MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgapprmolem Structured version   Visualization version   GIF version

Theorem prmgapprmolem 17035
Description: Lemma for prmgapprmo 17036: The primorial of a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.)
Assertion
Ref Expression
prmgapprmolem ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((#p𝑁) + 𝐼) gcd 𝐼))

Proof of Theorem prmgapprmolem
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmuz2 16672 . . . . 5 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
21ad2antlr 725 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))) → 𝑝 ∈ (ℤ‘2))
3 breq1 5153 . . . . . 6 (𝑞 = 𝑝 → (𝑞 ∥ ((#p𝑁) + 𝐼) ↔ 𝑝 ∥ ((#p𝑁) + 𝐼)))
4 breq1 5153 . . . . . 6 (𝑞 = 𝑝 → (𝑞𝐼𝑝𝐼))
53, 4anbi12d 630 . . . . 5 (𝑞 = 𝑝 → ((𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼) ↔ (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼)))
65adantl 480 . . . 4 (((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))) ∧ 𝑞 = 𝑝) → ((𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼) ↔ (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼)))
7 pm3.22 458 . . . . . 6 ((𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)) → (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼))
873adant1 1127 . . . . 5 ((𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)) → (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼))
98adantl 480 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))) → (𝑝 ∥ ((#p𝑁) + 𝐼) ∧ 𝑝𝐼))
102, 6, 9rspcedvd 3611 . . 3 ((((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) ∧ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼))) → ∃𝑞 ∈ (ℤ‘2)(𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼))
11 prmdvdsprmop 17017 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼𝑝 ∥ ((#p𝑁) + 𝐼)))
1210, 11r19.29a 3158 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑞 ∈ (ℤ‘2)(𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼))
13 nnnn0 12515 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
14 prmocl 17008 . . . . 5 (𝑁 ∈ ℕ0 → (#p𝑁) ∈ ℕ)
1513, 14syl 17 . . . 4 (𝑁 ∈ ℕ → (#p𝑁) ∈ ℕ)
16 elfzuz 13535 . . . . 5 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ‘2))
17 eluz2nn 12904 . . . . 5 (𝐼 ∈ (ℤ‘2) → 𝐼 ∈ ℕ)
1816, 17syl 17 . . . 4 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ)
19 nnaddcl 12271 . . . 4 (((#p𝑁) ∈ ℕ ∧ 𝐼 ∈ ℕ) → ((#p𝑁) + 𝐼) ∈ ℕ)
2015, 18, 19syl2an 594 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ((#p𝑁) + 𝐼) ∈ ℕ)
2118adantl 480 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ)
22 ncoprmgcdgt1b 16627 . . 3 ((((#p𝑁) + 𝐼) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (∃𝑞 ∈ (ℤ‘2)(𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼) ↔ 1 < (((#p𝑁) + 𝐼) gcd 𝐼)))
2320, 21, 22syl2anc 582 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑞 ∈ (ℤ‘2)(𝑞 ∥ ((#p𝑁) + 𝐼) ∧ 𝑞𝐼) ↔ 1 < (((#p𝑁) + 𝐼) gcd 𝐼)))
2412, 23mpbid 231 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((#p𝑁) + 𝐼) gcd 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084  wcel 2098  wrex 3066   class class class wbr 5150  cfv 6551  (class class class)co 7424  1c1 11145   + caddc 11147   < clt 11284  cle 11285  cn 12248  2c2 12303  0cn0 12508  cuz 12858  ...cfz 13522  cdvds 16236   gcd cgcd 16474  cprime 16647  #pcprmo 17005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-inf2 9670  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-2o 8492  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-inf 9472  df-oi 9539  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-n0 12509  df-z 12595  df-uz 12859  df-rp 13013  df-fz 13523  df-fzo 13666  df-seq 14005  df-exp 14065  df-hash 14328  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-clim 15470  df-prod 15888  df-dvds 16237  df-gcd 16475  df-prm 16648  df-prmo 17006
This theorem is referenced by:  prmgapprmo  17036
  Copyright terms: Public domain W3C validator