| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prcof2a | Structured version Visualization version GIF version | ||
| Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.) |
| Ref | Expression |
|---|---|
| prcof2a.n | ⊢ 𝑁 = (𝐷 Nat 𝐸) |
| prcof2a.k | ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) |
| prcof2a.l | ⊢ (𝜑 → 𝐿 ∈ (𝐷 Func 𝐸)) |
| prcof2a.p | ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 𝐹)) = 𝑃) |
| prcof2a.f | ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| prcof2a | ⊢ (𝜑 → (𝐾𝑃𝐿) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st ‘𝐹)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcof2a.p | . . 3 ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 𝐹)) = 𝑃) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ (𝐷 Func 𝐸) = (𝐷 Func 𝐸) | |
| 3 | prcof2a.n | . . . . . 6 ⊢ 𝑁 = (𝐷 Nat 𝐸) | |
| 4 | prcof2a.k | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) | |
| 5 | 4 | func1st2nd 49071 | . . . . . . 7 ⊢ (𝜑 → (1st ‘𝐾)(𝐷 Func 𝐸)(2nd ‘𝐾)) |
| 6 | 5 | funcrcl2 49074 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 7 | 5 | funcrcl3 49075 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 8 | prcof2a.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝑈) | |
| 9 | 2, 3, 6, 7, 8 | prcofvala 49372 | . . . . 5 ⊢ (𝜑 → (〈𝐷, 𝐸〉 −∘F 𝐹) = 〈(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) |
| 10 | 9 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 𝐹)) = (2nd ‘〈(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉)) |
| 11 | ovex 7382 | . . . . . 6 ⊢ (𝐷 Func 𝐸) ∈ V | |
| 12 | 11 | mptex 7159 | . . . . 5 ⊢ (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘 ∘func 𝐹)) ∈ V |
| 13 | 11, 11 | mpoex 8014 | . . . . 5 ⊢ (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹)))) ∈ V |
| 14 | 12, 13 | op2nd 7933 | . . . 4 ⊢ (2nd ‘〈(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘 ∘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))〉) = (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹)))) |
| 15 | 10, 14 | eqtrdi 2780 | . . 3 ⊢ (𝜑 → (2nd ‘(〈𝐷, 𝐸〉 −∘F 𝐹)) = (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))) |
| 16 | 1, 15 | eqtr3d 2766 | . 2 ⊢ (𝜑 → 𝑃 = (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))))) |
| 17 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → 𝑘 = 𝐾) | |
| 18 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → 𝑙 = 𝐿) | |
| 19 | 17, 18 | oveq12d 7367 | . . 3 ⊢ ((𝜑 ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑘𝑁𝑙) = (𝐾𝑁𝐿)) |
| 20 | 19 | mpteq1d 5182 | . 2 ⊢ ((𝜑 ∧ (𝑘 = 𝐾 ∧ 𝑙 = 𝐿)) → (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st ‘𝐹))) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st ‘𝐹)))) |
| 21 | prcof2a.l | . 2 ⊢ (𝜑 → 𝐿 ∈ (𝐷 Func 𝐸)) | |
| 22 | ovex 7382 | . . . 4 ⊢ (𝐾𝑁𝐿) ∈ V | |
| 23 | 22 | mptex 7159 | . . 3 ⊢ (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st ‘𝐹))) ∈ V |
| 24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st ‘𝐹))) ∈ V) |
| 25 | 16, 20, 4, 21, 24 | ovmpod 7501 | 1 ⊢ (𝜑 → (𝐾𝑃𝐿) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st ‘𝐹)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 〈cop 4583 ↦ cmpt 5173 ∘ ccom 5623 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 1st c1st 7922 2nd c2nd 7923 Catccat 17570 Func cfunc 17761 ∘func ccofu 17763 Nat cnat 17851 −∘F cprcof 49368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-func 17765 df-prcof 49369 |
| This theorem is referenced by: prcof21a 49386 |
| Copyright terms: Public domain | W3C validator |