MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgapprmolem Structured version   Visualization version   GIF version

Theorem prmgapprmolem 17008
Description: Lemma for prmgapprmo 17009: The primorial of a number plus an integer greater than 1 and less than or equal to the number are not coprime. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.)
Assertion
Ref Expression
prmgapprmolem ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((#p𝑁) + 𝐼) gcd 𝐼))

Proof of Theorem prmgapprmolem
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmuz2 16642 . . . . 5 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
21ad2antlr 727 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))) → 𝑝 ∈ (ℤ‘2))
3 breq1 5105 . . . . . 6 (𝑞 = 𝑝 → (𝑞 ∥ ((#p𝑁) + 𝐼) ↔ 𝑝 ∥ ((#p𝑁) + 𝐼)))
4 breq1 5105 . . . . . 6 (𝑞 = 𝑝 → (𝑞𝐼𝑝𝐼))
53, 4anbi12d 632 . . . . 5 (𝑞 = 𝑝 → ((𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼) ↔ (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼)))
65adantl 481 . . . 4 (((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))) ∧ 𝑞 = 𝑝) → ((𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼) ↔ (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼)))
7 pm3.22 459 . . . . . 6 ((𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)) → (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼))
873adant1 1130 . . . . 5 ((𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)) → (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼))
98adantl 481 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))) → (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼))
102, 6, 9rspcedvd 3587 . . 3 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))) → ∃𝑞 ∈ (ℤ‘2)(𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼))
11 prmdvdsprmop 16990 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)))
1210, 11r19.29a 3141 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑞 ∈ (ℤ‘2)(𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼))
13 nnnn0 12425 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
14 prmocl 16981 . . . . 5 (𝑁 ∈ ℕ0 → (#p𝑁) ∈ ℕ)
1513, 14syl 17 . . . 4 (𝑁 ∈ ℕ → (#p𝑁) ∈ ℕ)
16 elfzuz 13457 . . . . 5 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ‘2))
17 eluz2nn 12823 . . . . 5 (𝐼 ∈ (ℤ‘2) → 𝐼 ∈ ℕ)
1816, 17syl 17 . . . 4 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ)
19 nnaddcl 12185 . . . 4 (((#p𝑁) ∈ ℕ ∧ 𝐼 ∈ ℕ) → ((#p𝑁) + 𝐼) ∈ ℕ)
2015, 18, 19syl2an 596 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ((#p𝑁) + 𝐼) ∈ ℕ)
2118adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ)
22 ncoprmgcdgt1b 16597 . . 3 ((((#p𝑁) + 𝐼) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (∃𝑞 ∈ (ℤ‘2)(𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼) ↔ 1 < (((#p𝑁) + 𝐼) gcd 𝐼)))
2320, 21, 22syl2anc 584 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑞 ∈ (ℤ‘2)(𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼) ↔ 1 < (((#p𝑁) + 𝐼) gcd 𝐼)))
2412, 23mpbid 232 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((#p𝑁) + 𝐼) gcd 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cn 12162  2c2 12217  0cn0 12418  cuz 12769  ...cfz 13444  cdvds 16198   gcd cgcd 16440  cprime 16617  #pcprmo 16978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-prod 15846  df-dvds 16199  df-gcd 16441  df-prm 16618  df-prmo 16979
This theorem is referenced by:  prmgapprmo  17009
  Copyright terms: Public domain W3C validator