Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cramerlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for cramer 21404. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.) |
Ref | Expression |
---|---|
cramer.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cramer.b | ⊢ 𝐵 = (Base‘𝐴) |
cramer.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
cramer.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
cramer.x | ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
cramer.q | ⊢ / = (/r‘𝑅) |
Ref | Expression |
---|---|
cramerlem1 | ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑅 ∈ CRing) | |
2 | 1 | anim1i 617 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎 ∈ 𝑁) → (𝑅 ∈ CRing ∧ 𝑎 ∈ 𝑁)) |
3 | simpl2 1189 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎 ∈ 𝑁) → (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) | |
4 | pm3.22 463 | . . . . . . 7 ⊢ (((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) | |
5 | 4 | 3adant2 1128 | . . . . . 6 ⊢ (((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) |
6 | 5 | 3ad2ant3 1132 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) |
7 | 6 | adantr 484 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎 ∈ 𝑁) → ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) |
8 | cramer.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
9 | cramer.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
10 | cramer.v | . . . . 5 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
11 | eqid 2758 | . . . . 5 ⊢ (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝑎) = (((1r‘𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝑎) | |
12 | eqid 2758 | . . . . 5 ⊢ ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎) = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎) | |
13 | cramer.x | . . . . 5 ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
14 | cramer.d | . . . . 5 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
15 | cramer.q | . . . . 5 ⊢ / = (/r‘𝑅) | |
16 | 8, 9, 10, 11, 12, 13, 14, 15 | cramerimp 21399 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑎 ∈ 𝑁) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷‘𝑋) ∈ (Unit‘𝑅))) → (𝑍‘𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷‘𝑋))) |
17 | 2, 3, 7, 16 | syl3anc 1368 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎 ∈ 𝑁) → (𝑍‘𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷‘𝑋))) |
18 | 17 | ralrimiva 3113 | . 2 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → ∀𝑎 ∈ 𝑁 (𝑍‘𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷‘𝑋))) |
19 | elmapfn 8460 | . . . . . 6 ⊢ (𝑍 ∈ ((Base‘𝑅) ↑m 𝑁) → 𝑍 Fn 𝑁) | |
20 | 19, 10 | eleq2s 2870 | . . . . 5 ⊢ (𝑍 ∈ 𝑉 → 𝑍 Fn 𝑁) |
21 | 20 | 3ad2ant2 1131 | . . . 4 ⊢ (((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍 Fn 𝑁) |
22 | 21 | 3ad2ant3 1132 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 Fn 𝑁) |
23 | 2fveq3 6668 | . . . 4 ⊢ (𝑎 = 𝑖 → (𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) = (𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖))) | |
24 | 23 | oveq1d 7171 | . . 3 ⊢ (𝑎 = 𝑖 → ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷‘𝑋)) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) |
25 | ovexd 7191 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑎 ∈ 𝑁) → ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷‘𝑋)) ∈ V) | |
26 | ovexd 7191 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) ∧ 𝑖 ∈ 𝑁) → ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)) ∈ V) | |
27 | 22, 24, 25, 26 | fnmptfvd 6807 | . 2 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋))) ↔ ∀𝑎 ∈ 𝑁 (𝑍‘𝑎) = ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑎)) / (𝐷‘𝑋)))) |
28 | 18, 27 | mpbird 260 | 1 ⊢ ((𝑅 ∈ CRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ 𝑍 ∈ 𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = (𝑖 ∈ 𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∀wral 3070 Vcvv 3409 〈cop 4531 ↦ cmpt 5116 Fn wfn 6335 ‘cfv 6340 (class class class)co 7156 ↑m cmap 8422 Basecbs 16554 1rcur 19332 CRingccrg 19379 Unitcui 19473 /rcdvr 19516 Mat cmat 21120 maVecMul cmvmul 21253 matRepV cmatrepV 21270 maDet cmdat 21297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-addf 10667 ax-mulf 10668 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-xor 1503 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-ot 4534 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-tpos 7908 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-2o 8119 df-er 8305 df-map 8424 df-pm 8425 df-ixp 8493 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-sup 8952 df-oi 9020 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-xnn0 12020 df-z 12034 df-dec 12151 df-uz 12296 df-rp 12444 df-fz 12953 df-fzo 13096 df-seq 13432 df-exp 13493 df-hash 13754 df-word 13927 df-lsw 13975 df-concat 13983 df-s1 14010 df-substr 14063 df-pfx 14093 df-splice 14172 df-reverse 14181 df-s2 14270 df-struct 16556 df-ndx 16557 df-slot 16558 df-base 16560 df-sets 16561 df-ress 16562 df-plusg 16649 df-mulr 16650 df-starv 16651 df-sca 16652 df-vsca 16653 df-ip 16654 df-tset 16655 df-ple 16656 df-ds 16658 df-unif 16659 df-hom 16660 df-cco 16661 df-0g 16786 df-gsum 16787 df-prds 16792 df-pws 16794 df-mre 16928 df-mrc 16929 df-acs 16931 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-mhm 18035 df-submnd 18036 df-efmnd 18113 df-grp 18185 df-minusg 18186 df-sbg 18187 df-mulg 18305 df-subg 18356 df-ghm 18436 df-gim 18479 df-cntz 18527 df-oppg 18554 df-symg 18576 df-pmtr 18650 df-psgn 18699 df-evpm 18700 df-cmn 18988 df-abl 18989 df-mgp 19321 df-ur 19333 df-srg 19337 df-ring 19380 df-cring 19381 df-oppr 19457 df-dvdsr 19475 df-unit 19476 df-invr 19506 df-dvr 19517 df-rnghom 19551 df-drng 19585 df-subrg 19614 df-lmod 19717 df-lss 19785 df-sra 20025 df-rgmod 20026 df-cnfld 20180 df-zring 20252 df-zrh 20286 df-dsmm 20510 df-frlm 20525 df-mamu 21099 df-mat 21121 df-mvmul 21254 df-marrep 21271 df-marepv 21272 df-subma 21290 df-mdet 21298 df-minmar1 21348 |
This theorem is referenced by: cramerlem2 21401 cramer 21404 |
Copyright terms: Public domain | W3C validator |