Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcof2a Structured version   Visualization version   GIF version

Theorem prcof2a 49162
Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.)
Hypotheses
Ref Expression
prcof2a.n 𝑁 = (𝐷 Nat 𝐸)
prcof2a.k (𝜑𝐾 ∈ (𝐷 Func 𝐸))
prcof2a.l (𝜑𝐿 ∈ (𝐷 Func 𝐸))
prcof2a.p (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑃)
prcof2a.f (𝜑𝐹𝑈)
Assertion
Ref Expression
prcof2a (𝜑 → (𝐾𝑃𝐿) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st𝐹))))
Distinct variable groups:   𝐷,𝑎   𝐸,𝑎   𝐹,𝑎   𝐾,𝑎   𝐿,𝑎   𝑁,𝑎   𝜑,𝑎
Allowed substitution hints:   𝑃(𝑎)   𝑈(𝑎)

Proof of Theorem prcof2a
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prcof2a.p . . 3 (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑃)
2 eqid 2734 . . . . . 6 (𝐷 Func 𝐸) = (𝐷 Func 𝐸)
3 prcof2a.n . . . . . 6 𝑁 = (𝐷 Nat 𝐸)
4 prcof2a.k . . . . . . . 8 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
54func1st2nd 48936 . . . . . . 7 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
65funcrcl2 48937 . . . . . 6 (𝜑𝐷 ∈ Cat)
75funcrcl3 48938 . . . . . 6 (𝜑𝐸 ∈ Cat)
8 prcof2a.f . . . . . 6 (𝜑𝐹𝑈)
92, 3, 6, 7, 8prcofvala 49151 . . . . 5 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
109fveq2d 6877 . . . 4 (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (2nd ‘⟨(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩))
11 ovex 7433 . . . . . 6 (𝐷 Func 𝐸) ∈ V
1211mptex 7212 . . . . 5 (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)) ∈ V
1311, 11mpoex 8073 . . . . 5 (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹)))) ∈ V
1412, 13op2nd 7992 . . . 4 (2nd ‘⟨(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩) = (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))
1510, 14eqtrdi 2785 . . 3 (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
161, 15eqtr3d 2771 . 2 (𝜑𝑃 = (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
17 simprl 770 . . . 4 ((𝜑 ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → 𝑘 = 𝐾)
18 simprr 772 . . . 4 ((𝜑 ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → 𝑙 = 𝐿)
1917, 18oveq12d 7418 . . 3 ((𝜑 ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑘𝑁𝑙) = (𝐾𝑁𝐿))
2019mpteq1d 5208 . 2 ((𝜑 ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st𝐹))))
21 prcof2a.l . 2 (𝜑𝐿 ∈ (𝐷 Func 𝐸))
22 ovex 7433 . . . 4 (𝐾𝑁𝐿) ∈ V
2322mptex 7212 . . 3 (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st𝐹))) ∈ V
2423a1i 11 . 2 (𝜑 → (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st𝐹))) ∈ V)
2516, 20, 4, 21, 24ovmpod 7554 1 (𝜑 → (𝐾𝑃𝐿) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3457  cop 4605  cmpt 5199  ccom 5656  cfv 6528  (class class class)co 7400  cmpo 7402  1st c1st 7981  2nd c2nd 7982  Catccat 17663   Func cfunc 17854  func ccofu 17856   Nat cnat 17944   −∘F cprcof 49147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-func 17858  df-prcof 49148
This theorem is referenced by:  prcof21a  49164
  Copyright terms: Public domain W3C validator