MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgapprmolem Structured version   Visualization version   GIF version

Theorem prmgapprmolem 16387
Description: Lemma for prmgapprmo 16388: The primorial of a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.)
Assertion
Ref Expression
prmgapprmolem ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((#p𝑁) + 𝐼) gcd 𝐼))

Proof of Theorem prmgapprmolem
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmuz2 16030 . . . . 5 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
21ad2antlr 723 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))) → 𝑝 ∈ (ℤ‘2))
3 breq1 5066 . . . . . 6 (𝑞 = 𝑝 → (𝑞 ∥ ((#p𝑁) + 𝐼) ↔ 𝑝 ∥ ((#p𝑁) + 𝐼)))
4 breq1 5066 . . . . . 6 (𝑞 = 𝑝 → (𝑞𝐼𝑝𝐼))
53, 4anbi12d 630 . . . . 5 (𝑞 = 𝑝 → ((𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼) ↔ (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼)))
65adantl 482 . . . 4 (((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))) ∧ 𝑞 = 𝑝) → ((𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼) ↔ (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼)))
7 pm3.22 460 . . . . . 6 ((𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)) → (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼))
873adant1 1124 . . . . 5 ((𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)) → (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼))
98adantl 482 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))) → (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼))
102, 6, 9rspcedvd 3630 . . 3 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))) → ∃𝑞 ∈ (ℤ‘2)(𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼))
11 prmdvdsprmop 16369 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)))
1210, 11r19.29a 3294 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑞 ∈ (ℤ‘2)(𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼))
13 nnnn0 11893 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
14 prmocl 16360 . . . . 5 (𝑁 ∈ ℕ0 → (#p𝑁) ∈ ℕ)
1513, 14syl 17 . . . 4 (𝑁 ∈ ℕ → (#p𝑁) ∈ ℕ)
16 elfzuz 12894 . . . . 5 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ‘2))
17 eluz2nn 12273 . . . . 5 (𝐼 ∈ (ℤ‘2) → 𝐼 ∈ ℕ)
1816, 17syl 17 . . . 4 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ)
19 nnaddcl 11649 . . . 4 (((#p𝑁) ∈ ℕ ∧ 𝐼 ∈ ℕ) → ((#p𝑁) + 𝐼) ∈ ℕ)
2015, 18, 19syl2an 595 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ((#p𝑁) + 𝐼) ∈ ℕ)
2118adantl 482 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ)
22 ncoprmgcdgt1b 15985 . . 3 ((((#p𝑁) + 𝐼) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (∃𝑞 ∈ (ℤ‘2)(𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼) ↔ 1 < (((#p𝑁) + 𝐼) gcd 𝐼)))
2320, 21, 22syl2anc 584 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑞 ∈ (ℤ‘2)(𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼) ↔ 1 < (((#p𝑁) + 𝐼) gcd 𝐼)))
2412, 23mpbid 233 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((#p𝑁) + 𝐼) gcd 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081  wcel 2107  wrex 3144   class class class wbr 5063  cfv 6352  (class class class)co 7148  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cn 11627  2c2 11681  0cn0 11886  cuz 12232  ...cfz 12882  cdvds 15597   gcd cgcd 15833  cprime 16005  #pcprmo 16357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-fz 12883  df-fzo 13024  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-clim 14835  df-prod 15250  df-dvds 15598  df-gcd 15834  df-prm 16006  df-prmo 16358
This theorem is referenced by:  prmgapprmo  16388
  Copyright terms: Public domain W3C validator