Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-oelim2 Structured version   Visualization version   GIF version

Theorem rp-oelim2 43284
Description: The power of an ordinal at least as large as two with a limit ordinal on thr right is a limit ordinal. Lemma 3.21 of [Schloeder] p. 10. See oelimcl 8525. (Contributed by RP, 30-Jan-2025.)
Assertion
Ref Expression
rp-oelim2 (((𝐴 ∈ On ∧ 1o𝐴) ∧ (Lim 𝐵𝐵𝑉)) → Lim (𝐴o 𝐵))

Proof of Theorem rp-oelim2
StepHypRef Expression
1 ondif2 8427 . . 3 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
21biimpri 228 . 2 ((𝐴 ∈ On ∧ 1o𝐴) → 𝐴 ∈ (On ∖ 2o))
3 pm3.22 459 . 2 ((Lim 𝐵𝐵𝑉) → (𝐵𝑉 ∧ Lim 𝐵))
4 oelimcl 8525 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ (𝐵𝑉 ∧ Lim 𝐵)) → Lim (𝐴o 𝐵))
52, 3, 4syl2an 596 1 (((𝐴 ∈ On ∧ 1o𝐴) ∧ (Lim 𝐵𝐵𝑉)) → Lim (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cdif 3902  Oncon0 6311  Lim wlim 6312  (class class class)co 7353  1oc1o 8388  2oc2o 8389  o coe 8394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-oexp 8401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator