Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofpropd Structured version   Visualization version   GIF version

Theorem prcofpropd 49490
Description: If the categories have the same set of objects, morphisms, and compositions, then they have the same pre-composition functors. (Contributed by Zhi Wang, 21-Nov-2025.)
Hypotheses
Ref Expression
prcofpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
prcofpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
prcofpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
prcofpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
prcofpropd.a (𝜑𝐴𝑉)
prcofpropd.b (𝜑𝐵𝑉)
prcofpropd.c (𝜑𝐶𝑉)
prcofpropd.d (𝜑𝐷𝑉)
prcofpropd.f (𝜑𝐹𝑊)
Assertion
Ref Expression
prcofpropd (𝜑 → (⟨𝐴, 𝐶⟩ −∘F 𝐹) = (⟨𝐵, 𝐷⟩ −∘F 𝐹))

Proof of Theorem prcofpropd
Dummy variables 𝑎 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prcofpropd.1 . . . . 5 (𝜑 → (Homf𝐴) = (Homf𝐵))
2 prcofpropd.2 . . . . 5 (𝜑 → (compf𝐴) = (compf𝐵))
3 prcofpropd.3 . . . . 5 (𝜑 → (Homf𝐶) = (Homf𝐷))
4 prcofpropd.4 . . . . 5 (𝜑 → (compf𝐶) = (compf𝐷))
5 prcofpropd.a . . . . 5 (𝜑𝐴𝑉)
6 prcofpropd.b . . . . 5 (𝜑𝐵𝑉)
7 prcofpropd.c . . . . 5 (𝜑𝐶𝑉)
8 prcofpropd.d . . . . 5 (𝜑𝐷𝑉)
91, 2, 3, 4, 5, 6, 7, 8funcpropd 17809 . . . 4 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
109mpteq1d 5179 . . 3 (𝜑 → (𝑘 ∈ (𝐴 Func 𝐶) ↦ (𝑘func 𝐹)) = (𝑘 ∈ (𝐵 Func 𝐷) ↦ (𝑘func 𝐹)))
119adantr 480 . . . 4 ((𝜑𝑘 ∈ (𝐴 Func 𝐶)) → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
121adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (Homf𝐴) = (Homf𝐵))
132adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (compf𝐴) = (compf𝐵))
143adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (Homf𝐶) = (Homf𝐷))
154adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (compf𝐶) = (compf𝐷))
16 funcrcl 17770 . . . . . . . . 9 (𝑘 ∈ (𝐴 Func 𝐶) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat))
1716ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat))
1817simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐴 ∈ Cat)
196adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐵𝑉)
2012, 13, 18, 19catpropd 17615 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐴 ∈ Cat ↔ 𝐵 ∈ Cat))
2118, 20mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐵 ∈ Cat)
2217simprd 495 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐶 ∈ Cat)
238adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐷𝑉)
2414, 15, 22, 23catpropd 17615 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
2522, 24mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐷 ∈ Cat)
2612, 13, 14, 15, 18, 21, 22, 25natpropd 17886 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))
2726oveqd 7363 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝑘(𝐴 Nat 𝐶)𝑙) = (𝑘(𝐵 Nat 𝐷)𝑙))
2827mpteq1d 5179 . . . 4 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st𝐹))) = (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st𝐹))))
299, 11, 28mpoeq123dva 7420 . . 3 (𝜑 → (𝑘 ∈ (𝐴 Func 𝐶), 𝑙 ∈ (𝐴 Func 𝐶) ↦ (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st𝐹)))) = (𝑘 ∈ (𝐵 Func 𝐷), 𝑙 ∈ (𝐵 Func 𝐷) ↦ (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
3010, 29opeq12d 4830 . 2 (𝜑 → ⟨(𝑘 ∈ (𝐴 Func 𝐶) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐴 Func 𝐶), 𝑙 ∈ (𝐴 Func 𝐶) ↦ (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ = ⟨(𝑘 ∈ (𝐵 Func 𝐷) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐵 Func 𝐷), 𝑙 ∈ (𝐵 Func 𝐷) ↦ (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
31 eqid 2731 . . 3 (𝐴 Func 𝐶) = (𝐴 Func 𝐶)
32 eqid 2731 . . 3 (𝐴 Nat 𝐶) = (𝐴 Nat 𝐶)
33 prcofpropd.f . . 3 (𝜑𝐹𝑊)
3431, 32, 5, 7, 33prcofvala 49488 . 2 (𝜑 → (⟨𝐴, 𝐶⟩ −∘F 𝐹) = ⟨(𝑘 ∈ (𝐴 Func 𝐶) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐴 Func 𝐶), 𝑙 ∈ (𝐴 Func 𝐶) ↦ (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
35 eqid 2731 . . 3 (𝐵 Func 𝐷) = (𝐵 Func 𝐷)
36 eqid 2731 . . 3 (𝐵 Nat 𝐷) = (𝐵 Nat 𝐷)
3735, 36, 6, 8, 33prcofvala 49488 . 2 (𝜑 → (⟨𝐵, 𝐷⟩ −∘F 𝐹) = ⟨(𝑘 ∈ (𝐵 Func 𝐷) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐵 Func 𝐷), 𝑙 ∈ (𝐵 Func 𝐷) ↦ (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
3830, 34, 373eqtr4d 2776 1 (𝜑 → (⟨𝐴, 𝐶⟩ −∘F 𝐹) = (⟨𝐵, 𝐷⟩ −∘F 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4579  cmpt 5170  ccom 5618  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  Catccat 17570  Homf chomf 17572  compfccomf 17573   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   −∘F cprcof 49484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-cat 17574  df-cid 17575  df-homf 17576  df-comf 17577  df-func 17765  df-nat 17853  df-prcof 49485
This theorem is referenced by:  lanpropd  49726  ranpropd  49727
  Copyright terms: Public domain W3C validator