![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zarcls0 | Structured version Visualization version GIF version |
Description: The closure of the identity ideal in the Zariski topology. Proposition 1.1.2(i) of [EGA] p. 80. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
Ref | Expression |
---|---|
zarclsx.1 | ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
zarcls0.1 | ⊢ 𝑃 = (PrmIdeal‘𝑅) |
zarcls0.2 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
zarcls0 | ⊢ (𝑅 ∈ Ring → (𝑉‘{ 0 }) = 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zarclsx.1 | . . 3 ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑅 ∈ Ring → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})) |
3 | zarcls0.1 | . . 3 ⊢ 𝑃 = (PrmIdeal‘𝑅) | |
4 | simplr 767 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑖 = { 0 }) | |
5 | simpll 765 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑅 ∈ Ring) | |
6 | prmidlidl 33319 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅)) | |
7 | 5, 6 | sylancom 586 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅)) |
8 | eqid 2726 | . . . . . . . . 9 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
9 | zarcls0.2 | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
10 | 8, 9 | lidl0cl 21209 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 0 ∈ 𝑗) |
11 | 5, 7, 10 | syl2anc 582 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 0 ∈ 𝑗) |
12 | 11 | snssd 4818 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → { 0 } ⊆ 𝑗) |
13 | 4, 12 | eqsstrd 4018 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑖 ⊆ 𝑗) |
14 | 13 | ralrimiva 3136 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) → ∀𝑗 ∈ (PrmIdeal‘𝑅)𝑖 ⊆ 𝑗) |
15 | rabid2 3453 | . . . 4 ⊢ ((PrmIdeal‘𝑅) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} ↔ ∀𝑗 ∈ (PrmIdeal‘𝑅)𝑖 ⊆ 𝑗) | |
16 | 14, 15 | sylibr 233 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) → (PrmIdeal‘𝑅) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
17 | 3, 16 | eqtr2id 2779 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = 𝑃) |
18 | 8, 9 | lidl0 21219 | . 2 ⊢ (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅)) |
19 | 3 | fvexi 6915 | . . 3 ⊢ 𝑃 ∈ V |
20 | 19 | a1i 11 | . 2 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ V) |
21 | 2, 17, 18, 20 | fvmptd 7016 | 1 ⊢ (𝑅 ∈ Ring → (𝑉‘{ 0 }) = 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 {crab 3419 Vcvv 3462 ⊆ wss 3947 {csn 4633 ↦ cmpt 5236 ‘cfv 6554 0gc0g 17454 Ringcrg 20216 LIdealclidl 21195 PrmIdealcprmidl 33310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-sca 17282 df-vsca 17283 df-ip 17284 df-0g 17456 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-minusg 18932 df-sbg 18933 df-subg 19117 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-subrg 20553 df-lmod 20838 df-lss 20909 df-sra 21151 df-rgmod 21152 df-lidl 21197 df-prmidl 33311 |
This theorem is referenced by: zartopn 33690 |
Copyright terms: Public domain | W3C validator |