Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofvala Structured version   Visualization version   GIF version

Theorem prcofvala 49356
Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.)
Hypotheses
Ref Expression
prcofvalg.b 𝐵 = (𝐷 Func 𝐸)
prcofvalg.n 𝑁 = (𝐷 Nat 𝐸)
prcofvala.d (𝜑𝐷𝑉)
prcofvala.e (𝜑𝐸𝑊)
prcofvala.f (𝜑𝐹𝑈)
Assertion
Ref Expression
prcofvala (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
Distinct variable groups:   𝐵,𝑎,𝑘,𝑙   𝐷,𝑎,𝑘,𝑙   𝐸,𝑎,𝑘,𝑙   𝐹,𝑎,𝑘,𝑙   𝜑,𝑎,𝑘,𝑙
Allowed substitution hints:   𝑈(𝑘,𝑎,𝑙)   𝑁(𝑘,𝑎,𝑙)   𝑉(𝑘,𝑎,𝑙)   𝑊(𝑘,𝑎,𝑙)

Proof of Theorem prcofvala
StepHypRef Expression
1 prcofvalg.b . 2 𝐵 = (𝐷 Func 𝐸)
2 prcofvalg.n . 2 𝑁 = (𝐷 Nat 𝐸)
3 prcofvala.f . 2 (𝜑𝐹𝑈)
4 opex 5426 . . 3 𝐷, 𝐸⟩ ∈ V
54a1i 11 . 2 (𝜑 → ⟨𝐷, 𝐸⟩ ∈ V)
6 prcofvala.d . . 3 (𝜑𝐷𝑉)
7 prcofvala.e . . 3 (𝜑𝐸𝑊)
8 op1stg 7982 . . 3 ((𝐷𝑉𝐸𝑊) → (1st ‘⟨𝐷, 𝐸⟩) = 𝐷)
96, 7, 8syl2anc 584 . 2 (𝜑 → (1st ‘⟨𝐷, 𝐸⟩) = 𝐷)
10 op2ndg 7983 . . 3 ((𝐷𝑉𝐸𝑊) → (2nd ‘⟨𝐷, 𝐸⟩) = 𝐸)
116, 7, 10syl2anc 584 . 2 (𝜑 → (2nd ‘⟨𝐷, 𝐸⟩) = 𝐸)
121, 2, 3, 5, 9, 11prcofvalg 49355 1 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cop 4597  cmpt 5190  ccom 5644  cfv 6513  (class class class)co 7389  cmpo 7391  1st c1st 7968  2nd c2nd 7969   Func cfunc 17822  func ccofu 17824   Nat cnat 17912   −∘F cprcof 49352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-prcof 49353
This theorem is referenced by:  prcofval  49357  prcofpropd  49358  prcof1  49367  prcof2a  49368
  Copyright terms: Public domain W3C validator