MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramerlem1 Structured version   Visualization version   GIF version

Theorem cramerlem1 21212
Description: Lemma 1 for cramer 21216. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
cramer.a 𝐴 = (𝑁 Mat 𝑅)
cramer.b 𝐵 = (Base‘𝐴)
cramer.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
cramer.d 𝐷 = (𝑁 maDet 𝑅)
cramer.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramer.q / = (/r𝑅)
Assertion
Ref Expression
cramerlem1 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))))
Distinct variable groups:   𝐵,𝑖   𝐷,𝑖   𝑖,𝑁   𝑅,𝑖   𝑖,𝑉   𝑖,𝑋   𝑖,𝑌   𝑖,𝑍   · ,𝑖   / ,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem cramerlem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simp1 1130 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑅 ∈ CRing)
21anim1i 614 . . . 4 (((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎𝑁) → (𝑅 ∈ CRing ∧ 𝑎𝑁))
3 simpl2 1186 . . . 4 (((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎𝑁) → (𝑋𝐵𝑌𝑉))
4 pm3.22 460 . . . . . . 7 (((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅)))
543adant2 1125 . . . . . 6 (((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅)))
653ad2ant3 1129 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅)))
76adantr 481 . . . 4 (((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎𝑁) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅)))
8 cramer.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
9 cramer.b . . . . 5 𝐵 = (Base‘𝐴)
10 cramer.v . . . . 5 𝑉 = ((Base‘𝑅) ↑m 𝑁)
11 eqid 2826 . . . . 5 (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝑎) = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝑎)
12 eqid 2826 . . . . 5 ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎) = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)
13 cramer.x . . . . 5 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
14 cramer.d . . . . 5 𝐷 = (𝑁 maDet 𝑅)
15 cramer.q . . . . 5 / = (/r𝑅)
168, 9, 10, 11, 12, 13, 14, 15cramerimp 21211 . . . 4 (((𝑅 ∈ CRing ∧ 𝑎𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝑍𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷𝑋)))
172, 3, 7, 16syl3anc 1365 . . 3 (((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎𝑁) → (𝑍𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷𝑋)))
1817ralrimiva 3187 . 2 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → ∀𝑎𝑁 (𝑍𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷𝑋)))
19 elmapfn 8419 . . . . . 6 (𝑍 ∈ ((Base‘𝑅) ↑m 𝑁) → 𝑍 Fn 𝑁)
2019, 10eleq2s 2936 . . . . 5 (𝑍𝑉𝑍 Fn 𝑁)
21203ad2ant2 1128 . . . 4 (((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍 Fn 𝑁)
22213ad2ant3 1129 . . 3 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 Fn 𝑁)
23 2fveq3 6672 . . . 4 (𝑎 = 𝑖 → (𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) = (𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)))
2423oveq1d 7163 . . 3 (𝑎 = 𝑖 → ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷𝑋)) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))
25 ovexd 7183 . . 3 (((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎𝑁) → ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷𝑋)) ∈ V)
26 ovexd 7183 . . 3 (((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑖𝑁) → ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)) ∈ V)
2722, 24, 25, 26fnmptfvd 6807 . 2 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) ↔ ∀𝑎𝑁 (𝑍𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷𝑋))))
2818, 27mpbird 258 1 ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3143  Vcvv 3500  cop 4570  cmpt 5143   Fn wfn 6347  cfv 6352  (class class class)co 7148  m cmap 8396  Basecbs 16473  1rcur 19171  CRingccrg 19218  Unitcui 19309  /rcdvr 19352   Mat cmat 20932   maVecMul cmvmul 21065   matRepV cmatrepV 21082   maDet cmdat 21109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-xor 1498  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-ot 4573  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-tpos 7883  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-sup 8895  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-xnn0 11957  df-z 11971  df-dec 12088  df-uz 12233  df-rp 12380  df-fz 12883  df-fzo 13024  df-seq 13360  df-exp 13420  df-hash 13681  df-word 13852  df-lsw 13905  df-concat 13913  df-s1 13940  df-substr 13993  df-pfx 14023  df-splice 14102  df-reverse 14111  df-s2 14200  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-0g 16705  df-gsum 16706  df-prds 16711  df-pws 16713  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-mhm 17944  df-submnd 17945  df-grp 18036  df-minusg 18037  df-sbg 18038  df-mulg 18155  df-subg 18206  df-ghm 18286  df-gim 18329  df-cntz 18377  df-oppg 18404  df-symg 18426  df-pmtr 18490  df-psgn 18539  df-evpm 18540  df-cmn 18828  df-abl 18829  df-mgp 19160  df-ur 19172  df-srg 19176  df-ring 19219  df-cring 19220  df-oppr 19293  df-dvdsr 19311  df-unit 19312  df-invr 19342  df-dvr 19353  df-rnghom 19387  df-drng 19424  df-subrg 19453  df-lmod 19556  df-lss 19624  df-sra 19864  df-rgmod 19865  df-cnfld 20462  df-zring 20534  df-zrh 20567  df-dsmm 20792  df-frlm 20807  df-mamu 20911  df-mat 20933  df-mvmul 21066  df-marrep 21083  df-marepv 21084  df-subma 21102  df-mdet 21110  df-minmar1 21160
This theorem is referenced by:  cramerlem2  21213  cramer  21216
  Copyright terms: Public domain W3C validator