Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcofvala Structured version   Visualization version   GIF version

Theorem prcofvala 49359
Description: Value of the pre-composition functor. (Contributed by Zhi Wang, 2-Nov-2025.)
Hypotheses
Ref Expression
prcofvalg.b 𝐵 = (𝐷 Func 𝐸)
prcofvalg.n 𝑁 = (𝐷 Nat 𝐸)
prcofvala.d (𝜑𝐷𝑉)
prcofvala.e (𝜑𝐸𝑊)
prcofvala.f (𝜑𝐹𝑈)
Assertion
Ref Expression
prcofvala (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
Distinct variable groups:   𝐵,𝑎,𝑘,𝑙   𝐷,𝑎,𝑘,𝑙   𝐸,𝑎,𝑘,𝑙   𝐹,𝑎,𝑘,𝑙   𝜑,𝑎,𝑘,𝑙
Allowed substitution hints:   𝑈(𝑘,𝑎,𝑙)   𝑁(𝑘,𝑎,𝑙)   𝑉(𝑘,𝑎,𝑙)   𝑊(𝑘,𝑎,𝑙)

Proof of Theorem prcofvala
StepHypRef Expression
1 prcofvalg.b . 2 𝐵 = (𝐷 Func 𝐸)
2 prcofvalg.n . 2 𝑁 = (𝐷 Nat 𝐸)
3 prcofvala.f . 2 (𝜑𝐹𝑈)
4 opex 5419 . . 3 𝐷, 𝐸⟩ ∈ V
54a1i 11 . 2 (𝜑 → ⟨𝐷, 𝐸⟩ ∈ V)
6 prcofvala.d . . 3 (𝜑𝐷𝑉)
7 prcofvala.e . . 3 (𝜑𝐸𝑊)
8 op1stg 7959 . . 3 ((𝐷𝑉𝐸𝑊) → (1st ‘⟨𝐷, 𝐸⟩) = 𝐷)
96, 7, 8syl2anc 584 . 2 (𝜑 → (1st ‘⟨𝐷, 𝐸⟩) = 𝐷)
10 op2ndg 7960 . . 3 ((𝐷𝑉𝐸𝑊) → (2nd ‘⟨𝐷, 𝐸⟩) = 𝐸)
116, 7, 10syl2anc 584 . 2 (𝜑 → (2nd ‘⟨𝐷, 𝐸⟩) = 𝐸)
121, 2, 3, 5, 9, 11prcofvalg 49358 1 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(𝑘𝐵 ↦ (𝑘func 𝐹)), (𝑘𝐵, 𝑙𝐵 ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  cop 4591  cmpt 5183  ccom 5635  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946   Func cfunc 17796  func ccofu 17798   Nat cnat 17886   −∘F cprcof 49355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-prcof 49356
This theorem is referenced by:  prcofval  49360  prcofpropd  49361  prcof1  49370  prcof2a  49371
  Copyright terms: Public domain W3C validator