Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofvala Structured version   Visualization version   GIF version

Theorem prcofvala 49488
Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.)
Hypotheses
Ref Expression
prcofvalg.b 𝐵 = (𝐷 Func 𝐸)
prcofvalg.n 𝑁 = (𝐷 Nat 𝐸)
prcofvala.d (𝜑𝐷𝑉)
prcofvala.e (𝜑𝐸𝑊)
prcofvala.f (𝜑𝐹𝑈)
Assertion
Ref Expression
prcofvala (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
Distinct variable groups:   𝐵,𝑎,𝑘,𝑙   𝐷,𝑎,𝑘,𝑙   𝐸,𝑎,𝑘,𝑙   𝐹,𝑎,𝑘,𝑙   𝜑,𝑎,𝑘,𝑙
Allowed substitution hints:   𝑈(𝑘,𝑎,𝑙)   𝑁(𝑘,𝑎,𝑙)   𝑉(𝑘,𝑎,𝑙)   𝑊(𝑘,𝑎,𝑙)

Proof of Theorem prcofvala
StepHypRef Expression
1 prcofvalg.b . 2 𝐵 = (𝐷 Func 𝐸)
2 prcofvalg.n . 2 𝑁 = (𝐷 Nat 𝐸)
3 prcofvala.f . 2 (𝜑𝐹𝑈)
4 opex 5402 . . 3 𝐷, 𝐸⟩ ∈ V
54a1i 11 . 2 (𝜑 → ⟨𝐷, 𝐸⟩ ∈ V)
6 prcofvala.d . . 3 (𝜑𝐷𝑉)
7 prcofvala.e . . 3 (𝜑𝐸𝑊)
8 op1stg 7933 . . 3 ((𝐷𝑉𝐸𝑊) → (1st ‘⟨𝐷, 𝐸⟩) = 𝐷)
96, 7, 8syl2anc 584 . 2 (𝜑 → (1st ‘⟨𝐷, 𝐸⟩) = 𝐷)
10 op2ndg 7934 . . 3 ((𝐷𝑉𝐸𝑊) → (2nd ‘⟨𝐷, 𝐸⟩) = 𝐸)
116, 7, 10syl2anc 584 . 2 (𝜑 → (2nd ‘⟨𝐷, 𝐸⟩) = 𝐸)
121, 2, 3, 5, 9, 11prcofvalg 49487 1 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cop 4579  cmpt 5170  ccom 5618  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   −∘F cprcof 49484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-prcof 49485
This theorem is referenced by:  prcofval  49489  prcofpropd  49490  prcof1  49499  prcof2a  49500
  Copyright terms: Public domain W3C validator