| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zarcls0 | Structured version Visualization version GIF version | ||
| Description: The closure of the identity ideal in the Zariski topology. Proposition 1.1.2(i) of [EGA] p. 80. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| Ref | Expression |
|---|---|
| zarclsx.1 | ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
| zarcls0.1 | ⊢ 𝑃 = (PrmIdeal‘𝑅) |
| zarcls0.2 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| zarcls0 | ⊢ (𝑅 ∈ Ring → (𝑉‘{ 0 }) = 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zarclsx.1 | . . 3 ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑅 ∈ Ring → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗})) |
| 3 | zarcls0.1 | . . 3 ⊢ 𝑃 = (PrmIdeal‘𝑅) | |
| 4 | simplr 768 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑖 = { 0 }) | |
| 5 | simpll 766 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑅 ∈ Ring) | |
| 6 | prmidlidl 33415 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅)) | |
| 7 | 5, 6 | sylancom 588 | . . . . . . . 8 ⊢ (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅)) |
| 8 | eqid 2729 | . . . . . . . . 9 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 9 | zarcls0.2 | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
| 10 | 8, 9 | lidl0cl 21130 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 0 ∈ 𝑗) |
| 11 | 5, 7, 10 | syl2anc 584 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 0 ∈ 𝑗) |
| 12 | 11 | snssd 4773 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → { 0 } ⊆ 𝑗) |
| 13 | 4, 12 | eqsstrd 3981 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑖 ⊆ 𝑗) |
| 14 | 13 | ralrimiva 3125 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) → ∀𝑗 ∈ (PrmIdeal‘𝑅)𝑖 ⊆ 𝑗) |
| 15 | rabid2 3439 | . . . 4 ⊢ ((PrmIdeal‘𝑅) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} ↔ ∀𝑗 ∈ (PrmIdeal‘𝑅)𝑖 ⊆ 𝑗) | |
| 16 | 14, 15 | sylibr 234 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) → (PrmIdeal‘𝑅) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) |
| 17 | 3, 16 | eqtr2id 2777 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = 𝑃) |
| 18 | 8, 9 | lidl0 21140 | . 2 ⊢ (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅)) |
| 19 | 3 | fvexi 6872 | . . 3 ⊢ 𝑃 ∈ V |
| 20 | 19 | a1i 11 | . 2 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ V) |
| 21 | 2, 17, 18, 20 | fvmptd 6975 | 1 ⊢ (𝑅 ∈ Ring → (𝑉‘{ 0 }) = 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 Vcvv 3447 ⊆ wss 3914 {csn 4589 ↦ cmpt 5188 ‘cfv 6511 0gc0g 17402 Ringcrg 20142 LIdealclidl 21116 PrmIdealcprmidl 33406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-subrg 20479 df-lmod 20768 df-lss 20838 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-prmidl 33407 |
| This theorem is referenced by: zartopn 33865 |
| Copyright terms: Public domain | W3C validator |