![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmgapprmolem | Structured version Visualization version GIF version |
Description: Lemma for prmgapprmo 17096: The primorial of a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.) |
Ref | Expression |
---|---|
prmgapprmolem | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((#p‘𝑁) + 𝐼) gcd 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmuz2 16730 | . . . . 5 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ≥‘2)) | |
2 | 1 | ad2antlr 727 | . . . 4 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) → 𝑝 ∈ (ℤ≥‘2)) |
3 | breq1 5151 | . . . . . 6 ⊢ (𝑞 = 𝑝 → (𝑞 ∥ ((#p‘𝑁) + 𝐼) ↔ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) | |
4 | breq1 5151 | . . . . . 6 ⊢ (𝑞 = 𝑝 → (𝑞 ∥ 𝐼 ↔ 𝑝 ∥ 𝐼)) | |
5 | 3, 4 | anbi12d 632 | . . . . 5 ⊢ (𝑞 = 𝑝 → ((𝑞 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑞 ∥ 𝐼) ↔ (𝑝 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑝 ∥ 𝐼))) |
6 | 5 | adantl 481 | . . . 4 ⊢ (((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) ∧ 𝑞 = 𝑝) → ((𝑞 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑞 ∥ 𝐼) ↔ (𝑝 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑝 ∥ 𝐼))) |
7 | pm3.22 459 | . . . . . 6 ⊢ ((𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼)) → (𝑝 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑝 ∥ 𝐼)) | |
8 | 7 | 3adant1 1129 | . . . . 5 ⊢ ((𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼)) → (𝑝 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑝 ∥ 𝐼)) |
9 | 8 | adantl 481 | . . . 4 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) → (𝑝 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑝 ∥ 𝐼)) |
10 | 2, 6, 9 | rspcedvd 3624 | . . 3 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) → ∃𝑞 ∈ (ℤ≥‘2)(𝑞 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑞 ∥ 𝐼)) |
11 | prmdvdsprmop 17077 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) | |
12 | 10, 11 | r19.29a 3160 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑞 ∈ (ℤ≥‘2)(𝑞 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑞 ∥ 𝐼)) |
13 | nnnn0 12531 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
14 | prmocl 17068 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ∈ ℕ) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (#p‘𝑁) ∈ ℕ) |
16 | elfzuz 13557 | . . . . 5 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ≥‘2)) | |
17 | eluz2nn 12922 | . . . . 5 ⊢ (𝐼 ∈ (ℤ≥‘2) → 𝐼 ∈ ℕ) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ) |
19 | nnaddcl 12287 | . . . 4 ⊢ (((#p‘𝑁) ∈ ℕ ∧ 𝐼 ∈ ℕ) → ((#p‘𝑁) + 𝐼) ∈ ℕ) | |
20 | 15, 18, 19 | syl2an 596 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ((#p‘𝑁) + 𝐼) ∈ ℕ) |
21 | 18 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ) |
22 | ncoprmgcdgt1b 16685 | . . 3 ⊢ ((((#p‘𝑁) + 𝐼) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (∃𝑞 ∈ (ℤ≥‘2)(𝑞 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑞 ∥ 𝐼) ↔ 1 < (((#p‘𝑁) + 𝐼) gcd 𝐼))) | |
23 | 20, 21, 22 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑞 ∈ (ℤ≥‘2)(𝑞 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑞 ∥ 𝐼) ↔ 1 < (((#p‘𝑁) + 𝐼) gcd 𝐼))) |
24 | 12, 23 | mpbid 232 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((#p‘𝑁) + 𝐼) gcd 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 ∃wrex 3068 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 1c1 11154 + caddc 11156 < clt 11293 ≤ cle 11294 ℕcn 12264 2c2 12319 ℕ0cn0 12524 ℤ≥cuz 12876 ...cfz 13544 ∥ cdvds 16287 gcd cgcd 16528 ℙcprime 16705 #pcprmo 17065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-prod 15937 df-dvds 16288 df-gcd 16529 df-prm 16706 df-prmo 17066 |
This theorem is referenced by: prmgapprmo 17096 |
Copyright terms: Public domain | W3C validator |