![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cramerlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for cramer 20822. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.) |
Ref | Expression |
---|---|
cramer.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cramer.b | ⊢ 𝐵 = (Base‘𝐴) |
cramer.v | ⊢ 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁) |
cramer.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
cramer.x | ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
cramer.q | ⊢ / = (/r‘𝑅) |
Ref | Expression |
---|---|
cramerlem1 | ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1167 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑅 ∈ CRing) | |
2 | 1 | anim1i 609 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎 ∈ 𝑁) → (𝑅 ∈ CRing ∧ 𝑎 ∈ 𝑁)) |
3 | simpl2 1245 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎 ∈ 𝑁) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) | |
4 | pm3.22 452 | . . . . . . 7 ⊢ (((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) | |
5 | 4 | 3adant2 1162 | . . . . . 6 ⊢ (((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) |
6 | 5 | 3ad2ant3 1166 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) |
7 | 6 | adantr 473 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎 ∈ 𝑁) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) |
8 | cramer.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
9 | cramer.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
10 | cramer.v | . . . . 5 ⊢ 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁) | |
11 | eqid 2798 | . . . . 5 ⊢ (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝑎) = (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝑎) | |
12 | eqid 2798 | . . . . 5 ⊢ ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎) = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎) | |
13 | cramer.x | . . . . 5 ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
14 | cramer.d | . . . . 5 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
15 | cramer.q | . . . . 5 ⊢ / = (/r‘𝑅) | |
16 | 8, 9, 10, 11, 12, 13, 14, 15 | cramerimp 20817 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑎 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝑍‘𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷‘𝑋))) |
17 | 2, 3, 7, 16 | syl3anc 1491 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎 ∈ 𝑁) → (𝑍‘𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷‘𝑋))) |
18 | 17 | ralrimiva 3146 | . 2 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → ∀𝑎 ∈ 𝑁 (𝑍‘𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷‘𝑋))) |
19 | elmapfn 8117 | . . . . . 6 ⊢ (𝑍 ∈ ((Base‘𝑅) ↑𝑚 𝑁) → 𝑍 Fn 𝑁) | |
20 | 19, 10 | eleq2s 2895 | . . . . 5 ⊢ (𝑍 ∈ 𝑉 → 𝑍 Fn 𝑁) |
21 | 20 | 3ad2ant2 1165 | . . . 4 ⊢ (((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍 Fn 𝑁) |
22 | 21 | 3ad2ant3 1166 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 Fn 𝑁) |
23 | 2fveq3 6415 | . . . 4 ⊢ (𝑎 = 𝑖 → (𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) = (𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖))) | |
24 | 23 | oveq1d 6892 | . . 3 ⊢ (𝑎 = 𝑖 → ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷‘𝑋)) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) |
25 | ovexd 6911 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎 ∈ 𝑁) → ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷‘𝑋)) ∈ V) | |
26 | ovexd 6911 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑖 ∈ 𝑁) → ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)) ∈ V) | |
27 | 22, 24, 25, 26 | fnmptfvd 6545 | . 2 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) ↔ ∀𝑎 ∈ 𝑁 (𝑍‘𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷‘𝑋)))) |
28 | 18, 27 | mpbird 249 | 1 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∀wral 3088 Vcvv 3384 〈cop 4373 ↦ cmpt 4921 Fn wfn 6095 ‘cfv 6100 (class class class)co 6877 ↑𝑚 cmap 8094 Basecbs 16181 1rcur 18814 CRingccrg 18861 Unitcui 18952 /rcdvr 18995 Mat cmat 20535 maVecMul cmvmul 20669 matRepV cmatrepV 20686 maDet cmdat 20713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-rep 4963 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 ax-inf2 8787 ax-cnex 10279 ax-resscn 10280 ax-1cn 10281 ax-icn 10282 ax-addcl 10283 ax-addrcl 10284 ax-mulcl 10285 ax-mulrcl 10286 ax-mulcom 10287 ax-addass 10288 ax-mulass 10289 ax-distr 10290 ax-i2m1 10291 ax-1ne0 10292 ax-1rid 10293 ax-rnegex 10294 ax-rrecex 10295 ax-cnre 10296 ax-pre-lttri 10297 ax-pre-lttrn 10298 ax-pre-ltadd 10299 ax-pre-mulgt0 10300 ax-addf 10302 ax-mulf 10303 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-xor 1635 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-pss 3784 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-tp 4372 df-op 4374 df-ot 4376 df-uni 4628 df-int 4667 df-iun 4711 df-iin 4712 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-se 5271 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-pred 5897 df-ord 5943 df-on 5944 df-lim 5945 df-suc 5946 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-isom 6109 df-riota 6838 df-ov 6880 df-oprab 6881 df-mpt2 6882 df-of 7130 df-om 7299 df-1st 7400 df-2nd 7401 df-supp 7532 df-tpos 7589 df-wrecs 7644 df-recs 7706 df-rdg 7744 df-1o 7798 df-2o 7799 df-oadd 7802 df-er 7981 df-map 8096 df-pm 8097 df-ixp 8148 df-en 8195 df-dom 8196 df-sdom 8197 df-fin 8198 df-fsupp 8517 df-sup 8589 df-oi 8656 df-card 9050 df-pnf 10364 df-mnf 10365 df-xr 10366 df-ltxr 10367 df-le 10368 df-sub 10557 df-neg 10558 df-div 10976 df-nn 11312 df-2 11373 df-3 11374 df-4 11375 df-5 11376 df-6 11377 df-7 11378 df-8 11379 df-9 11380 df-n0 11578 df-xnn0 11650 df-z 11664 df-dec 11781 df-uz 11928 df-rp 12072 df-fz 12578 df-fzo 12718 df-seq 13053 df-exp 13112 df-hash 13368 df-word 13532 df-lsw 13580 df-concat 13588 df-s1 13613 df-substr 13662 df-pfx 13711 df-splice 13818 df-reverse 13836 df-s2 13930 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-mulr 16278 df-starv 16279 df-sca 16280 df-vsca 16281 df-ip 16282 df-tset 16283 df-ple 16284 df-ds 16286 df-unif 16287 df-hom 16288 df-cco 16289 df-0g 16414 df-gsum 16415 df-prds 16420 df-pws 16422 df-mre 16558 df-mrc 16559 df-acs 16561 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-mhm 17647 df-submnd 17648 df-grp 17738 df-minusg 17739 df-sbg 17740 df-mulg 17854 df-subg 17901 df-ghm 17968 df-gim 18011 df-cntz 18059 df-oppg 18085 df-symg 18107 df-pmtr 18171 df-psgn 18220 df-evpm 18221 df-cmn 18507 df-abl 18508 df-mgp 18803 df-ur 18815 df-srg 18819 df-ring 18862 df-cring 18863 df-oppr 18936 df-dvdsr 18954 df-unit 18955 df-invr 18985 df-dvr 18996 df-rnghom 19030 df-drng 19064 df-subrg 19093 df-lmod 19180 df-lss 19248 df-sra 19492 df-rgmod 19493 df-cnfld 20066 df-zring 20138 df-zrh 20171 df-dsmm 20398 df-frlm 20413 df-mamu 20512 df-mat 20536 df-mvmul 20670 df-marrep 20687 df-marepv 20688 df-subma 20706 df-mdet 20714 df-minmar1 20764 |
This theorem is referenced by: cramerlem2 20819 cramer 20822 |
Copyright terms: Public domain | W3C validator |