![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem1 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 34359. In cvmliftlem15 34358, we picked an π large enough so that the sections (πΊ β [(π β 1) / π, π / π]) are all contained in an even covering, and the function π enumerates these even coverings. So 1st β(πβπ) is a neighborhood of (πΊ β [(π β 1) / π, π / π]), and 2nd β(πβπ) is an even covering of 1st β(πβπ), which is to say a disjoint union of open sets in πΆ whose image is 1st β(πβπ). (Contributed by Mario Carneiro, 14-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | β’ π = (π β π½ β¦ {π β (π« πΆ β {β }) β£ (βͺ π = (β‘πΉ β π) β§ βπ’ β π (βπ£ β (π β {π’})(π’ β© π£) = β β§ (πΉ βΎ π’) β ((πΆ βΎt π’)Homeo(π½ βΎt π))))}) |
cvmliftlem.b | β’ π΅ = βͺ πΆ |
cvmliftlem.x | β’ π = βͺ π½ |
cvmliftlem.f | β’ (π β πΉ β (πΆ CovMap π½)) |
cvmliftlem.g | β’ (π β πΊ β (II Cn π½)) |
cvmliftlem.p | β’ (π β π β π΅) |
cvmliftlem.e | β’ (π β (πΉβπ) = (πΊβ0)) |
cvmliftlem.n | β’ (π β π β β) |
cvmliftlem.t | β’ (π β π:(1...π)βΆβͺ π β π½ ({π} Γ (πβπ))) |
cvmliftlem.a | β’ (π β βπ β (1...π)(πΊ β (((π β 1) / π)[,](π / π))) β (1st β(πβπ))) |
cvmliftlem.l | β’ πΏ = (topGenβran (,)) |
cvmliftlem1.m | β’ ((π β§ π) β π β (1...π)) |
Ref | Expression |
---|---|
cvmliftlem1 | β’ ((π β§ π) β (2nd β(πβπ)) β (πβ(1st β(πβπ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5694 | . . . . . 6 β’ Rel ({π} Γ (πβπ)) | |
2 | 1 | rgenw 3065 | . . . . 5 β’ βπ β π½ Rel ({π} Γ (πβπ)) |
3 | reliun 5816 | . . . . 5 β’ (Rel βͺ π β π½ ({π} Γ (πβπ)) β βπ β π½ Rel ({π} Γ (πβπ))) | |
4 | 2, 3 | mpbir 230 | . . . 4 β’ Rel βͺ π β π½ ({π} Γ (πβπ)) |
5 | cvmliftlem.t | . . . . . 6 β’ (π β π:(1...π)βΆβͺ π β π½ ({π} Γ (πβπ))) | |
6 | 5 | adantr 481 | . . . . 5 β’ ((π β§ π) β π:(1...π)βΆβͺ π β π½ ({π} Γ (πβπ))) |
7 | cvmliftlem1.m | . . . . 5 β’ ((π β§ π) β π β (1...π)) | |
8 | 6, 7 | ffvelcdmd 7087 | . . . 4 β’ ((π β§ π) β (πβπ) β βͺ π β π½ ({π} Γ (πβπ))) |
9 | 1st2nd 8027 | . . . 4 β’ ((Rel βͺ π β π½ ({π} Γ (πβπ)) β§ (πβπ) β βͺ π β π½ ({π} Γ (πβπ))) β (πβπ) = β¨(1st β(πβπ)), (2nd β(πβπ))β©) | |
10 | 4, 8, 9 | sylancr 587 | . . 3 β’ ((π β§ π) β (πβπ) = β¨(1st β(πβπ)), (2nd β(πβπ))β©) |
11 | 10, 8 | eqeltrrd 2834 | . 2 β’ ((π β§ π) β β¨(1st β(πβπ)), (2nd β(πβπ))β© β βͺ π β π½ ({π} Γ (πβπ))) |
12 | fveq2 6891 | . . . 4 β’ (π = (1st β(πβπ)) β (πβπ) = (πβ(1st β(πβπ)))) | |
13 | 12 | opeliunxp2 5838 | . . 3 β’ (β¨(1st β(πβπ)), (2nd β(πβπ))β© β βͺ π β π½ ({π} Γ (πβπ)) β ((1st β(πβπ)) β π½ β§ (2nd β(πβπ)) β (πβ(1st β(πβπ))))) |
14 | 13 | simprbi 497 | . 2 β’ (β¨(1st β(πβπ)), (2nd β(πβπ))β© β βͺ π β π½ ({π} Γ (πβπ)) β (2nd β(πβπ)) β (πβ(1st β(πβπ)))) |
15 | 11, 14 | syl 17 | 1 β’ ((π β§ π) β (2nd β(πβπ)) β (πβ(1st β(πβπ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 {crab 3432 β cdif 3945 β© cin 3947 β wss 3948 β c0 4322 π« cpw 4602 {csn 4628 β¨cop 4634 βͺ cuni 4908 βͺ ciun 4997 β¦ cmpt 5231 Γ cxp 5674 β‘ccnv 5675 ran crn 5677 βΎ cres 5678 β cima 5679 Rel wrel 5681 βΆwf 6539 βcfv 6543 (class class class)co 7411 1st c1st 7975 2nd c2nd 7976 0cc0 11112 1c1 11113 β cmin 11446 / cdiv 11873 βcn 12214 (,)cioo 13326 [,]cicc 13329 ...cfz 13486 βΎt crest 17368 topGenctg 17385 Cn ccn 22735 Homeochmeo 23264 IIcii 24398 CovMap ccvm 34315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-1st 7977 df-2nd 7978 |
This theorem is referenced by: cvmliftlem6 34350 cvmliftlem8 34352 cvmliftlem9 34353 |
Copyright terms: Public domain | W3C validator |