| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prcof2 | Structured version Visualization version GIF version | ||
| Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.) |
| Ref | Expression |
|---|---|
| prcof2a.n | ⊢ 𝑁 = (𝐷 Nat 𝐸) |
| prcof2a.k | ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) |
| prcof2a.l | ⊢ (𝜑 → 𝐿 ∈ (𝐷 Func 𝐸)) |
| prcof2.p | ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 〈𝐹, 𝐺〉)) = 𝑃) |
| prcof2.r | ⊢ Rel 𝑅 |
| prcof2.f | ⊢ (𝜑 → 𝐹𝑅𝐺) |
| Ref | Expression |
|---|---|
| prcof2 | ⊢ (𝜑 → (𝐾𝑃𝐿) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcof2.p | . . 3 ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 〈𝐹, 𝐺〉)) = 𝑃) | |
| 2 | eqid 2731 | . . . . . 6 ⊢ (𝐷 Func 𝐸) = (𝐷 Func 𝐸) | |
| 3 | prcof2a.n | . . . . . 6 ⊢ 𝑁 = (𝐷 Nat 𝐸) | |
| 4 | prcof2a.k | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) | |
| 5 | 4 | func1st2nd 49187 | . . . . . . 7 ⊢ (𝜑 → (1st ‘𝐾)(𝐷 Func 𝐸)(2nd ‘𝐾)) |
| 6 | 5 | funcrcl2 49190 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 7 | 5 | funcrcl3 49191 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 8 | prcof2.r | . . . . . 6 ⊢ Rel 𝑅 | |
| 9 | prcof2.f | . . . . . 6 ⊢ (𝜑 → 𝐹𝑅𝐺) | |
| 10 | 2, 3, 6, 7, 8, 9 | prcofval 49489 | . . . . 5 ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 〈𝐹, 𝐺〉) = 〈(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘 ∘func 〈𝐹, 𝐺〉)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ 𝐹)))〉) |
| 11 | 10 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 〈𝐹, 𝐺〉)) = (2nd ‘〈(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘 ∘func 〈𝐹, 𝐺〉)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ 𝐹)))〉)) |
| 12 | ovex 7379 | . . . . . 6 ⊢ (𝐷 Func 𝐸) ∈ V | |
| 13 | 12 | mptex 7157 | . . . . 5 ⊢ (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘 ∘func 〈𝐹, 𝐺〉)) ∈ V |
| 14 | 12, 12 | mpoex 8011 | . . . . 5 ⊢ (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ 𝐹))) ∈ V |
| 15 | 13, 14 | op2nd 7930 | . . . 4 ⊢ (2nd ‘〈(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘 ∘func 〈𝐹, 𝐺〉)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ 𝐹)))〉) = (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ 𝐹))) |
| 16 | 11, 15 | eqtrdi 2782 | . . 3 ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 〈𝐹, 𝐺〉)) = (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ 𝐹)))) |
| 17 | 1, 16 | eqtr3d 2768 | . 2 ⊢ (𝜑 → 𝑃 = (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ 𝐹)))) |
| 18 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → 𝑘 = 𝐾) | |
| 19 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → 𝑙 = 𝐿) | |
| 20 | 18, 19 | oveq12d 7364 | . . 3 ⊢ ((𝜑 ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑘𝑁𝑙) = (𝐾𝑁𝐿)) |
| 21 | 20 | mpteq1d 5179 | . 2 ⊢ ((𝜑 ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ 𝐹)) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ 𝐹))) |
| 22 | prcof2a.l | . 2 ⊢ (𝜑 → 𝐿 ∈ (𝐷 Func 𝐸)) | |
| 23 | ovex 7379 | . . . 4 ⊢ (𝐾𝑁𝐿) ∈ V | |
| 24 | 23 | mptex 7157 | . . 3 ⊢ (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ 𝐹)) ∈ V |
| 25 | 24 | a1i 11 | . 2 ⊢ (𝜑 → (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ 𝐹)) ∈ V) |
| 26 | 17, 21, 4, 22, 25 | ovmpod 7498 | 1 ⊢ (𝜑 → (𝐾𝑃𝐿) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ 𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 class class class wbr 5089 ↦ cmpt 5170 ∘ ccom 5618 Rel wrel 5619 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1st c1st 7919 2nd c2nd 7920 Catccat 17570 Func cfunc 17761 ∘func ccofu 17763 Nat cnat 17851 −∘F cprcof 49484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-func 17765 df-prcof 49485 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |