Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofvala Structured version   Visualization version   GIF version

Theorem prcofvala 49372
Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.)
Hypotheses
Ref Expression
prcofvalg.b 𝐵 = (𝐷 Func 𝐸)
prcofvalg.n 𝑁 = (𝐷 Nat 𝐸)
prcofvala.d (𝜑𝐷𝑉)
prcofvala.e (𝜑𝐸𝑊)
prcofvala.f (𝜑𝐹𝑈)
Assertion
Ref Expression
prcofvala (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
Distinct variable groups:   𝐵,𝑎,𝑘,𝑙   𝐷,𝑎,𝑘,𝑙   𝐸,𝑎,𝑘,𝑙   𝐹,𝑎,𝑘,𝑙   𝜑,𝑎,𝑘,𝑙
Allowed substitution hints:   𝑈(𝑘,𝑎,𝑙)   𝑁(𝑘,𝑎,𝑙)   𝑉(𝑘,𝑎,𝑙)   𝑊(𝑘,𝑎,𝑙)

Proof of Theorem prcofvala
StepHypRef Expression
1 prcofvalg.b . 2 𝐵 = (𝐷 Func 𝐸)
2 prcofvalg.n . 2 𝑁 = (𝐷 Nat 𝐸)
3 prcofvala.f . 2 (𝜑𝐹𝑈)
4 opex 5407 . . 3 𝐷, 𝐸⟩ ∈ V
54a1i 11 . 2 (𝜑 → ⟨𝐷, 𝐸⟩ ∈ V)
6 prcofvala.d . . 3 (𝜑𝐷𝑉)
7 prcofvala.e . . 3 (𝜑𝐸𝑊)
8 op1stg 7936 . . 3 ((𝐷𝑉𝐸𝑊) → (1st ‘⟨𝐷, 𝐸⟩) = 𝐷)
96, 7, 8syl2anc 584 . 2 (𝜑 → (1st ‘⟨𝐷, 𝐸⟩) = 𝐷)
10 op2ndg 7937 . . 3 ((𝐷𝑉𝐸𝑊) → (2nd ‘⟨𝐷, 𝐸⟩) = 𝐸)
116, 7, 10syl2anc 584 . 2 (𝜑 → (2nd ‘⟨𝐷, 𝐸⟩) = 𝐸)
121, 2, 3, 5, 9, 11prcofvalg 49371 1 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  cop 4583  cmpt 5173  ccom 5623  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   −∘F cprcof 49368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-prcof 49369
This theorem is referenced by:  prcofval  49373  prcofpropd  49374  prcof1  49383  prcof2a  49384
  Copyright terms: Public domain W3C validator