1o𝐴) ∧ (Lim 𝐵𝐵𝑉)) → Lim (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  cdif 3921  Oncon0 6349  Lim wlim 6350  (class class class)co 7399  1oc1o 8467  2oc2o 8468  o coe 8473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-2o 8475  df-oadd 8478  df-omul 8479  df-oexp 8480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator