Step | Hyp | Ref
| Expression |
1 | | grpidinvlem3.3 |
. . . . . 6
⊢ (𝜓 ↔ ∀𝑥 ∈ 𝑋 ∃𝑧 ∈ 𝑋 (𝑧𝐺𝑥) = 𝑈) |
2 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝑧𝐺𝑥) = (𝑦𝐺𝑥)) |
3 | 2 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → ((𝑧𝐺𝑥) = 𝑈 ↔ (𝑦𝐺𝑥) = 𝑈)) |
4 | 3 | cbvrexvw 3373 |
. . . . . . 7
⊢
(∃𝑧 ∈
𝑋 (𝑧𝐺𝑥) = 𝑈 ↔ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈) |
5 | 4 | ralbii 3090 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑋 ∃𝑧 ∈ 𝑋 (𝑧𝐺𝑥) = 𝑈 ↔ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈) |
6 | 1, 5 | bitri 274 |
. . . . 5
⊢ (𝜓 ↔ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈) |
7 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑦𝐺𝑥) = (𝑦𝐺𝐴)) |
8 | 7 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑦𝐺𝑥) = 𝑈 ↔ (𝑦𝐺𝐴) = 𝑈)) |
9 | 8 | rexbidv 3225 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈 ↔ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
10 | 9 | rspccva 3551 |
. . . . 5
⊢
((∀𝑥 ∈
𝑋 ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈 ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) |
11 | 6, 10 | sylanb 580 |
. . . 4
⊢ ((𝜓 ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) |
12 | 11 | adantll 710 |
. . 3
⊢ (((𝜑 ∧ 𝜓) ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) |
13 | 12 | adantll 710 |
. 2
⊢ ((((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) |
14 | | grpfo.1 |
. . . . . . . . . . . 12
⊢ 𝑋 = ran 𝐺 |
15 | 14 | grpocl 28763 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴𝐺𝑦) ∈ 𝑋) |
16 | 15 | 3expa 1116 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐴𝐺𝑦) ∈ 𝑋) |
17 | 16 | adantllr 715 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐴𝐺𝑦) ∈ 𝑋) |
18 | 17 | adantllr 715 |
. . . . . . . 8
⊢
(((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐴𝐺𝑦) ∈ 𝑋) |
19 | | grpidinvlem3.2 |
. . . . . . . . . . 11
⊢ (𝜑 ↔ ∀𝑥 ∈ 𝑋 (𝑈𝐺𝑥) = 𝑥) |
20 | 19 | biimpi 215 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝑈𝐺𝑥) = 𝑥) |
21 | 20 | ad2antrl 724 |
. . . . . . . . 9
⊢ (((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) → ∀𝑥 ∈ 𝑋 (𝑈𝐺𝑥) = 𝑥) |
22 | 21 | ad2antrr 722 |
. . . . . . . 8
⊢
(((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ∀𝑥 ∈ 𝑋 (𝑈𝐺𝑥) = 𝑥) |
23 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐴𝐺𝑦) → (𝑈𝐺𝑥) = (𝑈𝐺(𝐴𝐺𝑦))) |
24 | | id 22 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐴𝐺𝑦) → 𝑥 = (𝐴𝐺𝑦)) |
25 | 23, 24 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑥 = (𝐴𝐺𝑦) → ((𝑈𝐺𝑥) = 𝑥 ↔ (𝑈𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦))) |
26 | 25 | rspcva 3550 |
. . . . . . . 8
⊢ (((𝐴𝐺𝑦) ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑈𝐺𝑥) = 𝑥) → (𝑈𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦)) |
27 | 18, 22, 26 | syl2anc 583 |
. . . . . . 7
⊢
(((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑈𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦)) |
28 | 27 | adantr 480 |
. . . . . 6
⊢
((((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) → (𝑈𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦)) |
29 | | pm3.22 459 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ 𝐺 ∈ GrpOp) → (𝐺 ∈ GrpOp ∧ (𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋))) |
30 | 29 | an31s 650 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐺 ∈ GrpOp ∧ (𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋))) |
31 | 30 | adantllr 715 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐺 ∈ GrpOp ∧ (𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋))) |
32 | 31 | adantllr 715 |
. . . . . . . . 9
⊢
(((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐺 ∈ GrpOp ∧ (𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋))) |
33 | 32 | adantr 480 |
. . . . . . . 8
⊢
((((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) → (𝐺 ∈ GrpOp ∧ (𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋))) |
34 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝑈𝐺𝑥) = (𝑈𝐺𝑦)) |
35 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
36 | 34, 35 | eqeq12d 2754 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((𝑈𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝑦) = 𝑦)) |
37 | 36 | rspccva 3551 |
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝑋 (𝑈𝐺𝑥) = 𝑥 ∧ 𝑦 ∈ 𝑋) → (𝑈𝐺𝑦) = 𝑦) |
38 | 19, 37 | sylanb 580 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑈𝐺𝑦) = 𝑦) |
39 | 38 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑦 ∈ 𝑋) → (𝑈𝐺𝑦) = 𝑦) |
40 | 39 | adantlr 711 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑈𝐺𝑦) = 𝑦) |
41 | 40 | adantlll 714 |
. . . . . . . . 9
⊢
(((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑈𝐺𝑦) = 𝑦) |
42 | 41 | anim1i 614 |
. . . . . . . 8
⊢
((((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) → ((𝑈𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝐴) = 𝑈)) |
43 | 14 | grpoidinvlem2 28768 |
. . . . . . . 8
⊢ (((𝐺 ∈ GrpOp ∧ (𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) ∧ ((𝑈𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝐴) = 𝑈)) → ((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦)) |
44 | 33, 42, 43 | syl2anc 583 |
. . . . . . 7
⊢
((((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) → ((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦)) |
45 | 15 | 3expb 1118 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐴𝐺𝑦) ∈ 𝑋) |
46 | 45 | ad2ant2rl 745 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) → (𝐴𝐺𝑦) ∈ 𝑋) |
47 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑤 → (𝑧𝐺𝑥) = (𝑤𝐺𝑥)) |
48 | 47 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑤 → ((𝑧𝐺𝑥) = 𝑈 ↔ (𝑤𝐺𝑥) = 𝑈)) |
49 | 48 | cbvrexvw 3373 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑧 ∈
𝑋 (𝑧𝐺𝑥) = 𝑈 ↔ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑥) = 𝑈) |
50 | 49 | ralbii 3090 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝑋 ∃𝑧 ∈ 𝑋 (𝑧𝐺𝑥) = 𝑈 ↔ ∀𝑥 ∈ 𝑋 ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑥) = 𝑈) |
51 | 1, 50 | bitri 274 |
. . . . . . . . . . . . . . 15
⊢ (𝜓 ↔ ∀𝑥 ∈ 𝑋 ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑥) = 𝑈) |
52 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝐴𝐺𝑦) → (𝑤𝐺𝑥) = (𝑤𝐺(𝐴𝐺𝑦))) |
53 | 52 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝐴𝐺𝑦) → ((𝑤𝐺𝑥) = 𝑈 ↔ (𝑤𝐺(𝐴𝐺𝑦)) = 𝑈)) |
54 | 53 | rexbidv 3225 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝐴𝐺𝑦) → (∃𝑤 ∈ 𝑋 (𝑤𝐺𝑥) = 𝑈 ↔ ∃𝑤 ∈ 𝑋 (𝑤𝐺(𝐴𝐺𝑦)) = 𝑈)) |
55 | 54 | rspcva 3550 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴𝐺𝑦) ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑥) = 𝑈) → ∃𝑤 ∈ 𝑋 (𝑤𝐺(𝐴𝐺𝑦)) = 𝑈) |
56 | 51, 55 | sylan2b 593 |
. . . . . . . . . . . . . 14
⊢ (((𝐴𝐺𝑦) ∈ 𝑋 ∧ 𝜓) → ∃𝑤 ∈ 𝑋 (𝑤𝐺(𝐴𝐺𝑦)) = 𝑈) |
57 | | anass 468 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐺 ∈ GrpOp ∧ 𝑤 ∈ 𝑋) ∧ (𝐴𝐺𝑦) ∈ 𝑋) ↔ (𝐺 ∈ GrpOp ∧ (𝑤 ∈ 𝑋 ∧ (𝐴𝐺𝑦) ∈ 𝑋))) |
58 | 57 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐺 ∈ GrpOp ∧ 𝑤 ∈ 𝑋) ∧ (𝐴𝐺𝑦) ∈ 𝑋) → (𝐺 ∈ GrpOp ∧ (𝑤 ∈ 𝑋 ∧ (𝐴𝐺𝑦) ∈ 𝑋))) |
