Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofval Structured version   Visualization version   GIF version

Theorem prcofval 49373
Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.)
Hypotheses
Ref Expression
prcofvalg.b 𝐵 = (𝐷 Func 𝐸)
prcofvalg.n 𝑁 = (𝐷 Nat 𝐸)
prcofvala.d (𝜑𝐷𝑉)
prcofvala.e (𝜑𝐸𝑊)
prcofval.r Rel 𝑅
prcofval.f (𝜑𝐹𝑅𝐺)
Assertion
Ref Expression
prcofval (𝜑 → (⟨𝐷, 𝐸⟩ −∘F𝐹, 𝐺⟩) = ⟨(𝑘𝐵 ↦ (𝑘func𝐹, 𝐺⟩)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎𝐹)))⟩)
Distinct variable groups:   𝐵,𝑎,𝑘,𝑙   𝐷,𝑎,𝑘,𝑙   𝐸,𝑎,𝑘,𝑙   𝐹,𝑎,𝑘,𝑙   𝐺,𝑎,𝑘,𝑙   𝜑,𝑎,𝑘,𝑙
Allowed substitution hints:   𝑅(𝑘,𝑎,𝑙)   𝑁(𝑘,𝑎,𝑙)   𝑉(𝑘,𝑎,𝑙)   𝑊(𝑘,𝑎,𝑙)

Proof of Theorem prcofval
StepHypRef Expression
1 prcofvalg.b . . 3 𝐵 = (𝐷 Func 𝐸)
2 prcofvalg.n . . 3 𝑁 = (𝐷 Nat 𝐸)
3 prcofvala.d . . 3 (𝜑𝐷𝑉)
4 prcofvala.e . . 3 (𝜑𝐸𝑊)
5 opex 5407 . . . 4 𝐹, 𝐺⟩ ∈ V
65a1i 11 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ V)
71, 2, 3, 4, 6prcofvala 49372 . 2 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F𝐹, 𝐺⟩) = ⟨(𝑘𝐵 ↦ (𝑘func𝐹, 𝐺⟩)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘⟨𝐹, 𝐺⟩))))⟩)
8 prcofval.f . . . . . . 7 (𝜑𝐹𝑅𝐺)
9 prcofval.r . . . . . . . 8 Rel 𝑅
109brrelex12i 5674 . . . . . . 7 (𝐹𝑅𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
11 op1stg 7936 . . . . . . 7 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
128, 10, 113syl 18 . . . . . 6 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1312coeq2d 5805 . . . . 5 (𝜑 → (𝑎 ∘ (1st ‘⟨𝐹, 𝐺⟩)) = (𝑎𝐹))
1413mpteq2dv 5186 . . . 4 (𝜑 → (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘⟨𝐹, 𝐺⟩))) = (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎𝐹)))
1514mpoeq3dv 7428 . . 3 (𝜑 → (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘⟨𝐹, 𝐺⟩)))) = (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎𝐹))))
1615opeq2d 4831 . 2 (𝜑 → ⟨(𝑘𝐵 ↦ (𝑘func𝐹, 𝐺⟩)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘⟨𝐹, 𝐺⟩))))⟩ = ⟨(𝑘𝐵 ↦ (𝑘func𝐹, 𝐺⟩)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎𝐹)))⟩)
177, 16eqtrd 2764 1 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F𝐹, 𝐺⟩) = ⟨(𝑘𝐵 ↦ (𝑘func𝐹, 𝐺⟩)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎𝐹)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cop 4583   class class class wbr 5092  cmpt 5173  ccom 5623  Rel wrel 5624  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   −∘F cprcof 49368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-prcof 49369
This theorem is referenced by:  prcoftposcurfuco  49378  prcof2  49385
  Copyright terms: Public domain W3C validator