![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem1 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 35267. In cvmliftlem15 35266, we picked an 𝑁 large enough so that the sections (𝐺 “ [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁]) are all contained in an even covering, and the function 𝑇 enumerates these even coverings. So 1st ‘(𝑇‘𝑀) is a neighborhood of (𝐺 “ [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁]), and 2nd ‘(𝑇‘𝑀) is an even covering of 1st ‘(𝑇‘𝑀), which is to say a disjoint union of open sets in 𝐶 whose image is 1st ‘(𝑇‘𝑀). (Contributed by Mario Carneiro, 14-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
cvmliftlem1.m | ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) |
Ref | Expression |
---|---|
cvmliftlem1 | ⊢ ((𝜑 ∧ 𝜓) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5718 | . . . . . 6 ⊢ Rel ({𝑗} × (𝑆‘𝑗)) | |
2 | 1 | rgenw 3071 | . . . . 5 ⊢ ∀𝑗 ∈ 𝐽 Rel ({𝑗} × (𝑆‘𝑗)) |
3 | reliun 5840 | . . . . 5 ⊢ (Rel ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ↔ ∀𝑗 ∈ 𝐽 Rel ({𝑗} × (𝑆‘𝑗))) | |
4 | 2, 3 | mpbir 231 | . . . 4 ⊢ Rel ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) |
5 | cvmliftlem.t | . . . . . 6 ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) | |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
7 | cvmliftlem1.m | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) | |
8 | 6, 7 | ffvelcdmd 7119 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝑇‘𝑀) ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
9 | 1st2nd 8080 | . . . 4 ⊢ ((Rel ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ (𝑇‘𝑀) ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) → (𝑇‘𝑀) = 〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉) | |
10 | 4, 8, 9 | sylancr 586 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑇‘𝑀) = 〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉) |
11 | 10, 8 | eqeltrrd 2845 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉 ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
12 | fveq2 6920 | . . . 4 ⊢ (𝑗 = (1st ‘(𝑇‘𝑀)) → (𝑆‘𝑗) = (𝑆‘(1st ‘(𝑇‘𝑀)))) | |
13 | 12 | opeliunxp2 5863 | . . 3 ⊢ (〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉 ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ↔ ((1st ‘(𝑇‘𝑀)) ∈ 𝐽 ∧ (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀))))) |
14 | 13 | simprbi 496 | . 2 ⊢ (〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉 ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) |
15 | 11, 14 | syl 17 | 1 ⊢ ((𝜑 ∧ 𝜓) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ∖ cdif 3973 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 〈cop 4654 ∪ cuni 4931 ∪ ciun 5015 ↦ cmpt 5249 × cxp 5698 ◡ccnv 5699 ran crn 5701 ↾ cres 5702 “ cima 5703 Rel wrel 5705 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 2nd c2nd 8029 0cc0 11184 1c1 11185 − cmin 11520 / cdiv 11947 ℕcn 12293 (,)cioo 13407 [,]cicc 13410 ...cfz 13567 ↾t crest 17480 topGenctg 17497 Cn ccn 23253 Homeochmeo 23782 IIcii 24920 CovMap ccvm 35223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: cvmliftlem6 35258 cvmliftlem8 35260 cvmliftlem9 35261 |
Copyright terms: Public domain | W3C validator |