| Step | Hyp | Ref
| Expression |
| 1 | | prcofpropd.1 |
. . . . 5
⊢ (𝜑 → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
| 2 | | prcofpropd.2 |
. . . . 5
⊢ (𝜑 →
(compf‘𝐴) = (compf‘𝐵)) |
| 3 | | prcofpropd.3 |
. . . . 5
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 4 | | prcofpropd.4 |
. . . . 5
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) |
| 5 | | prcofpropd.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 6 | | prcofpropd.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| 7 | | prcofpropd.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 8 | | prcofpropd.d |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | funcpropd 17870 |
. . . 4
⊢ (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
| 10 | 9 | mpteq1d 5199 |
. . 3
⊢ (𝜑 → (𝑘 ∈ (𝐴 Func 𝐶) ↦ (𝑘 ∘func 𝐹)) = (𝑘 ∈ (𝐵 Func 𝐷) ↦ (𝑘 ∘func 𝐹))) |
| 11 | 9 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 Func 𝐶)) → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
| 12 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
| 13 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) →
(compf‘𝐴) = (compf‘𝐵)) |
| 14 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 15 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) →
(compf‘𝐶) = (compf‘𝐷)) |
| 16 | | funcrcl 17831 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝐴 Func 𝐶) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat)) |
| 17 | 16 | ad2antrl 728 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat)) |
| 18 | 17 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐴 ∈ Cat) |
| 19 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐵 ∈ 𝑉) |
| 20 | 12, 13, 18, 19 | catpropd 17676 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐴 ∈ Cat ↔ 𝐵 ∈ Cat)) |
| 21 | 18, 20 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐵 ∈ Cat) |
| 22 | 17 | simprd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐶 ∈ Cat) |
| 23 | 8 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐷 ∈ 𝑉) |
| 24 | 14, 15, 22, 23 | catpropd 17676 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat)) |
| 25 | 22, 24 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐷 ∈ Cat) |
| 26 | 12, 13, 14, 15, 18, 21, 22, 25 | natpropd 17947 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷)) |
| 27 | 26 | oveqd 7406 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝑘(𝐴 Nat 𝐶)𝑙) = (𝑘(𝐵 Nat 𝐷)𝑙)) |
| 28 | 27 | mpteq1d 5199 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))) = (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st ‘𝐹)))) |
| 29 | 9, 11, 28 | mpoeq123dva 7465 |
. . 3
⊢ (𝜑 → (𝑘 ∈ (𝐴 Func 𝐶), 𝑙 ∈ (𝐴 Func 𝐶) ↦ (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st ‘𝐹)))) = (𝑘 ∈ (𝐵 Func 𝐷), 𝑙 ∈ (𝐵 Func 𝐷) ↦ (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))) |
| 30 | 10, 29 | opeq12d 4847 |
. 2
⊢ (𝜑 → 〈(𝑘 ∈ (𝐴 Func 𝐶) ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ (𝐴 Func 𝐶), 𝑙 ∈ (𝐴 Func 𝐶) ↦ (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉 = 〈(𝑘 ∈ (𝐵 Func 𝐷) ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ (𝐵 Func 𝐷), 𝑙 ∈ (𝐵 Func 𝐷) ↦ (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| 31 | | eqid 2730 |
. . 3
⊢ (𝐴 Func 𝐶) = (𝐴 Func 𝐶) |
| 32 | | eqid 2730 |
. . 3
⊢ (𝐴 Nat 𝐶) = (𝐴 Nat 𝐶) |
| 33 | | prcofpropd.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| 34 | 31, 32, 5, 7, 33 | prcofvala 49356 |
. 2
⊢ (𝜑 → (〈𝐴, 𝐶〉 −∘F
𝐹) = 〈(𝑘 ∈ (𝐴 Func 𝐶) ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ (𝐴 Func 𝐶), 𝑙 ∈ (𝐴 Func 𝐶) ↦ (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| 35 | | eqid 2730 |
. . 3
⊢ (𝐵 Func 𝐷) = (𝐵 Func 𝐷) |
| 36 | | eqid 2730 |
. . 3
⊢ (𝐵 Nat 𝐷) = (𝐵 Nat 𝐷) |
| 37 | 35, 36, 6, 8, 33 | prcofvala 49356 |
. 2
⊢ (𝜑 → (〈𝐵, 𝐷〉 −∘F
𝐹) = 〈(𝑘 ∈ (𝐵 Func 𝐷) ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ (𝐵 Func 𝐷), 𝑙 ∈ (𝐵 Func 𝐷) ↦ (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| 38 | 30, 34, 37 | 3eqtr4d 2775 |
1
⊢ (𝜑 → (〈𝐴, 𝐶〉 −∘F
𝐹) = (〈𝐵, 𝐷〉 −∘F
𝐹)) |