MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramerlem1 Structured version   Visualization version   GIF version

Theorem cramerlem1 21400
Description: Lemma 1 for cramer 21404. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
cramer.a 𝐴 = (𝑁 Mat 𝑅)
cramer.b 𝐵 = (Base‘𝐴)
cramer.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
cramer.d 𝐷 = (𝑁 maDet 𝑅)
cramer.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramer.q / = (/r𝑅)
Assertion
Ref Expression
cramerlem1 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))))
Distinct variable groups:   𝐵,𝑖   𝐷,𝑖   𝑖,𝑁   𝑅,𝑖   𝑖,𝑉   𝑖,𝑋   𝑖,𝑌   𝑖,𝑍   · ,𝑖   / ,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem cramerlem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑅 ∈ CRing)
21anim1i 617 . . . 4 (((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎𝑁) → (𝑅 ∈ CRing ∧ 𝑎𝑁))
3 simpl2 1189 . . . 4 (((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎𝑁) → (𝑋𝐵𝑌𝑉))
4 pm3.22 463 . . . . . . 7 (((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅)))
543adant2 1128 . . . . . 6 (((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅)))
653ad2ant3 1132 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅)))
76adantr 484 . . . 4 (((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎𝑁) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅)))
8 cramer.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
9 cramer.b . . . . 5 𝐵 = (Base‘𝐴)
10 cramer.v . . . . 5 𝑉 = ((Base‘𝑅) ↑m 𝑁)
11 eqid 2758 . . . . 5 (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝑎) = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝑎)
12 eqid 2758 . . . . 5 ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎) = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)
13 cramer.x . . . . 5 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
14 cramer.d . . . . 5 𝐷 = (𝑁 maDet 𝑅)
15 cramer.q . . . . 5 / = (/r𝑅)
168, 9, 10, 11, 12, 13, 14, 15cramerimp 21399 . . . 4 (((𝑅 ∈ CRing ∧ 𝑎𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝑍𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷𝑋)))
172, 3, 7, 16syl3anc 1368 . . 3 (((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎𝑁) → (𝑍𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷𝑋)))
1817ralrimiva 3113 . 2 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → ∀𝑎𝑁 (𝑍𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷𝑋)))
19 elmapfn 8460 . . . . . 6 (𝑍 ∈ ((Base‘𝑅) ↑m 𝑁) → 𝑍 Fn 𝑁)
2019, 10eleq2s 2870 . . . . 5 (𝑍𝑉𝑍 Fn 𝑁)
21203ad2ant2 1131 . . . 4 (((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍 Fn 𝑁)
22213ad2ant3 1132 . . 3 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 Fn 𝑁)
23 2fveq3 6668 . . . 4 (𝑎 = 𝑖 → (𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) = (𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)))
2423oveq1d 7171 . . 3 (𝑎 = 𝑖 → ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷𝑋)) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))
25 ovexd 7191 . . 3 (((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎𝑁) → ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷𝑋)) ∈ V)
26 ovexd 7191 . . 3 (((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑖𝑁) → ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)) ∈ V)
2722, 24, 25, 26fnmptfvd 6807 . 2 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) ↔ ∀𝑎𝑁 (𝑍𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷𝑋))))
2818, 27mpbird 260 1 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3070  Vcvv 3409  cop 4531  cmpt 5116   Fn wfn 6335  cfv 6340  (class class class)co 7156  m cmap 8422  Basecbs 16554  1rcur 19332  CRingccrg 19379  Unitcui 19473  /rcdvr 19516   Mat cmat 21120   maVecMul cmvmul 21253   matRepV cmatrepV 21270   maDet cmdat 21297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-addf 10667  ax-mulf 10668
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-om 7586  df-1st 7699  df-2nd 7700  df-supp 7842  df-tpos 7908  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-2o 8119  df-er 8305  df-map 8424  df-pm 8425  df-ixp 8493  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-fsupp 8880  df-sup 8952  df-oi 9020  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-xnn0 12020  df-z 12034  df-dec 12151  df-uz 12296  df-rp 12444  df-fz 12953  df-fzo 13096  df-seq 13432  df-exp 13493  df-hash 13754  df-word 13927  df-lsw 13975  df-concat 13983  df-s1 14010  df-substr 14063  df-pfx 14093  df-splice 14172  df-reverse 14181  df-s2 14270  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-ress 16562  df-plusg 16649  df-mulr 16650  df-starv 16651  df-sca 16652  df-vsca 16653  df-ip 16654  df-tset 16655  df-ple 16656  df-ds 16658  df-unif 16659  df-hom 16660  df-cco 16661  df-0g 16786  df-gsum 16787  df-prds 16792  df-pws 16794  df-mre 16928  df-mrc 16929  df-acs 16931  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-mhm 18035  df-submnd 18036  df-efmnd 18113  df-grp 18185  df-minusg 18186  df-sbg 18187  df-mulg 18305  df-subg 18356  df-ghm 18436  df-gim 18479  df-cntz 18527  df-oppg 18554  df-symg 18576  df-pmtr 18650  df-psgn 18699  df-evpm 18700  df-cmn 18988  df-abl 18989  df-mgp 19321  df-ur 19333  df-srg 19337  df-ring 19380  df-cring 19381  df-oppr 19457  df-dvdsr 19475  df-unit 19476  df-invr 19506  df-dvr 19517  df-rnghom 19551  df-drng 19585  df-subrg 19614  df-lmod 19717  df-lss 19785  df-sra 20025  df-rgmod 20026  df-cnfld 20180  df-zring 20252  df-zrh 20286  df-dsmm 20510  df-frlm 20525  df-mamu 21099  df-mat 21121  df-mvmul 21254  df-marrep 21271  df-marepv 21272  df-subma 21290  df-mdet 21298  df-minmar1 21348
This theorem is referenced by:  cramerlem2  21401  cramer  21404
  Copyright terms: Public domain W3C validator