| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prcofvala | Structured version Visualization version GIF version | ||
| Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| prcofvalg.b | ⊢ 𝐵 = (𝐷 Func 𝐸) |
| prcofvalg.n | ⊢ 𝑁 = (𝐷 Nat 𝐸) |
| prcofvala.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| prcofvala.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| prcofvala.f | ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| prcofvala | ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈(𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcofvalg.b | . 2 ⊢ 𝐵 = (𝐷 Func 𝐸) | |
| 2 | prcofvalg.n | . 2 ⊢ 𝑁 = (𝐷 Nat 𝐸) | |
| 3 | prcofvala.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑈) | |
| 4 | opex 5407 | . . 3 ⊢ 〈𝐷, 𝐸〉 ∈ V | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 〈𝐷, 𝐸〉 ∈ V) |
| 6 | prcofvala.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 7 | prcofvala.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
| 8 | op1stg 7936 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (1st ‘〈𝐷, 𝐸〉) = 𝐷) | |
| 9 | 6, 7, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → (1st ‘〈𝐷, 𝐸〉) = 𝐷) |
| 10 | op2ndg 7937 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (2nd ‘〈𝐷, 𝐸〉) = 𝐸) | |
| 11 | 6, 7, 10 | syl2anc 584 | . 2 ⊢ (𝜑 → (2nd ‘〈𝐷, 𝐸〉) = 𝐸) |
| 12 | 1, 2, 3, 5, 9, 11 | prcofvalg 49371 | 1 ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈(𝑘 ∈ 𝐵 ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ 𝐵, 𝑙 ∈ 𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 〈cop 4583 ↦ cmpt 5173 ∘ ccom 5623 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 1st c1st 7922 2nd c2nd 7923 Func cfunc 17761 ∘func ccofu 17763 Nat cnat 17851 −∘F cprcof 49368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-prcof 49369 |
| This theorem is referenced by: prcofval 49373 prcofpropd 49374 prcof1 49383 prcof2a 49384 |
| Copyright terms: Public domain | W3C validator |