| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | grpidinvlem3.3 | . . . . . 6
⊢ (𝜓 ↔ ∀𝑥 ∈ 𝑋 ∃𝑧 ∈ 𝑋 (𝑧𝐺𝑥) = 𝑈) | 
| 2 |  | oveq1 7438 | . . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝑧𝐺𝑥) = (𝑦𝐺𝑥)) | 
| 3 | 2 | eqeq1d 2739 | . . . . . . . 8
⊢ (𝑧 = 𝑦 → ((𝑧𝐺𝑥) = 𝑈 ↔ (𝑦𝐺𝑥) = 𝑈)) | 
| 4 | 3 | cbvrexvw 3238 | . . . . . . 7
⊢
(∃𝑧 ∈
𝑋 (𝑧𝐺𝑥) = 𝑈 ↔ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈) | 
| 5 | 4 | ralbii 3093 | . . . . . 6
⊢
(∀𝑥 ∈
𝑋 ∃𝑧 ∈ 𝑋 (𝑧𝐺𝑥) = 𝑈 ↔ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈) | 
| 6 | 1, 5 | bitri 275 | . . . . 5
⊢ (𝜓 ↔ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈) | 
| 7 |  | oveq2 7439 | . . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑦𝐺𝑥) = (𝑦𝐺𝐴)) | 
| 8 | 7 | eqeq1d 2739 | . . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑦𝐺𝑥) = 𝑈 ↔ (𝑦𝐺𝐴) = 𝑈)) | 
| 9 | 8 | rexbidv 3179 | . . . . . 6
⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈 ↔ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) | 
| 10 | 9 | rspccva 3621 | . . . . 5
⊢
((∀𝑥 ∈
𝑋 ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈 ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) | 
| 11 | 6, 10 | sylanb 581 | . . . 4
⊢ ((𝜓 ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) | 
| 12 | 11 | adantll 714 | . . 3
⊢ (((𝜑 ∧ 𝜓) ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) | 
| 13 | 12 | adantll 714 | . 2
⊢ ((((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) | 
| 14 |  | grpfo.1 | . . . . . . . . . . . 12
⊢ 𝑋 = ran 𝐺 | 
| 15 | 14 | grpocl 30519 | . . . . . . . . . . 11
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴𝐺𝑦) ∈ 𝑋) | 
| 16 | 15 | 3expa 1119 | . . . . . . . . . 10
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐴𝐺𝑦) ∈ 𝑋) | 
| 17 | 16 | adantllr 719 | . . . . . . . . 9
⊢ ((((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐴𝐺𝑦) ∈ 𝑋) | 
| 18 | 17 | adantllr 719 | . . . . . . . 8
⊢
(((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐴𝐺𝑦) ∈ 𝑋) | 
| 19 |  | grpidinvlem3.2 | . . . . . . . . . . 11
⊢ (𝜑 ↔ ∀𝑥 ∈ 𝑋 (𝑈𝐺𝑥) = 𝑥) | 
| 20 | 19 | biimpi 216 | . . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝑈𝐺𝑥) = 𝑥) | 
| 21 | 20 | ad2antrl 728 | . . . . . . . . 9
⊢ (((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) → ∀𝑥 ∈ 𝑋 (𝑈𝐺𝑥) = 𝑥) | 
| 22 | 21 | ad2antrr 726 | . . . . . . . 8
⊢
(((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ∀𝑥 ∈ 𝑋 (𝑈𝐺𝑥) = 𝑥) | 
| 23 |  | oveq2 7439 | . . . . . . . . . 10
⊢ (𝑥 = (𝐴𝐺𝑦) → (𝑈𝐺𝑥) = (𝑈𝐺(𝐴𝐺𝑦))) | 
| 24 |  | id 22 | . . . . . . . . . 10
⊢ (𝑥 = (𝐴𝐺𝑦) → 𝑥 = (𝐴𝐺𝑦)) | 
| 25 | 23, 24 | eqeq12d 2753 | . . . . . . . . 9
⊢ (𝑥 = (𝐴𝐺𝑦) → ((𝑈𝐺𝑥) = 𝑥 ↔ (𝑈𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦))) | 
| 26 | 25 | rspcva 3620 | . . . . . . . 8
⊢ (((𝐴𝐺𝑦) ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑈𝐺𝑥) = 𝑥) → (𝑈𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦)) | 
| 27 | 18, 22, 26 | syl2anc 584 | . . . . . . 7
⊢
(((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑈𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦)) | 
| 28 | 27 | adantr 480 | . . . . . 6
⊢
((((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) → (𝑈𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦)) | 
| 29 |  | pm3.22 459 | . . . . . . . . . . . 12
⊢ (((𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐺 ∈ GrpOp) → (𝐺 ∈ GrpOp ∧ (𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋))) | 
| 30 | 29 | an31s 654 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐺 ∈ GrpOp ∧ (𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋))) | 
| 31 | 30 | adantllr 719 | . . . . . . . . . 10
⊢ ((((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐺 ∈ GrpOp ∧ (𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋))) | 
| 32 | 31 | adantllr 719 | . . . . . . . . 9
⊢
(((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐺 ∈ GrpOp ∧ (𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋))) | 
| 33 | 32 | adantr 480 | . . . . . . . 8
⊢
((((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) → (𝐺 ∈ GrpOp ∧ (𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋))) | 
| 34 |  | oveq2 7439 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝑈𝐺𝑥) = (𝑈𝐺𝑦)) | 
| 35 |  | id 22 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | 
| 36 | 34, 35 | eqeq12d 2753 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((𝑈𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝑦) = 𝑦)) | 
| 37 | 36 | rspccva 3621 | . . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝑋 (𝑈𝐺𝑥) = 𝑥 ∧ 𝑦 ∈ 𝑋) → (𝑈𝐺𝑦) = 𝑦) | 
| 38 | 19, 37 | sylanb 581 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑈𝐺𝑦) = 𝑦) | 
| 39 | 38 | adantlr 715 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑦 ∈ 𝑋) → (𝑈𝐺𝑦) = 𝑦) | 
| 40 | 39 | adantlr 715 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑈𝐺𝑦) = 𝑦) | 
| 41 | 40 | adantlll 718 | . . . . . . . . 9
⊢
(((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑈𝐺𝑦) = 𝑦) | 
| 42 | 41 | anim1i 615 | . . . . . . . 8
⊢
((((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) → ((𝑈𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝐴) = 𝑈)) | 
| 43 | 14 | grpoidinvlem2 30524 | . . . . . . . 8
⊢ (((𝐺 ∈ GrpOp ∧ (𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) ∧ ((𝑈𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝐴) = 𝑈)) → ((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦)) | 
| 44 | 33, 42, 43 | syl2anc 584 | . . . . . . 7
⊢
((((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) → ((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦)) | 
| 45 | 15 | 3expb 1121 | . . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐴𝐺𝑦) ∈ 𝑋) | 
| 46 | 45 | ad2ant2rl 749 | . . . . . . . . . . . . 13
⊢ (((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) → (𝐴𝐺𝑦) ∈ 𝑋) | 
| 47 |  | oveq1 7438 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑤 → (𝑧𝐺𝑥) = (𝑤𝐺𝑥)) | 
| 48 | 47 | eqeq1d 2739 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑤 → ((𝑧𝐺𝑥) = 𝑈 ↔ (𝑤𝐺𝑥) = 𝑈)) | 
| 49 | 48 | cbvrexvw 3238 | . . . . . . . . . . . . . . . . 17
⊢
(∃𝑧 ∈
𝑋 (𝑧𝐺𝑥) = 𝑈 ↔ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑥) = 𝑈) | 
| 50 | 49 | ralbii 3093 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝑋 ∃𝑧 ∈ 𝑋 (𝑧𝐺𝑥) = 𝑈 ↔ ∀𝑥 ∈ 𝑋 ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑥) = 𝑈) | 
| 51 | 1, 50 | bitri 275 | . . . . . . . . . . . . . . 15
⊢ (𝜓 ↔ ∀𝑥 ∈ 𝑋 ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑥) = 𝑈) | 
| 52 |  | oveq2 7439 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝐴𝐺𝑦) → (𝑤𝐺𝑥) = (𝑤𝐺(𝐴𝐺𝑦))) | 
| 53 | 52 | eqeq1d 2739 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝐴𝐺𝑦) → ((𝑤𝐺𝑥) = 𝑈 ↔ (𝑤𝐺(𝐴𝐺𝑦)) = 𝑈)) | 
| 54 | 53 | rexbidv 3179 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝐴𝐺𝑦) → (∃𝑤 ∈ 𝑋 (𝑤𝐺𝑥) = 𝑈 ↔ ∃𝑤 ∈ 𝑋 (𝑤𝐺(𝐴𝐺𝑦)) = 𝑈)) | 
| 55 | 54 | rspcva 3620 | . . . . . . . . . . . . . . 15
⊢ (((𝐴𝐺𝑦) ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑥) = 𝑈) → ∃𝑤 ∈ 𝑋 (𝑤𝐺(𝐴𝐺𝑦)) = 𝑈) | 
| 56 | 51, 55 | sylan2b 594 | . . . . . . . . . . . . . 14
⊢ (((𝐴𝐺𝑦) ∈ 𝑋 ∧ 𝜓) → ∃𝑤 ∈ 𝑋 (𝑤𝐺(𝐴𝐺𝑦)) = 𝑈) | 
| 57 |  | anass 468 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐺 ∈ GrpOp ∧ 𝑤 ∈ 𝑋) ∧ (𝐴𝐺𝑦) ∈ 𝑋) ↔ (𝐺 ∈ GrpOp ∧ (𝑤 ∈ 𝑋 ∧ (𝐴𝐺𝑦) ∈ 𝑋))) | 
| 58 | 57 | biimpi 216 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐺 ∈ GrpOp ∧ 𝑤 ∈ 𝑋) ∧ (𝐴𝐺𝑦) ∈ 𝑋) → (𝐺 ∈ GrpOp ∧ (𝑤 ∈ 𝑋 ∧ (𝐴𝐺𝑦) ∈ 𝑋))) | 
| 59 | 58 | an32s 652 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐺 ∈ GrpOp ∧ (𝐴𝐺𝑦) ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → (𝐺 ∈ GrpOp ∧ (𝑤 ∈ 𝑋 ∧ (𝐴𝐺𝑦) ∈ 𝑋))) | 
| 60 | 59 | ex 412 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴𝐺𝑦) ∈ 𝑋) → (𝑤 ∈ 𝑋 → (𝐺 ∈ GrpOp ∧ (𝑤 ∈ 𝑋 ∧ (𝐴𝐺𝑦) ∈ 𝑋)))) | 
| 61 | 45, 60 | syldan 591 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑤 ∈ 𝑋 → (𝐺 ∈ GrpOp ∧ (𝑤 ∈ 𝑋 ∧ (𝐴𝐺𝑦) ∈ 𝑋)))) | 
| 62 | 61 | ad2ant2rl 749 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) → (𝑤 ∈ 𝑋 → (𝐺 ∈ GrpOp ∧ (𝑤 ∈ 𝑋 ∧ (𝐴𝐺𝑦) ∈ 𝑋)))) | 
| 63 | 62 | imp 406 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) ∧ 𝑤 ∈ 𝑋) → (𝐺 ∈ GrpOp ∧ (𝑤 ∈ 𝑋 ∧ (𝐴𝐺𝑦) ∈ 𝑋))) | 
| 64 | 14 | grpoidinvlem1 30523 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ GrpOp ∧ (𝑤 ∈ 𝑋 ∧ (𝐴𝐺𝑦) ∈ 𝑋)) ∧ ((𝑤𝐺(𝐴𝐺𝑦)) = 𝑈 ∧ ((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦))) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈) | 
| 65 | 63, 64 | sylan 580 | . . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) ∧ 𝑤 ∈ 𝑋) ∧ ((𝑤𝐺(𝐴𝐺𝑦)) = 𝑈 ∧ ((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦))) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈) | 
| 66 | 65 | exp43 436 | . . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) → (𝑤 ∈ 𝑋 → ((𝑤𝐺(𝐴𝐺𝑦)) = 𝑈 → (((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈)))) | 
| 67 | 66 | rexlimdv 3153 | . . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) → (∃𝑤 ∈ 𝑋 (𝑤𝐺(𝐴𝐺𝑦)) = 𝑈 → (((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈))) | 
| 68 | 56, 67 | syl5 34 | . . . . . . . . . . . . 13
⊢ (((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) → (((𝐴𝐺𝑦) ∈ 𝑋 ∧ 𝜓) → (((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈))) | 
| 69 | 46, 68 | mpand 695 | . . . . . . . . . . . 12
⊢ (((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) → (𝜓 → (((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈))) | 
| 70 | 69 | exp32 420 | . . . . . . . . . . 11
⊢ ((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) → (𝜑 → ((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝜓 → (((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈))))) | 
| 71 | 70 | com34 91 | . . . . . . . . . 10
⊢ ((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) → (𝜑 → (𝜓 → ((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈))))) | 
| 72 | 71 | imp32 418 | . . . . . . . . 9
⊢ (((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) → ((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈))) | 
| 73 | 72 | impl 455 | . . . . . . . 8
⊢
(((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈)) | 
| 74 | 73 | adantr 480 | . . . . . . 7
⊢
((((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) → (((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈)) | 
| 75 | 44, 74 | mpd 15 | . . . . . 6
⊢
((((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈) | 
| 76 | 28, 75 | eqtr3d 2779 | . . . . 5
⊢
((((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) → (𝐴𝐺𝑦) = 𝑈) | 
| 77 | 76 | ex 412 | . . . 4
⊢
(((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑦𝐺𝐴) = 𝑈 → (𝐴𝐺𝑦) = 𝑈)) | 
| 78 | 77 | ancld 550 | . . 3
⊢
(((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑦𝐺𝐴) = 𝑈 → ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))) | 
| 79 | 78 | reximdva 3168 | . 2
⊢ ((((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) → (∃𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈 → ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))) | 
| 80 | 13, 79 | mpd 15 | 1
⊢ ((((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) |