![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem1 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 35284. In cvmliftlem15 35283, we picked an 𝑁 large enough so that the sections (𝐺 “ [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁]) are all contained in an even covering, and the function 𝑇 enumerates these even coverings. So 1st ‘(𝑇‘𝑀) is a neighborhood of (𝐺 “ [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁]), and 2nd ‘(𝑇‘𝑀) is an even covering of 1st ‘(𝑇‘𝑀), which is to say a disjoint union of open sets in 𝐶 whose image is 1st ‘(𝑇‘𝑀). (Contributed by Mario Carneiro, 14-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
cvmliftlem1.m | ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) |
Ref | Expression |
---|---|
cvmliftlem1 | ⊢ ((𝜑 ∧ 𝜓) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5707 | . . . . . 6 ⊢ Rel ({𝑗} × (𝑆‘𝑗)) | |
2 | 1 | rgenw 3063 | . . . . 5 ⊢ ∀𝑗 ∈ 𝐽 Rel ({𝑗} × (𝑆‘𝑗)) |
3 | reliun 5829 | . . . . 5 ⊢ (Rel ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ↔ ∀𝑗 ∈ 𝐽 Rel ({𝑗} × (𝑆‘𝑗))) | |
4 | 2, 3 | mpbir 231 | . . . 4 ⊢ Rel ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) |
5 | cvmliftlem.t | . . . . . 6 ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) | |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
7 | cvmliftlem1.m | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) | |
8 | 6, 7 | ffvelcdmd 7105 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝑇‘𝑀) ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
9 | 1st2nd 8063 | . . . 4 ⊢ ((Rel ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ (𝑇‘𝑀) ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) → (𝑇‘𝑀) = 〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉) | |
10 | 4, 8, 9 | sylancr 587 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑇‘𝑀) = 〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉) |
11 | 10, 8 | eqeltrrd 2840 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉 ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
12 | fveq2 6907 | . . . 4 ⊢ (𝑗 = (1st ‘(𝑇‘𝑀)) → (𝑆‘𝑗) = (𝑆‘(1st ‘(𝑇‘𝑀)))) | |
13 | 12 | opeliunxp2 5852 | . . 3 ⊢ (〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉 ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ↔ ((1st ‘(𝑇‘𝑀)) ∈ 𝐽 ∧ (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀))))) |
14 | 13 | simprbi 496 | . 2 ⊢ (〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉 ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) |
15 | 11, 14 | syl 17 | 1 ⊢ ((𝜑 ∧ 𝜓) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 ∖ cdif 3960 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 {csn 4631 〈cop 4637 ∪ cuni 4912 ∪ ciun 4996 ↦ cmpt 5231 × cxp 5687 ◡ccnv 5688 ran crn 5690 ↾ cres 5691 “ cima 5692 Rel wrel 5694 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 1st c1st 8011 2nd c2nd 8012 0cc0 11153 1c1 11154 − cmin 11490 / cdiv 11918 ℕcn 12264 (,)cioo 13384 [,]cicc 13387 ...cfz 13544 ↾t crest 17467 topGenctg 17484 Cn ccn 23248 Homeochmeo 23777 IIcii 24915 CovMap ccvm 35240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-1st 8013 df-2nd 8014 |
This theorem is referenced by: cvmliftlem6 35275 cvmliftlem8 35277 cvmliftlem9 35278 |
Copyright terms: Public domain | W3C validator |