![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldm | Structured version Visualization version GIF version |
Description: An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
reldm | ⊢ (Rel 𝐴 → dom 𝐴 = ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releldm2 7451 | . . 3 ⊢ (Rel 𝐴 → (𝑦 ∈ dom 𝐴 ↔ ∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦)) | |
2 | fvex 6422 | . . . . . 6 ⊢ (1st ‘𝑥) ∈ V | |
3 | eqid 2797 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) | |
4 | 2, 3 | fnmpti 6231 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) Fn 𝐴 |
5 | fvelrnb 6466 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) Fn 𝐴 → (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) ↔ ∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)) ↔ ∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦) |
7 | fveq2 6409 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → (1st ‘𝑥) = (1st ‘𝑧)) | |
8 | fvex 6422 | . . . . . . . 8 ⊢ (1st ‘𝑧) ∈ V | |
9 | 7, 3, 8 | fvmpt 6505 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = (1st ‘𝑧)) |
10 | 9 | eqeq1d 2799 | . . . . . 6 ⊢ (𝑧 ∈ 𝐴 → (((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦 ↔ (1st ‘𝑧) = 𝑦)) |
11 | 10 | rexbiia 3219 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦 ↔ ∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦) |
12 | 11 | a1i 11 | . . . 4 ⊢ (Rel 𝐴 → (∃𝑧 ∈ 𝐴 ((𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))‘𝑧) = 𝑦 ↔ ∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦)) |
13 | 6, 12 | syl5rbb 276 | . . 3 ⊢ (Rel 𝐴 → (∃𝑧 ∈ 𝐴 (1st ‘𝑧) = 𝑦 ↔ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)))) |
14 | 1, 13 | bitrd 271 | . 2 ⊢ (Rel 𝐴 → (𝑦 ∈ dom 𝐴 ↔ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥)))) |
15 | 14 | eqrdv 2795 | 1 ⊢ (Rel 𝐴 → dom 𝐴 = ran (𝑥 ∈ 𝐴 ↦ (1st ‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 ∃wrex 3088 ↦ cmpt 4920 dom cdm 5310 ran crn 5311 Rel wrel 5315 Fn wfn 6094 ‘cfv 6099 1st c1st 7397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-iota 6062 df-fun 6101 df-fn 6102 df-fv 6107 df-1st 7399 df-2nd 7400 |
This theorem is referenced by: fidomdm 8483 dmct 9632 |
Copyright terms: Public domain | W3C validator |