Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofpropd Structured version   Visualization version   GIF version

Theorem prcofpropd 49361
Description: If the categories have the same set of objects, morphisms, and compositions, then they have the same pre-composition functors. (Contributed by Zhi Wang, 21-Nov-2025.)
Hypotheses
Ref Expression
prcofpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
prcofpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
prcofpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
prcofpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
prcofpropd.a (𝜑𝐴𝑉)
prcofpropd.b (𝜑𝐵𝑉)
prcofpropd.c (𝜑𝐶𝑉)
prcofpropd.d (𝜑𝐷𝑉)
prcofpropd.f (𝜑𝐹𝑊)
Assertion
Ref Expression
prcofpropd (𝜑 → (⟨𝐴, 𝐶⟩ −∘F 𝐹) = (⟨𝐵, 𝐷⟩ −∘F 𝐹))

Proof of Theorem prcofpropd
Dummy variables 𝑎 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prcofpropd.1 . . . . 5 (𝜑 → (Homf𝐴) = (Homf𝐵))
2 prcofpropd.2 . . . . 5 (𝜑 → (compf𝐴) = (compf𝐵))
3 prcofpropd.3 . . . . 5 (𝜑 → (Homf𝐶) = (Homf𝐷))
4 prcofpropd.4 . . . . 5 (𝜑 → (compf𝐶) = (compf𝐷))
5 prcofpropd.a . . . . 5 (𝜑𝐴𝑉)
6 prcofpropd.b . . . . 5 (𝜑𝐵𝑉)
7 prcofpropd.c . . . . 5 (𝜑𝐶𝑉)
8 prcofpropd.d . . . . 5 (𝜑𝐷𝑉)
91, 2, 3, 4, 5, 6, 7, 8funcpropd 17844 . . . 4 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
109mpteq1d 5192 . . 3 (𝜑 → (𝑘 ∈ (𝐴 Func 𝐶) ↦ (𝑘func 𝐹)) = (𝑘 ∈ (𝐵 Func 𝐷) ↦ (𝑘func 𝐹)))
119adantr 480 . . . 4 ((𝜑𝑘 ∈ (𝐴 Func 𝐶)) → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
121adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (Homf𝐴) = (Homf𝐵))
132adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (compf𝐴) = (compf𝐵))
143adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (Homf𝐶) = (Homf𝐷))
154adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (compf𝐶) = (compf𝐷))
16 funcrcl 17805 . . . . . . . . 9 (𝑘 ∈ (𝐴 Func 𝐶) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat))
1716ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat))
1817simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐴 ∈ Cat)
196adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐵𝑉)
2012, 13, 18, 19catpropd 17650 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐴 ∈ Cat ↔ 𝐵 ∈ Cat))
2118, 20mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐵 ∈ Cat)
2217simprd 495 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐶 ∈ Cat)
238adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐷𝑉)
2414, 15, 22, 23catpropd 17650 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
2522, 24mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → 𝐷 ∈ Cat)
2612, 13, 14, 15, 18, 21, 22, 25natpropd 17921 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))
2726oveqd 7386 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝑘(𝐴 Nat 𝐶)𝑙) = (𝑘(𝐵 Nat 𝐷)𝑙))
2827mpteq1d 5192 . . . 4 ((𝜑 ∧ (𝑘 ∈ (𝐴 Func 𝐶) ∧ 𝑙 ∈ (𝐴 Func 𝐶))) → (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st𝐹))) = (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st𝐹))))
299, 11, 28mpoeq123dva 7443 . . 3 (𝜑 → (𝑘 ∈ (𝐴 Func 𝐶), 𝑙 ∈ (𝐴 Func 𝐶) ↦ (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st𝐹)))) = (𝑘 ∈ (𝐵 Func 𝐷), 𝑙 ∈ (𝐵 Func 𝐷) ↦ (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
3010, 29opeq12d 4841 . 2 (𝜑 → ⟨(𝑘 ∈ (𝐴 Func 𝐶) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐴 Func 𝐶), 𝑙 ∈ (𝐴 Func 𝐶) ↦ (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩ = ⟨(𝑘 ∈ (𝐵 Func 𝐷) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐵 Func 𝐷), 𝑙 ∈ (𝐵 Func 𝐷) ↦ (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
31 eqid 2729 . . 3 (𝐴 Func 𝐶) = (𝐴 Func 𝐶)
32 eqid 2729 . . 3 (𝐴 Nat 𝐶) = (𝐴 Nat 𝐶)
33 prcofpropd.f . . 3 (𝜑𝐹𝑊)
3431, 32, 5, 7, 33prcofvala 49359 . 2 (𝜑 → (⟨𝐴, 𝐶⟩ −∘F 𝐹) = ⟨(𝑘 ∈ (𝐴 Func 𝐶) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐴 Func 𝐶), 𝑙 ∈ (𝐴 Func 𝐶) ↦ (𝑎 ∈ (𝑘(𝐴 Nat 𝐶)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
35 eqid 2729 . . 3 (𝐵 Func 𝐷) = (𝐵 Func 𝐷)
36 eqid 2729 . . 3 (𝐵 Nat 𝐷) = (𝐵 Nat 𝐷)
3735, 36, 6, 8, 33prcofvala 49359 . 2 (𝜑 → (⟨𝐵, 𝐷⟩ −∘F 𝐹) = ⟨(𝑘 ∈ (𝐵 Func 𝐷) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐵 Func 𝐷), 𝑙 ∈ (𝐵 Func 𝐷) ↦ (𝑎 ∈ (𝑘(𝐵 Nat 𝐷)𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
3830, 34, 373eqtr4d 2774 1 (𝜑 → (⟨𝐴, 𝐶⟩ −∘F 𝐹) = (⟨𝐵, 𝐷⟩ −∘F 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4591  cmpt 5183  ccom 5635  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  Catccat 17605  Homf chomf 17607  compfccomf 17608   Func cfunc 17796  func ccofu 17798   Nat cnat 17886   −∘F cprcof 49355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-cat 17609  df-cid 17610  df-homf 17611  df-comf 17612  df-func 17800  df-nat 17888  df-prcof 49356
This theorem is referenced by:  lanpropd  49597  ranpropd  49598
  Copyright terms: Public domain W3C validator