Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem1 Structured version   Visualization version   GIF version

Theorem cvmliftlem1 35317
Description: Lemma for cvmlift 35331. In cvmliftlem15 35330, we picked an 𝑁 large enough so that the sections (𝐺 “ [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁]) are all contained in an even covering, and the function 𝑇 enumerates these even coverings. So 1st ‘(𝑇𝑀) is a neighborhood of (𝐺 “ [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁]), and 2nd ‘(𝑇𝑀) is an even covering of 1st ‘(𝑇𝑀), which is to say a disjoint union of open sets in 𝐶 whose image is 1st ‘(𝑇𝑀). (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem1.m ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
Assertion
Ref Expression
cvmliftlem1 ((𝜑𝜓) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
Distinct variable groups:   𝑣,𝐵   𝑗,𝑘,𝑠,𝑢,𝑣,𝐹   𝑗,𝑀,𝑘,𝑠,𝑢,𝑣   𝑃,𝑘,𝑢,𝑣   𝐶,𝑗,𝑘,𝑠,𝑢,𝑣   𝜑,𝑗,𝑠   𝑘,𝑁,𝑢,𝑣   𝑆,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝑋   𝑗,𝐺,𝑘,𝑠,𝑢,𝑣   𝑇,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝐽,𝑘,𝑠,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘)   𝜓(𝑣,𝑢,𝑗,𝑘,𝑠)   𝐵(𝑢,𝑗,𝑘,𝑠)   𝑃(𝑗,𝑠)   𝐿(𝑣,𝑢,𝑗,𝑘,𝑠)   𝑁(𝑗,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmliftlem1
StepHypRef Expression
1 relxp 5634 . . . . . 6 Rel ({𝑗} × (𝑆𝑗))
21rgenw 3051 . . . . 5 𝑗𝐽 Rel ({𝑗} × (𝑆𝑗))
3 reliun 5756 . . . . 5 (Rel 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ↔ ∀𝑗𝐽 Rel ({𝑗} × (𝑆𝑗)))
42, 3mpbir 231 . . . 4 Rel 𝑗𝐽 ({𝑗} × (𝑆𝑗))
5 cvmliftlem.t . . . . . 6 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
65adantr 480 . . . . 5 ((𝜑𝜓) → 𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
7 cvmliftlem1.m . . . . 5 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
86, 7ffvelcdmd 7018 . . . 4 ((𝜑𝜓) → (𝑇𝑀) ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
9 1st2nd 7971 . . . 4 ((Rel 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ (𝑇𝑀) ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗))) → (𝑇𝑀) = ⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩)
104, 8, 9sylancr 587 . . 3 ((𝜑𝜓) → (𝑇𝑀) = ⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩)
1110, 8eqeltrrd 2832 . 2 ((𝜑𝜓) → ⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩ ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
12 fveq2 6822 . . . 4 (𝑗 = (1st ‘(𝑇𝑀)) → (𝑆𝑗) = (𝑆‘(1st ‘(𝑇𝑀))))
1312opeliunxp2 5778 . . 3 (⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩ ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ↔ ((1st ‘(𝑇𝑀)) ∈ 𝐽 ∧ (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀)))))
1413simprbi 496 . 2 (⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩ ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
1511, 14syl 17 1 ((𝜑𝜓) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  cdif 3899  cin 3901  wss 3902  c0 4283  𝒫 cpw 4550  {csn 4576  cop 4582   cuni 4859   ciun 4941  cmpt 5172   × cxp 5614  ccnv 5615  ran crn 5617  cres 5618  cima 5619  Rel wrel 5621  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  0cc0 11003  1c1 11004  cmin 11341   / cdiv 11771  cn 12122  (,)cioo 13242  [,]cicc 13245  ...cfz 13404  t crest 17321  topGenctg 17338   Cn ccn 23137  Homeochmeo 23666  IIcii 24793   CovMap ccvm 35287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-1st 7921  df-2nd 7922
This theorem is referenced by:  cvmliftlem6  35322  cvmliftlem8  35324  cvmliftlem9  35325
  Copyright terms: Public domain W3C validator