Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofval Structured version   Visualization version   GIF version

Theorem prcofval 49152
Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.)
Hypotheses
Ref Expression
prcofvalg.b 𝐵 = (𝐷 Func 𝐸)
prcofvalg.n 𝑁 = (𝐷 Nat 𝐸)
prcofvala.d (𝜑𝐷𝑉)
prcofvala.e (𝜑𝐸𝑊)
prcofval.r Rel 𝑅
prcofval.f (𝜑𝐹𝑅𝐺)
Assertion
Ref Expression
prcofval (𝜑 → (⟨𝐷, 𝐸⟩ −∘F𝐹, 𝐺⟩) = ⟨(𝑘𝐵 ↦ (𝑘func𝐹, 𝐺⟩)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎𝐹)))⟩)
Distinct variable groups:   𝐵,𝑎,𝑘,𝑙   𝐷,𝑎,𝑘,𝑙   𝐸,𝑎,𝑘,𝑙   𝐹,𝑎,𝑘,𝑙   𝐺,𝑎,𝑘,𝑙   𝜑,𝑎,𝑘,𝑙
Allowed substitution hints:   𝑅(𝑘,𝑎,𝑙)   𝑁(𝑘,𝑎,𝑙)   𝑉(𝑘,𝑎,𝑙)   𝑊(𝑘,𝑎,𝑙)

Proof of Theorem prcofval
StepHypRef Expression
1 prcofvalg.b . . 3 𝐵 = (𝐷 Func 𝐸)
2 prcofvalg.n . . 3 𝑁 = (𝐷 Nat 𝐸)
3 prcofvala.d . . 3 (𝜑𝐷𝑉)
4 prcofvala.e . . 3 (𝜑𝐸𝑊)
5 opex 5437 . . . 4 𝐹, 𝐺⟩ ∈ V
65a1i 11 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ V)
71, 2, 3, 4, 6prcofvala 49151 . 2 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F𝐹, 𝐺⟩) = ⟨(𝑘𝐵 ↦ (𝑘func𝐹, 𝐺⟩)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘⟨𝐹, 𝐺⟩))))⟩)
8 prcofval.f . . . . . . 7 (𝜑𝐹𝑅𝐺)
9 prcofval.r . . . . . . . 8 Rel 𝑅
109brrelex12i 5707 . . . . . . 7 (𝐹𝑅𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
11 op1stg 7995 . . . . . . 7 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
128, 10, 113syl 18 . . . . . 6 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1312coeq2d 5840 . . . . 5 (𝜑 → (𝑎 ∘ (1st ‘⟨𝐹, 𝐺⟩)) = (𝑎𝐹))
1413mpteq2dv 5213 . . . 4 (𝜑 → (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘⟨𝐹, 𝐺⟩))) = (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎𝐹)))
1514mpoeq3dv 7481 . . 3 (𝜑 → (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘⟨𝐹, 𝐺⟩)))) = (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎𝐹))))
1615opeq2d 4854 . 2 (𝜑 → ⟨(𝑘𝐵 ↦ (𝑘func𝐹, 𝐺⟩)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘⟨𝐹, 𝐺⟩))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func𝐹, 𝐺⟩)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎𝐹)))⟩)
177, 16eqtrd 2769 1 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F𝐹, 𝐺⟩) = ⟨(𝑘𝐵 ↦ (𝑘func𝐹, 𝐺⟩)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎𝐹)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3457  cop 4605   class class class wbr 5117  cmpt 5199  ccom 5656  Rel wrel 5657  cfv 6528  (class class class)co 7400  cmpo 7402  1st c1st 7981   Func cfunc 17854  func ccofu 17856   Nat cnat 17944   −∘F cprcof 49147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-iota 6481  df-fun 6530  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-prcof 49148
This theorem is referenced by:  prcoftposcurfuco  49156  prcof2  49163
  Copyright terms: Public domain W3C validator