59 | 58 | an32s 648 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐺 ∈ GrpOp ∧ (𝐴𝐺𝑦) ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → (𝐺 ∈ GrpOp ∧ (𝑤 ∈ 𝑋 ∧ (𝐴𝐺𝑦) ∈ 𝑋))) |
60 | 59 | ex 412 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴𝐺𝑦) ∈ 𝑋) → (𝑤 ∈ 𝑋 → (𝐺 ∈ GrpOp ∧ (𝑤 ∈ 𝑋 ∧ (𝐴𝐺𝑦) ∈ 𝑋)))) |
61 | 45, 60 | syldan 590 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑤 ∈ 𝑋 → (𝐺 ∈ GrpOp ∧ (𝑤 ∈ 𝑋 ∧ (𝐴𝐺𝑦) ∈ 𝑋)))) |
62 | 61 | ad2ant2rl 745 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) → (𝑤 ∈ 𝑋 → (𝐺 ∈ GrpOp ∧ (𝑤 ∈ 𝑋 ∧ (𝐴𝐺𝑦) ∈ 𝑋)))) |
63 | 62 | imp 406 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) ∧ 𝑤 ∈ 𝑋) → (𝐺 ∈ GrpOp ∧ (𝑤 ∈ 𝑋 ∧ (𝐴𝐺𝑦) ∈ 𝑋))) |
64 | 14 | grpoidinvlem1 28767 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ GrpOp ∧ (𝑤 ∈ 𝑋 ∧ (𝐴𝐺𝑦) ∈ 𝑋)) ∧ ((𝑤𝐺(𝐴𝐺𝑦)) = 𝑈 ∧ ((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦))) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈) |
65 | 63, 64 | sylan 579 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) ∧ 𝑤 ∈ 𝑋) ∧ ((𝑤𝐺(𝐴𝐺𝑦)) = 𝑈 ∧ ((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦))) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈) |
66 | 65 | exp43 436 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) → (𝑤 ∈ 𝑋 → ((𝑤𝐺(𝐴𝐺𝑦)) = 𝑈 → (((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈)))) |
67 | 66 | rexlimdv 3211 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) → (∃𝑤 ∈ 𝑋 (𝑤𝐺(𝐴𝐺𝑦)) = 𝑈 → (((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈))) |
68 | 56, 67 | syl5 34 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) → (((𝐴𝐺𝑦) ∈ 𝑋 ∧ 𝜓) → (((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈))) |
69 | 46, 68 | mpand 691 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋))) → (𝜓 → (((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈))) |
70 | 69 | exp32 420 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) → (𝜑 → ((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝜓 → (((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈))))) |
71 | 70 | com34 91 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) → (𝜑 → (𝜓 → ((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈))))) |
72 | 71 | imp32 418 |
. . . . . . . . 9
⊢ (((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) → ((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈))) |
73 | 72 | impl 455 |
. . . . . . . 8
⊢
(((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈)) |
74 | 73 | adantr 480 |
. . . . . . 7
⊢
((((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) → (((𝐴𝐺𝑦)𝐺(𝐴𝐺𝑦)) = (𝐴𝐺𝑦) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈)) |
75 | 44, 74 | mpd 15 |
. . . . . 6
⊢
((((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) → (𝑈𝐺(𝐴𝐺𝑦)) = 𝑈) |
76 | 28, 75 | eqtr3d 2780 |
. . . . 5
⊢
((((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) → (𝐴𝐺𝑦) = 𝑈) |
77 | 76 | ex 412 |
. . . 4
⊢
(((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑦𝐺𝐴) = 𝑈 → (𝐴𝐺𝑦) = 𝑈)) |
78 | 77 | ancld 550 |
. . 3
⊢
(((((𝐺 ∈ GrpOp
∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑦𝐺𝐴) = 𝑈 → ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))) |
79 | 78 | reximdva 3202 |
. 2
⊢ ((((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) → (∃𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈 → ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))) |
80 | 13, 79 | mpd 15 |
1
⊢ ((((𝐺 ∈ GrpOp ∧ 𝑈 ∈ 𝑋) ∧ (𝜑 ∧ 𝜓)) ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) |