Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofpropd Structured version   Visualization version   GIF version

Theorem prcofpropd 49358
Description: If the categories have the same set of objects, morphisms, and compositions, then they have the same pre-composition functors. (Contributed by Zhi Wang, 21-Nov-2025.)
Hypotheses
Ref Expression
prcofpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
prcofpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
prcofpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
prcofpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
prcofpropd.a (𝜑𝐴𝑉)
prcofpropd.b (𝜑𝐵𝑉)
prcofpropd.c (𝜑𝐶𝑉)
prcofpropd.d (𝜑𝐷𝑉)
prcofpropd.f (𝜑𝐹𝑊)
Assertion
Ref Expression
prcofpropd (𝜑 → (⟨𝐴, 𝐶⟩ −∘F 𝐹) = (⟨𝐵, 𝐷⟩ −∘F 𝐹))

Proof of Theorem prcofpropd
Dummy variables 𝑎 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prcofpropd.1 . . . . 5 (𝜑 → (Homf𝐴) = (Homf𝐵))
2 prcofpropd.2 . . . . 5 (𝜑 → (compf𝐴) = (compf𝐵))
3 prcofpropd.3 . . . . 5 (𝜑 → (Homf𝐶) = (Homf𝐷))
4 prcofpropd.4 . . . . 5 (𝜑 → (compf𝐶) = (compf𝐷))
5 prcofpropd.a . . . . 5 (𝜑𝐴𝑉)
6 prcofpropd.b . . . . 5 (𝜑𝐵𝑉)
7 prcofpropd.c . . . . 5 (𝜑𝐶𝑉)
8 prcofpropd.d . . . . 5 (𝜑𝐷𝑉)
91, 2, 3, 4, 5, 6, 7, 8funcpropd 17870 . . . 4 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
109mpteq1d 5199 . . 3 (𝜑 → (𝑘 ∈ (𝐴 Func 𝐶) ↦ (𝑘func 𝐹)) = (𝑘 ∈ (𝐵 Func 𝐷) ↦ (𝑘func 𝐹)))
119adantr 480 . . . 4 ((𝜑𝑘 ∈ (𝐴 Func 𝐶)) → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
121adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (Homf𝐴) = (Homf𝐵))
132adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (compf𝐴) = (compf𝐵))
143adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (Homf𝐶) = (Homf𝐷))
154adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (compf𝐶) = (compf𝐷))
16 funcrcl 17831 . . . . . . . . 9 (𝑘 ∈ (𝐴 Func 𝐶) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat))
1716ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat))
1817simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐴 ∈ Cat)
196adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐵𝑉)
2012, 13, 18, 19catpropd 17676 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐴 ∈ Cat ↔ 𝐵 ∈ Cat))
2118, 20mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐵 ∈ Cat)
2217simprd 495 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐶 ∈ Cat)
238adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐷𝑉)
2414, 15, 22, 23catpropd 17676 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
2522, 24mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐷 ∈ Cat)
2612, 13, 14, 15, 18, 21, 22, 25natpropd 17947 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))
2726oveqd 7406 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝑘(𝐴 Nat 𝐶)𝑙) = (𝑘(𝐵 Nat 𝐷)𝑙))
2827mpteq1d 5199 . . . 4 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st𝐹))) = (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st𝐹))))
299, 11, 28mpoeq123dva 7465 . . 3 (𝜑 → (𝑘 ∈ (𝐴 Func 𝐶), 𝑙 ∈ (𝐴 Func 𝐶) ↦ (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st𝐹)))) = (𝑘 ∈ (𝐵 Func 𝐷), 𝑙 ∈ (𝐵 Func 𝐷) ↦ (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
3010, 29opeq12d 4847 . 2 (𝜑 → ⟨(𝑘 ∈ (𝐴 Func 𝐶) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐴 Func 𝐶), 𝑙 ∈ (𝐴 Func 𝐶) ↦ (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ = ⟨(𝑘 ∈ (𝐵 Func 𝐷) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐵 Func 𝐷), 𝑙 ∈ (𝐵 Func 𝐷) ↦ (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
31 eqid 2730 . . 3 (𝐴 Func 𝐶) = (𝐴 Func 𝐶)
32 eqid 2730 . . 3 (𝐴 Nat 𝐶) = (𝐴 Nat 𝐶)
33 prcofpropd.f . . 3 (𝜑𝐹𝑊)
3431, 32, 5, 7, 33prcofvala 49356 . 2 (𝜑 → (⟨𝐴, 𝐶⟩ −∘F 𝐹) = ⟨(𝑘 ∈ (𝐴 Func 𝐶) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐴 Func 𝐶), 𝑙 ∈ (𝐴 Func 𝐶) ↦ (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
35 eqid 2730 . . 3 (𝐵 Func 𝐷) = (𝐵 Func 𝐷)
36 eqid 2730 . . 3 (𝐵 Nat 𝐷) = (𝐵 Nat 𝐷)
3735, 36, 6, 8, 33prcofvala 49356 . 2 (𝜑 → (⟨𝐵, 𝐷⟩ −∘F 𝐹) = ⟨(𝑘 ∈ (𝐵 Func 𝐷) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐵 Func 𝐷), 𝑙 ∈ (𝐵 Func 𝐷) ↦ (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
3830, 34, 373eqtr4d 2775 1 (𝜑 → (⟨𝐴, 𝐶⟩ −∘F 𝐹) = (⟨𝐵, 𝐷⟩ −∘F 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4597  cmpt 5190  ccom 5644  cfv 6513  (class class class)co 7389  cmpo 7391  1st c1st 7968  Catccat 17631  Homf chomf 17633  compfccomf 17634   Func cfunc 17822  func ccofu 17824   Nat cnat 17912   −∘F cprcof 49352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-ixp 8873  df-cat 17635  df-cid 17636  df-homf 17637  df-comf 17638  df-func 17826  df-nat 17914  df-prcof 49353
This theorem is referenced by:  lanpropd  49594  ranpropd  49595
  Copyright terms: Public domain W3C validator