![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmgapprmolem | Structured version Visualization version GIF version |
Description: Lemma for prmgapprmo 17036: The primorial of a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.) |
Ref | Expression |
---|---|
prmgapprmolem | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((#p‘𝑁) + 𝐼) gcd 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmuz2 16672 | . . . . 5 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ≥‘2)) | |
2 | 1 | ad2antlr 725 | . . . 4 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) → 𝑝 ∈ (ℤ≥‘2)) |
3 | breq1 5153 | . . . . . 6 ⊢ (𝑞 = 𝑝 → (𝑞 ∥ ((#p‘𝑁) + 𝐼) ↔ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) | |
4 | breq1 5153 | . . . . . 6 ⊢ (𝑞 = 𝑝 → (𝑞 ∥ 𝐼 ↔ 𝑝 ∥ 𝐼)) | |
5 | 3, 4 | anbi12d 630 | . . . . 5 ⊢ (𝑞 = 𝑝 → ((𝑞 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑞 ∥ 𝐼) ↔ (𝑝 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑝 ∥ 𝐼))) |
6 | 5 | adantl 480 | . . . 4 ⊢ (((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) ∧ 𝑞 = 𝑝) → ((𝑞 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑞 ∥ 𝐼) ↔ (𝑝 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑝 ∥ 𝐼))) |
7 | pm3.22 458 | . . . . . 6 ⊢ ((𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼)) → (𝑝 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑝 ∥ 𝐼)) | |
8 | 7 | 3adant1 1127 | . . . . 5 ⊢ ((𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼)) → (𝑝 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑝 ∥ 𝐼)) |
9 | 8 | adantl 480 | . . . 4 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) → (𝑝 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑝 ∥ 𝐼)) |
10 | 2, 6, 9 | rspcedvd 3611 | . . 3 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) → ∃𝑞 ∈ (ℤ≥‘2)(𝑞 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑞 ∥ 𝐼)) |
11 | prmdvdsprmop 17017 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) | |
12 | 10, 11 | r19.29a 3158 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑞 ∈ (ℤ≥‘2)(𝑞 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑞 ∥ 𝐼)) |
13 | nnnn0 12515 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
14 | prmocl 17008 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ∈ ℕ) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (#p‘𝑁) ∈ ℕ) |
16 | elfzuz 13535 | . . . . 5 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ≥‘2)) | |
17 | eluz2nn 12904 | . . . . 5 ⊢ (𝐼 ∈ (ℤ≥‘2) → 𝐼 ∈ ℕ) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ) |
19 | nnaddcl 12271 | . . . 4 ⊢ (((#p‘𝑁) ∈ ℕ ∧ 𝐼 ∈ ℕ) → ((#p‘𝑁) + 𝐼) ∈ ℕ) | |
20 | 15, 18, 19 | syl2an 594 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ((#p‘𝑁) + 𝐼) ∈ ℕ) |
21 | 18 | adantl 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ) |
22 | ncoprmgcdgt1b 16627 | . . 3 ⊢ ((((#p‘𝑁) + 𝐼) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (∃𝑞 ∈ (ℤ≥‘2)(𝑞 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑞 ∥ 𝐼) ↔ 1 < (((#p‘𝑁) + 𝐼) gcd 𝐼))) | |
23 | 20, 21, 22 | syl2anc 582 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑞 ∈ (ℤ≥‘2)(𝑞 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑞 ∥ 𝐼) ↔ 1 < (((#p‘𝑁) + 𝐼) gcd 𝐼))) |
24 | 12, 23 | mpbid 231 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((#p‘𝑁) + 𝐼) gcd 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2098 ∃wrex 3066 class class class wbr 5150 ‘cfv 6551 (class class class)co 7424 1c1 11145 + caddc 11147 < clt 11284 ≤ cle 11285 ℕcn 12248 2c2 12303 ℕ0cn0 12508 ℤ≥cuz 12858 ...cfz 13522 ∥ cdvds 16236 gcd cgcd 16474 ℙcprime 16647 #pcprmo 17005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-inf2 9670 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-2o 8492 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9471 df-inf 9472 df-oi 9539 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-n0 12509 df-z 12595 df-uz 12859 df-rp 13013 df-fz 13523 df-fzo 13666 df-seq 14005 df-exp 14065 df-hash 14328 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-abs 15221 df-clim 15470 df-prod 15888 df-dvds 16237 df-gcd 16475 df-prm 16648 df-prmo 17006 |
This theorem is referenced by: prmgapprmo 17036 |
Copyright terms: Public domain | W3C validator |