Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcls0 Structured version   Visualization version   GIF version

Theorem zarcls0 33904
Description: The closure of the identity ideal in the Zariski topology. Proposition 1.1.2(i) of [EGA] p. 80. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypotheses
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
zarcls0.1 𝑃 = (PrmIdeal‘𝑅)
zarcls0.2 0 = (0g𝑅)
Assertion
Ref Expression
zarcls0 (𝑅 ∈ Ring → (𝑉‘{ 0 }) = 𝑃)
Distinct variable groups:   0 ,𝑖,𝑗   𝑃,𝑖   𝑅,𝑖,𝑗
Allowed substitution hints:   𝑃(𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem zarcls0
StepHypRef Expression
1 zarclsx.1 . . 3 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
21a1i 11 . 2 (𝑅 ∈ Ring → 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}))
3 zarcls0.1 . . 3 𝑃 = (PrmIdeal‘𝑅)
4 simplr 768 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑖 = { 0 })
5 simpll 766 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑅 ∈ Ring)
6 prmidlidl 33464 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
75, 6sylancom 588 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑗 ∈ (LIdeal‘𝑅))
8 eqid 2736 . . . . . . . . 9 (LIdeal‘𝑅) = (LIdeal‘𝑅)
9 zarcls0.2 . . . . . . . . 9 0 = (0g𝑅)
108, 9lidl0cl 21186 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑗 ∈ (LIdeal‘𝑅)) → 0𝑗)
115, 7, 10syl2anc 584 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 0𝑗)
1211snssd 4790 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → { 0 } ⊆ 𝑗)
134, 12eqsstrd 3998 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → 𝑖𝑗)
1413ralrimiva 3133 . . . 4 ((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) → ∀𝑗 ∈ (PrmIdeal‘𝑅)𝑖𝑗)
15 rabid2 3454 . . . 4 ((PrmIdeal‘𝑅) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ ∀𝑗 ∈ (PrmIdeal‘𝑅)𝑖𝑗)
1614, 15sylibr 234 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) → (PrmIdeal‘𝑅) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
173, 16eqtr2id 2784 . 2 ((𝑅 ∈ Ring ∧ 𝑖 = { 0 }) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = 𝑃)
188, 9lidl0 21196 . 2 (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅))
193fvexi 6895 . . 3 𝑃 ∈ V
2019a1i 11 . 2 (𝑅 ∈ Ring → 𝑃 ∈ V)
212, 17, 18, 20fvmptd 6998 1 (𝑅 ∈ Ring → (𝑉‘{ 0 }) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  {crab 3420  Vcvv 3464  wss 3931  {csn 4606  cmpt 5206  cfv 6536  0gc0g 17458  Ringcrg 20198  LIdealclidl 21172  PrmIdealcprmidl 33455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-subrg 20535  df-lmod 20824  df-lss 20894  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-prmidl 33456
This theorem is referenced by:  zartopn  33911
  Copyright terms: Public domain W3C validator