Step | Hyp | Ref
| Expression |
1 | | simp1 1136 |
. . . . 5
β’ ((π
β CRing β§ (π β π΅ β§ π β π) β§ ((π·βπ) β (Unitβπ
) β§ π β π β§ (π Β· π) = π)) β π
β CRing) |
2 | 1 | anim1i 615 |
. . . 4
β’ (((π
β CRing β§ (π β π΅ β§ π β π) β§ ((π·βπ) β (Unitβπ
) β§ π β π β§ (π Β· π) = π)) β§ π β π) β (π
β CRing β§ π β π)) |
3 | | simpl2 1192 |
. . . 4
β’ (((π
β CRing β§ (π β π΅ β§ π β π) β§ ((π·βπ) β (Unitβπ
) β§ π β π β§ (π Β· π) = π)) β§ π β π) β (π β π΅ β§ π β π)) |
4 | | pm3.22 460 |
. . . . . . 7
β’ (((π·βπ) β (Unitβπ
) β§ (π Β· π) = π) β ((π Β· π) = π β§ (π·βπ) β (Unitβπ
))) |
5 | 4 | 3adant2 1131 |
. . . . . 6
β’ (((π·βπ) β (Unitβπ
) β§ π β π β§ (π Β· π) = π) β ((π Β· π) = π β§ (π·βπ) β (Unitβπ
))) |
6 | 5 | 3ad2ant3 1135 |
. . . . 5
β’ ((π
β CRing β§ (π β π΅ β§ π β π) β§ ((π·βπ) β (Unitβπ
) β§ π β π β§ (π Β· π) = π)) β ((π Β· π) = π β§ (π·βπ) β (Unitβπ
))) |
7 | 6 | adantr 481 |
. . . 4
β’ (((π
β CRing β§ (π β π΅ β§ π β π) β§ ((π·βπ) β (Unitβπ
) β§ π β π β§ (π Β· π) = π)) β§ π β π) β ((π Β· π) = π β§ (π·βπ) β (Unitβπ
))) |
8 | | cramer.a |
. . . . 5
β’ π΄ = (π Mat π
) |
9 | | cramer.b |
. . . . 5
β’ π΅ = (Baseβπ΄) |
10 | | cramer.v |
. . . . 5
β’ π = ((Baseβπ
) βm π) |
11 | | eqid 2732 |
. . . . 5
β’
(((1rβπ΄)(π matRepV π
)π)βπ) = (((1rβπ΄)(π matRepV π
)π)βπ) |
12 | | eqid 2732 |
. . . . 5
β’ ((π(π matRepV π
)π)βπ) = ((π(π matRepV π
)π)βπ) |
13 | | cramer.x |
. . . . 5
β’ Β· =
(π
maVecMul β¨π, πβ©) |
14 | | cramer.d |
. . . . 5
β’ π· = (π maDet π
) |
15 | | cramer.q |
. . . . 5
β’ / =
(/rβπ
) |
16 | 8, 9, 10, 11, 12, 13, 14, 15 | cramerimp 22187 |
. . . 4
β’ (((π
β CRing β§ π β π) β§ (π β π΅ β§ π β π) β§ ((π Β· π) = π β§ (π·βπ) β (Unitβπ
))) β (πβπ) = ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))) |
17 | 2, 3, 7, 16 | syl3anc 1371 |
. . 3
β’ (((π
β CRing β§ (π β π΅ β§ π β π) β§ ((π·βπ) β (Unitβπ
) β§ π β π β§ (π Β· π) = π)) β§ π β π) β (πβπ) = ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))) |
18 | 17 | ralrimiva 3146 |
. 2
β’ ((π
β CRing β§ (π β π΅ β§ π β π) β§ ((π·βπ) β (Unitβπ
) β§ π β π β§ (π Β· π) = π)) β βπ β π (πβπ) = ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))) |
19 | | elmapfn 8858 |
. . . . . 6
β’ (π β ((Baseβπ
) βm π) β π Fn π) |
20 | 19, 10 | eleq2s 2851 |
. . . . 5
β’ (π β π β π Fn π) |
21 | 20 | 3ad2ant2 1134 |
. . . 4
β’ (((π·βπ) β (Unitβπ
) β§ π β π β§ (π Β· π) = π) β π Fn π) |
22 | 21 | 3ad2ant3 1135 |
. . 3
β’ ((π
β CRing β§ (π β π΅ β§ π β π) β§ ((π·βπ) β (Unitβπ
) β§ π β π β§ (π Β· π) = π)) β π Fn π) |
23 | | 2fveq3 6896 |
. . . 4
β’ (π = π β (π·β((π(π matRepV π
)π)βπ)) = (π·β((π(π matRepV π
)π)βπ))) |
24 | 23 | oveq1d 7423 |
. . 3
β’ (π = π β ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ)) = ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))) |
25 | | ovexd 7443 |
. . 3
β’ (((π
β CRing β§ (π β π΅ β§ π β π) β§ ((π·βπ) β (Unitβπ
) β§ π β π β§ (π Β· π) = π)) β§ π β π) β ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ)) β V) |
26 | | ovexd 7443 |
. . 3
β’ (((π
β CRing β§ (π β π΅ β§ π β π) β§ ((π·βπ) β (Unitβπ
) β§ π β π β§ (π Β· π) = π)) β§ π β π) β ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ)) β V) |
27 | 22, 24, 25, 26 | fnmptfvd 7042 |
. 2
β’ ((π
β CRing β§ (π β π΅ β§ π β π) β§ ((π·βπ) β (Unitβπ
) β§ π β π β§ (π Β· π) = π)) β (π = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ))) β βπ β π (πβπ) = ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ)))) |
28 | 18, 27 | mpbird 256 |
1
β’ ((π
β CRing β§ (π β π΅ β§ π β π) β§ ((π·βπ) β (Unitβπ
) β§ π β π β§ (π Β· π) = π)) β π = (π β π β¦ ((π·β((π(π matRepV π
)π)βπ)) / (π·βπ)))) |