Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prcof2a Structured version   Visualization version   GIF version

Theorem prcof2a 49384
Description: The morphism part of the pre-composition functor. (Contributed by Zhi Wang, 3-Nov-2025.)
Hypotheses
Ref Expression
prcof2a.n 𝑁 = (𝐷 Nat 𝐸)
prcof2a.k (𝜑𝐾 ∈ (𝐷 Func 𝐸))
prcof2a.l (𝜑𝐿 ∈ (𝐷 Func 𝐸))
prcof2a.p (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑃)
prcof2a.f (𝜑𝐹𝑈)
Assertion
Ref Expression
prcof2a (𝜑 → (𝐾𝑃𝐿) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st𝐹))))
Distinct variable groups:   𝐷,𝑎   𝐸,𝑎   𝐹,𝑎   𝐾,𝑎   𝐿,𝑎   𝑁,𝑎   𝜑,𝑎
Allowed substitution hints:   𝑃(𝑎)   𝑈(𝑎)

Proof of Theorem prcof2a
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prcof2a.p . . 3 (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = 𝑃)
2 eqid 2729 . . . . . 6 (𝐷 Func 𝐸) = (𝐷 Func 𝐸)
3 prcof2a.n . . . . . 6 𝑁 = (𝐷 Nat 𝐸)
4 prcof2a.k . . . . . . . 8 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
54func1st2nd 49071 . . . . . . 7 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
65funcrcl2 49074 . . . . . 6 (𝜑𝐷 ∈ Cat)
75funcrcl3 49075 . . . . . 6 (𝜑𝐸 ∈ Cat)
8 prcof2a.f . . . . . 6 (𝜑𝐹𝑈)
92, 3, 6, 7, 8prcofvala 49372 . . . . 5 (𝜑 → (⟨𝐷, 𝐸⟩ −∘F 𝐹) = ⟨(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩)
109fveq2d 6826 . . . 4 (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (2nd ‘⟨(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩))
11 ovex 7382 . . . . . 6 (𝐷 Func 𝐸) ∈ V
1211mptex 7159 . . . . 5 (𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)) ∈ V
1311, 11mpoex 8014 . . . . 5 (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹)))) ∈ V
1412, 13op2nd 7933 . . . 4 (2nd ‘⟨(𝑘 ∈ (𝐷 Func 𝐸) ↦ (𝑘func 𝐹)), (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))⟩) = (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))))
1510, 14eqtrdi 2780 . . 3 (𝜑 → (2nd ‘(⟨𝐷, 𝐸⟩ −∘F 𝐹)) = (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
161, 15eqtr3d 2766 . 2 (𝜑𝑃 = (𝑘 ∈ (𝐷 Func 𝐸), 𝑙 ∈ (𝐷 Func 𝐸) ↦ (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹)))))
17 simprl 770 . . . 4 ((𝜑 ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → 𝑘 = 𝐾)
18 simprr 772 . . . 4 ((𝜑 ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → 𝑙 = 𝐿)
1917, 18oveq12d 7367 . . 3 ((𝜑 ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑘𝑁𝑙) = (𝐾𝑁𝐿))
2019mpteq1d 5182 . 2 ((𝜑 ∧ (𝑘 = 𝐾𝑙 = 𝐿)) → (𝑎 ∈ (𝑘𝑁𝑙) ↦ (𝑎 ∘ (1st𝐹))) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st𝐹))))
21 prcof2a.l . 2 (𝜑𝐿 ∈ (𝐷 Func 𝐸))
22 ovex 7382 . . . 4 (𝐾𝑁𝐿) ∈ V
2322mptex 7159 . . 3 (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st𝐹))) ∈ V
2423a1i 11 . 2 (𝜑 → (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st𝐹))) ∈ V)
2516, 20, 4, 21, 24ovmpod 7501 1 (𝜑 → (𝐾𝑃𝐿) = (𝑎 ∈ (𝐾𝑁𝐿) ↦ (𝑎 ∘ (1st𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cop 4583  cmpt 5173  ccom 5623  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923  Catccat 17570   Func cfunc 17761  func ccofu 17763   Nat cnat 17851   −∘F cprcof 49368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-func 17765  df-prcof 49369
This theorem is referenced by:  prcof21a  49386
  Copyright terms: Public domain W3C validator