![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cramerlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for cramer 22414. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.) |
Ref | Expression |
---|---|
cramer.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cramer.b | ⊢ 𝐵 = (Base‘𝐴) |
cramer.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
cramer.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
cramer.x | ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
cramer.q | ⊢ / = (/r‘𝑅) |
Ref | Expression |
---|---|
cramerlem1 | ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑅 ∈ CRing) | |
2 | 1 | anim1i 614 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎 ∈ 𝑁) → (𝑅 ∈ CRing ∧ 𝑎 ∈ 𝑁)) |
3 | simpl2 1191 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎 ∈ 𝑁) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) | |
4 | pm3.22 459 | . . . . . . 7 ⊢ (((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) | |
5 | 4 | 3adant2 1130 | . . . . . 6 ⊢ (((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) |
6 | 5 | 3ad2ant3 1134 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) |
7 | 6 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎 ∈ 𝑁) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) |
8 | cramer.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
9 | cramer.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
10 | cramer.v | . . . . 5 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
11 | eqid 2731 | . . . . 5 ⊢ (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝑎) = (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝑎) | |
12 | eqid 2731 | . . . . 5 ⊢ ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎) = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎) | |
13 | cramer.x | . . . . 5 ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
14 | cramer.d | . . . . 5 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
15 | cramer.q | . . . . 5 ⊢ / = (/r‘𝑅) | |
16 | 8, 9, 10, 11, 12, 13, 14, 15 | cramerimp 22409 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑎 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝑍‘𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷‘𝑋))) |
17 | 2, 3, 7, 16 | syl3anc 1370 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎 ∈ 𝑁) → (𝑍‘𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷‘𝑋))) |
18 | 17 | ralrimiva 3145 | . 2 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → ∀𝑎 ∈ 𝑁 (𝑍‘𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷‘𝑋))) |
19 | elmapfn 8863 | . . . . . 6 ⊢ (𝑍 ∈ ((Base‘𝑅) ↑m 𝑁) → 𝑍 Fn 𝑁) | |
20 | 19, 10 | eleq2s 2850 | . . . . 5 ⊢ (𝑍 ∈ 𝑉 → 𝑍 Fn 𝑁) |
21 | 20 | 3ad2ant2 1133 | . . . 4 ⊢ (((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍 Fn 𝑁) |
22 | 21 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 Fn 𝑁) |
23 | 2fveq3 6896 | . . . 4 ⊢ (𝑎 = 𝑖 → (𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) = (𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖))) | |
24 | 23 | oveq1d 7427 | . . 3 ⊢ (𝑎 = 𝑖 → ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷‘𝑋)) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) |
25 | ovexd 7447 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎 ∈ 𝑁) → ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷‘𝑋)) ∈ V) | |
26 | ovexd 7447 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑖 ∈ 𝑁) → ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)) ∈ V) | |
27 | 22, 24, 25, 26 | fnmptfvd 7042 | . 2 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) ↔ ∀𝑎 ∈ 𝑁 (𝑍‘𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷‘𝑋)))) |
28 | 18, 27 | mpbird 257 | 1 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 Vcvv 3473 〈cop 4634 ↦ cmpt 5231 Fn wfn 6538 ‘cfv 6543 (class class class)co 7412 ↑m cmap 8824 Basecbs 17149 1rcur 20076 CRingccrg 20129 Unitcui 20247 /rcdvr 20292 Mat cmat 22128 maVecMul cmvmul 22263 matRepV cmatrepV 22280 maDet cmdat 22307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-xor 1509 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-2o 8471 df-er 8707 df-map 8826 df-pm 8827 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-sup 9441 df-oi 9509 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-xnn0 12550 df-z 12564 df-dec 12683 df-uz 12828 df-rp 12980 df-fz 13490 df-fzo 13633 df-seq 13972 df-exp 14033 df-hash 14296 df-word 14470 df-lsw 14518 df-concat 14526 df-s1 14551 df-substr 14596 df-pfx 14626 df-splice 14705 df-reverse 14714 df-s2 14804 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-0g 17392 df-gsum 17393 df-prds 17398 df-pws 17400 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-submnd 18707 df-efmnd 18787 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18988 df-subg 19040 df-ghm 19129 df-gim 19174 df-cntz 19223 df-oppg 19252 df-symg 19277 df-pmtr 19352 df-psgn 19401 df-evpm 19402 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-srg 20082 df-ring 20130 df-cring 20131 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-rhm 20364 df-subrng 20435 df-subrg 20460 df-drng 20503 df-lmod 20617 df-lss 20688 df-sra 20931 df-rgmod 20932 df-cnfld 21146 df-zring 21219 df-zrh 21273 df-dsmm 21507 df-frlm 21522 df-mamu 22107 df-mat 22129 df-mvmul 22264 df-marrep 22281 df-marepv 22282 df-subma 22300 df-mdet 22308 df-minmar1 22358 |
This theorem is referenced by: cramerlem2 22411 cramer 22414 |
Copyright terms: Public domain | W3C validator |