Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prmgapprmolem | Structured version Visualization version GIF version |
Description: Lemma for prmgapprmo 16443: The primorial of a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.) |
Ref | Expression |
---|---|
prmgapprmolem | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((#p‘𝑁) + 𝐼) gcd 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmuz2 16082 | . . . . 5 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ≥‘2)) | |
2 | 1 | ad2antlr 727 | . . . 4 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) → 𝑝 ∈ (ℤ≥‘2)) |
3 | breq1 5033 | . . . . . 6 ⊢ (𝑞 = 𝑝 → (𝑞 ∥ ((#p‘𝑁) + 𝐼) ↔ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) | |
4 | breq1 5033 | . . . . . 6 ⊢ (𝑞 = 𝑝 → (𝑞 ∥ 𝐼 ↔ 𝑝 ∥ 𝐼)) | |
5 | 3, 4 | anbi12d 634 | . . . . 5 ⊢ (𝑞 = 𝑝 → ((𝑞 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑞 ∥ 𝐼) ↔ (𝑝 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑝 ∥ 𝐼))) |
6 | 5 | adantl 486 | . . . 4 ⊢ (((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) ∧ 𝑞 = 𝑝) → ((𝑞 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑞 ∥ 𝐼) ↔ (𝑝 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑝 ∥ 𝐼))) |
7 | pm3.22 464 | . . . . . 6 ⊢ ((𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼)) → (𝑝 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑝 ∥ 𝐼)) | |
8 | 7 | 3adant1 1128 | . . . . 5 ⊢ ((𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼)) → (𝑝 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑝 ∥ 𝐼)) |
9 | 8 | adantl 486 | . . . 4 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) → (𝑝 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑝 ∥ 𝐼)) |
10 | 2, 6, 9 | rspcedvd 3545 | . . 3 ⊢ ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) → ∃𝑞 ∈ (ℤ≥‘2)(𝑞 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑞 ∥ 𝐼)) |
11 | prmdvdsprmop 16424 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼 ∧ 𝑝 ∥ ((#p‘𝑁) + 𝐼))) | |
12 | 10, 11 | r19.29a 3214 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑞 ∈ (ℤ≥‘2)(𝑞 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑞 ∥ 𝐼)) |
13 | nnnn0 11931 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
14 | prmocl 16415 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ∈ ℕ) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (#p‘𝑁) ∈ ℕ) |
16 | elfzuz 12942 | . . . . 5 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ≥‘2)) | |
17 | eluz2nn 12314 | . . . . 5 ⊢ (𝐼 ∈ (ℤ≥‘2) → 𝐼 ∈ ℕ) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ) |
19 | nnaddcl 11687 | . . . 4 ⊢ (((#p‘𝑁) ∈ ℕ ∧ 𝐼 ∈ ℕ) → ((#p‘𝑁) + 𝐼) ∈ ℕ) | |
20 | 15, 18, 19 | syl2an 599 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ((#p‘𝑁) + 𝐼) ∈ ℕ) |
21 | 18 | adantl 486 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ) |
22 | ncoprmgcdgt1b 16037 | . . 3 ⊢ ((((#p‘𝑁) + 𝐼) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (∃𝑞 ∈ (ℤ≥‘2)(𝑞 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑞 ∥ 𝐼) ↔ 1 < (((#p‘𝑁) + 𝐼) gcd 𝐼))) | |
23 | 20, 21, 22 | syl2anc 588 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑞 ∈ (ℤ≥‘2)(𝑞 ∥ ((#p‘𝑁) + 𝐼) ∧ 𝑞 ∥ 𝐼) ↔ 1 < (((#p‘𝑁) + 𝐼) gcd 𝐼))) |
24 | 12, 23 | mpbid 235 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((#p‘𝑁) + 𝐼) gcd 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 ∧ w3a 1085 ∈ wcel 2112 ∃wrex 3072 class class class wbr 5030 ‘cfv 6333 (class class class)co 7148 1c1 10566 + caddc 10568 < clt 10703 ≤ cle 10704 ℕcn 11664 2c2 11719 ℕ0cn0 11924 ℤ≥cuz 12272 ...cfz 12929 ∥ cdvds 15645 gcd cgcd 15883 ℙcprime 16057 #pcprmo 16412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-inf2 9127 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 ax-pre-sup 10643 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-se 5482 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-isom 6342 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-om 7578 df-1st 7691 df-2nd 7692 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-1o 8110 df-2o 8111 df-oadd 8114 df-er 8297 df-en 8526 df-dom 8527 df-sdom 8528 df-fin 8529 df-sup 8929 df-inf 8930 df-oi 8997 df-card 9391 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-div 11326 df-nn 11665 df-2 11727 df-3 11728 df-n0 11925 df-z 12011 df-uz 12273 df-rp 12421 df-fz 12930 df-fzo 13073 df-seq 13409 df-exp 13470 df-hash 13731 df-cj 14496 df-re 14497 df-im 14498 df-sqrt 14632 df-abs 14633 df-clim 14883 df-prod 15298 df-dvds 15646 df-gcd 15884 df-prm 16058 df-prmo 16413 |
This theorem is referenced by: prmgapprmo 16443 |
Copyright terms: Public domain | W3C validator |