| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prcofval | Structured version Visualization version GIF version | ||
| Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| prcofvalg.b | ⊢ 𝐵 = (𝐷 Func 𝐸) |
| prcofvalg.n | ⊢ 𝑁 = (𝐷 Nat 𝐸) |
| prcofvala.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| prcofvala.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| prcofval.r | ⊢ Rel 𝑅 |
| prcofval.f | ⊢ (𝜑 → 𝐹𝑅𝐺) |
| Ref | Expression |
|---|---|
| prcofval | ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 〈𝐹, 𝐺〉) = 〈(𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 〈𝐹, 𝐺〉)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ 𝐹)))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcofvalg.b | . . 3 ⊢ 𝐵 = (𝐷 Func 𝐸) | |
| 2 | prcofvalg.n | . . 3 ⊢ 𝑁 = (𝐷 Nat 𝐸) | |
| 3 | prcofvala.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 4 | prcofvala.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
| 5 | opex 5419 | . . . 4 ⊢ 〈𝐹, 𝐺〉 ∈ V | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ V) |
| 7 | 1, 2, 3, 4, 6 | prcofvala 49359 | . 2 ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 〈𝐹, 𝐺〉) = 〈(𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 〈𝐹, 𝐺〉)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))))〉) |
| 8 | prcofval.f | . . . . . . 7 ⊢ (𝜑 → 𝐹𝑅𝐺) | |
| 9 | prcofval.r | . . . . . . . 8 ⊢ Rel 𝑅 | |
| 10 | 9 | brrelex12i 5686 | . . . . . . 7 ⊢ (𝐹𝑅𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V)) |
| 11 | op1stg 7959 | . . . . . . 7 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘〈𝐹, 𝐺〉) = 𝐹) | |
| 12 | 8, 10, 11 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → (1st ‘〈𝐹, 𝐺〉) = 𝐹) |
| 13 | 12 | coeq2d 5816 | . . . . 5 ⊢ (𝜑 → (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉)) = (𝑎 ∘ 𝐹)) |
| 14 | 13 | mpteq2dv 5196 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))) = (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ 𝐹))) |
| 15 | 14 | mpoeq3dv 7448 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉)))) = (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ 𝐹)))) |
| 16 | 15 | opeq2d 4840 | . 2 ⊢ (𝜑 → 〈(𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 〈𝐹, 𝐺〉)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘〈𝐹, 𝐺〉))))〉 = 〈(𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 〈𝐹, 𝐺〉)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ 𝐹)))〉) |
| 17 | 7, 16 | eqtrd 2764 | 1 ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 〈𝐹, 𝐺〉) = 〈(𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 〈𝐹, 𝐺〉)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ 𝐹)))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 〈cop 4591 class class class wbr 5102 ↦ cmpt 5183 ∘ ccom 5635 Rel wrel 5636 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1st c1st 7945 Func cfunc 17796 ∘func ccofu 17798 Nat cnat 17886 −∘F cprcof 49355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-prcof 49356 |
| This theorem is referenced by: prcoftposcurfuco 49365 prcof2 49372 |
| Copyright terms: Public domain | W3C validator |