MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgapprmolem Structured version   Visualization version   GIF version

Theorem prmgapprmolem 16973
Description: Lemma for prmgapprmo 16974: The primorial of a number plus an integer greater than 1 and less than or equal to the number are not coprime. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.)
Assertion
Ref Expression
prmgapprmolem ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((#p𝑁) + 𝐼) gcd 𝐼))

Proof of Theorem prmgapprmolem
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmuz2 16607 . . . . 5 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
21ad2antlr 727 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))) → 𝑝 ∈ (ℤ‘2))
3 breq1 5095 . . . . . 6 (𝑞 = 𝑝 → (𝑞 ∥ ((#p𝑁) + 𝐼) ↔ 𝑝 ∥ ((#p𝑁) + 𝐼)))
4 breq1 5095 . . . . . 6 (𝑞 = 𝑝 → (𝑞𝐼𝑝𝐼))
53, 4anbi12d 632 . . . . 5 (𝑞 = 𝑝 → ((𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼) ↔ (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼)))
65adantl 481 . . . 4 (((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))) ∧ 𝑞 = 𝑝) → ((𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼) ↔ (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼)))
7 pm3.22 459 . . . . . 6 ((𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)) → (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼))
873adant1 1130 . . . . 5 ((𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)) → (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼))
98adantl 481 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))) → (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼))
102, 6, 9rspcedvd 3579 . . 3 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))) → ∃𝑞 ∈ (ℤ‘2)(𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼))
11 prmdvdsprmop 16955 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)))
1210, 11r19.29a 3137 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑞 ∈ (ℤ‘2)(𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼))
13 nnnn0 12391 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
14 prmocl 16946 . . . . 5 (𝑁 ∈ ℕ0 → (#p𝑁) ∈ ℕ)
1513, 14syl 17 . . . 4 (𝑁 ∈ ℕ → (#p𝑁) ∈ ℕ)
16 elfzuz 13423 . . . . 5 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ‘2))
17 eluz2nn 12789 . . . . 5 (𝐼 ∈ (ℤ‘2) → 𝐼 ∈ ℕ)
1816, 17syl 17 . . . 4 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ)
19 nnaddcl 12151 . . . 4 (((#p𝑁) ∈ ℕ ∧ 𝐼 ∈ ℕ) → ((#p𝑁) + 𝐼) ∈ ℕ)
2015, 18, 19syl2an 596 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ((#p𝑁) + 𝐼) ∈ ℕ)
2118adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ)
22 ncoprmgcdgt1b 16562 . . 3 ((((#p𝑁) + 𝐼) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (∃𝑞 ∈ (ℤ‘2)(𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼) ↔ 1 < (((#p𝑁) + 𝐼) gcd 𝐼)))
2320, 21, 22syl2anc 584 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑞 ∈ (ℤ‘2)(𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼) ↔ 1 < (((#p𝑁) + 𝐼) gcd 𝐼)))
2412, 23mpbid 232 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((#p𝑁) + 𝐼) gcd 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wrex 3053   class class class wbr 5092  cfv 6482  (class class class)co 7349  1c1 11010   + caddc 11012   < clt 11149  cle 11150  cn 12128  2c2 12183  0cn0 12384  cuz 12735  ...cfz 13410  cdvds 16163   gcd cgcd 16405  cprime 16582  #pcprmo 16943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-prod 15811  df-dvds 16164  df-gcd 16406  df-prm 16583  df-prmo 16944
This theorem is referenced by:  prmgapprmo  16974
  Copyright terms: Public domain W3C validator