Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcls0 Structured version   Visualization version   GIF version

Theorem zarcls0 33837
Description: The closure of the identity ideal in the Zariski topology. Proposition 1.1.2(i) of [EGA] p. 80. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
zarcls0.1 𝑃 = (PrmIdeal‘𝑅)
zarcls0.2 0 = (0g𝑅)
Assertion
Ref Expression
zarcls0 (𝑅 ∈ Ring → (𝑉‘{ 0 }) = 𝑃)
Distinct variable groups:   0 ,𝑖,𝑗   𝑃,𝑖   𝑅,𝑖,𝑗
Allowed substitution hints:   𝑃(𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem zarcls0
StepHypRef Expression
1 zarclsx.1 . . 3 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
21a1i 11 . 2 (𝑅 ∈ Ring → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
3 zarcls0.1 . . 3 𝑃 = (PrmIdeal‘𝑅)
4 simplr 768 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑖 = { 0 })
5 simpll 766 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑅 ∈ Ring)
6 prmidlidl 33394 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
75, 6sylancom 588 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
8 eqid 2729 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
9 zarcls0.2 . . . . . . . . 9 0 = (0g𝑅)
108, 9lidl0cl 21145 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 0𝑗)
115, 7, 10syl2anc 584 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 0𝑗)
1211snssd 4763 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → { 0 } ⊆ 𝑗)
134, 12eqsstrd 3972 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑖𝑗)
1413ralrimiva 3121 . . . 4 ((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) → ∀𝑗 ∈ (PrmIdeal‘𝑅)𝑖𝑗)
15 rabid2 3430 . . . 4 ((PrmIdeal‘𝑅) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ ∀𝑗 ∈ (PrmIdeal‘𝑅)𝑖𝑗)
1614, 15sylibr 234 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) → (PrmIdeal‘𝑅) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
173, 16eqtr2id 2777 . 2 ((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = 𝑃)
188, 9lidl0 21155 . 2 (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅))
193fvexi 6840 . . 3 𝑃 ∈ V
2019a1i 11 . 2 (𝑅 ∈ Ring → 𝑃 ∈ V)
212, 17, 18, 20fvmptd 6941 1 (𝑅 ∈ Ring → (𝑉‘{ 0 }) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  wss 3905  {csn 4579  cmpt 5176  cfv 6486  0gc0g 17361  Ringcrg 20136  LIdealclidl 21131  PrmIdealcprmidl 33385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-subrg 20473  df-lmod 20783  df-lss 20853  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-prmidl 33386
This theorem is referenced by:  zartopn  33844
  Copyright terms: Public domain W3C validator