| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prcofvala | Structured version Visualization version GIF version | ||
| Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| prcofvalg.b | ⊢ 𝐵 = (𝐷 Func 𝐸) |
| prcofvalg.n | ⊢ 𝑁 = (𝐷 Nat 𝐸) |
| prcofvala.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| prcofvala.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| prcofvala.f | ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| prcofvala | ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈(𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcofvalg.b | . 2 ⊢ 𝐵 = (𝐷 Func 𝐸) | |
| 2 | prcofvalg.n | . 2 ⊢ 𝑁 = (𝐷 Nat 𝐸) | |
| 3 | prcofvala.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑈) | |
| 4 | opex 5437 | . . 3 ⊢ 〈𝐷, 𝐸〉 ∈ V | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝐷, 𝐸〉 ∈ V) |
| 6 | prcofvala.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 7 | prcofvala.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
| 8 | op1stg 7995 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (1st ‘〈𝐷, 𝐸〉) = 𝐷) | |
| 9 | 6, 7, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → (1st ‘〈𝐷, 𝐸〉) = 𝐷) |
| 10 | op2ndg 7996 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (2nd ‘〈𝐷, 𝐸〉) = 𝐸) | |
| 11 | 6, 7, 10 | syl2anc 584 | . 2 ⊢ (𝜑 → (2nd ‘〈𝐷, 𝐸〉) = 𝐸) |
| 12 | 1, 2, 3, 5, 9, 11 | prcofvalg 49150 | 1 ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈(𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3457 〈cop 4605 ↦ cmpt 5199 ∘ ccom 5656 ‘cfv 6528 (class class class)co 7400 ∈ cmpo 7402 1st c1st 7981 2nd c2nd 7982 Func cfunc 17854 ∘func ccofu 17856 Nat cnat 17944 −∘F cprcof 49147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-iota 6481 df-fun 6530 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-prcof 49148 |
| This theorem is referenced by: prcofval 49152 prcof1 49161 prcof2a 49162 |
| Copyright terms: Public domain | W3C validator |