Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofpropd Structured version   Visualization version   GIF version

Theorem prcofpropd 49374
Description: If the categories have the same set of objects, morphisms, and compositions, then they have the same pre-composition functors. (Contributed by Zhi Wang, 21-Nov-2025.)
Hypotheses
Ref Expression
prcofpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
prcofpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
prcofpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
prcofpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
prcofpropd.a (𝜑𝐴𝑉)
prcofpropd.b (𝜑𝐵𝑉)
prcofpropd.c (𝜑𝐶𝑉)
prcofpropd.d (𝜑𝐷𝑉)
prcofpropd.f (𝜑𝐹𝑊)
Assertion
Ref Expression
prcofpropd (𝜑 → (⟨𝐴, 𝐶⟩ −∘F 𝐹) = (⟨𝐵, 𝐷⟩ −∘F 𝐹))

Proof of Theorem prcofpropd
Dummy variables 𝑎 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prcofpropd.1 . . . . 5 (𝜑 → (Homf𝐴) = (Homf𝐵))
2 prcofpropd.2 . . . . 5 (𝜑 → (compf𝐴) = (compf𝐵))
3 prcofpropd.3 . . . . 5 (𝜑 → (Homf𝐶) = (Homf𝐷))
4 prcofpropd.4 . . . . 5 (𝜑 → (compf𝐶) = (compf𝐷))
5 prcofpropd.a . . . . 5 (𝜑𝐴𝑉)
6 prcofpropd.b . . . . 5 (𝜑𝐵𝑉)
7 prcofpropd.c . . . . 5 (𝜑𝐶𝑉)
8 prcofpropd.d . . . . 5 (𝜑𝐷𝑉)
91, 2, 3, 4, 5, 6, 7, 8funcpropd 17809 . . . 4 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
109mpteq1d 5182 . . 3 (𝜑 → (𝑘 ∈ (𝐴 Func 𝐶) ↦ (𝑘func 𝐹)) = (𝑘 ∈ (𝐵 Func 𝐷) ↦ (𝑘func 𝐹)))
119adantr 480 . . . 4 ((𝜑𝑘 ∈ (𝐴 Func 𝐶)) → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
121adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (Homf𝐴) = (Homf𝐵))
132adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (compf𝐴) = (compf𝐵))
143adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (Homf𝐶) = (Homf𝐷))
154adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (compf𝐶) = (compf𝐷))
16 funcrcl 17770 . . . . . . . . 9 (𝑘 ∈ (𝐴 Func 𝐶) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat))
1716ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat))
1817simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐴 ∈ Cat)
196adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐵𝑉)
2012, 13, 18, 19catpropd 17615 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐴 ∈ Cat ↔ 𝐵 ∈ Cat))
2118, 20mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐵 ∈ Cat)
2217simprd 495 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐶 ∈ Cat)
238adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐷𝑉)
2414, 15, 22, 23catpropd 17615 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
2522, 24mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐷 ∈ Cat)
2612, 13, 14, 15, 18, 21, 22, 25natpropd 17886 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))
2726oveqd 7366 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝑘(𝐴 Nat 𝐶)𝑙) = (𝑘(𝐵 Nat 𝐷)𝑙))
2827mpteq1d 5182 . . . 4 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st𝐹))) = (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st𝐹))))
299, 11, 28mpoeq123dva 7423 . . 3 (𝜑 → (𝑘 ∈ (𝐴 Func 𝐶), 𝑙 ∈ (𝐴 Func 𝐶) ↦ (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st𝐹)))) = (𝑘 ∈ (𝐵 Func 𝐷), 𝑙 ∈ (𝐵 Func 𝐷) ↦ (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
3010, 29opeq12d 4832 . 2 (𝜑 → ⟨(𝑘 ∈ (𝐴 Func 𝐶) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐴 Func 𝐶), 𝑙 ∈ (𝐴 Func 𝐶) ↦ (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ = ⟨(𝑘 ∈ (𝐵 Func 𝐷) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐵 Func 𝐷), 𝑙 ∈ (𝐵 Func 𝐷) ↦ (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
31 eqid 2729 . . 3 (𝐴 Func 𝐶) = (𝐴 Func 𝐶)
32 eqid 2729 . . 3 (𝐴 Nat 𝐶) = (𝐴 Nat 𝐶)
33 prcofpropd.f . . 3 (𝜑𝐹𝑊)
3431, 32, 5, 7, 33prcofvala 49372 . 2 (𝜑 → (⟨𝐴, 𝐶⟩ −∘F 𝐹) = ⟨(𝑘 ∈ (𝐴 Func 𝐶) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐴 Func 𝐶), 𝑙 ∈ (𝐴 Func 𝐶) ↦ (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
35 eqid 2729 . . 3 (𝐵 Func 𝐷) = (𝐵 Func 𝐷)
36 eqid 2729 . . 3 (𝐵 Nat 𝐷) = (𝐵 Nat 𝐷)
3735, 36, 6, 8, 33prcofvala 49372 . 2 (𝜑 → (⟨𝐵, 𝐷⟩ −∘F 𝐹) = ⟨(𝑘 ∈ (𝐵 Func 𝐷) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐵 Func 𝐷), 𝑙 ∈ (𝐵 Func 𝐷) ↦ (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
3830, 34, 373eqtr4d 2774 1 (𝜑 → (⟨𝐴, 𝐶⟩ −∘F 𝐹) = (⟨𝐵, 𝐷⟩ −∘F 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4583  cmpt 5173  ccom 5623  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  Catccat 17570  Homf chomf 17572  compfccomf 17573   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   −∘F cprcof 49368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-ixp 8825  df-cat 17574  df-cid 17575  df-homf 17576  df-comf 17577  df-func 17765  df-nat 17853  df-prcof 49369
This theorem is referenced by:  lanpropd  49610  ranpropd  49611
  Copyright terms: Public domain W3C validator