Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem1 Structured version   Visualization version   GIF version

Theorem cvmliftlem1 35279
Description: Lemma for cvmlift 35293. In cvmliftlem15 35292, we picked an 𝑁 large enough so that the sections (𝐺 “ [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁]) are all contained in an even covering, and the function 𝑇 enumerates these even coverings. So 1st ‘(𝑇𝑀) is a neighborhood of (𝐺 “ [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁]), and 2nd ‘(𝑇𝑀) is an even covering of 1st ‘(𝑇𝑀), which is to say a disjoint union of open sets in 𝐶 whose image is 1st ‘(𝑇𝑀). (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem1.m ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
Assertion
Ref Expression
cvmliftlem1 ((𝜑𝜓) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
Distinct variable groups:   𝑣,𝐵   𝑗,𝑘,𝑠,𝑢,𝑣,𝐹   𝑗,𝑀,𝑘,𝑠,𝑢,𝑣   𝑃,𝑘,𝑢,𝑣   𝐶,𝑗,𝑘,𝑠,𝑢,𝑣   𝜑,𝑗,𝑠   𝑘,𝑁,𝑢,𝑣   𝑆,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝑋   𝑗,𝐺,𝑘,𝑠,𝑢,𝑣   𝑇,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝐽,𝑘,𝑠,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘)   𝜓(𝑣,𝑢,𝑗,𝑘,𝑠)   𝐵(𝑢,𝑗,𝑘,𝑠)   𝑃(𝑗,𝑠)   𝐿(𝑣,𝑢,𝑗,𝑘,𝑠)   𝑁(𝑗,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmliftlem1
StepHypRef Expression
1 relxp 5659 . . . . . 6 Rel ({𝑗} × (𝑆𝑗))
21rgenw 3049 . . . . 5 𝑗𝐽 Rel ({𝑗} × (𝑆𝑗))
3 reliun 5782 . . . . 5 (Rel 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ↔ ∀𝑗𝐽 Rel ({𝑗} × (𝑆𝑗)))
42, 3mpbir 231 . . . 4 Rel 𝑗𝐽 ({𝑗} × (𝑆𝑗))
5 cvmliftlem.t . . . . . 6 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
65adantr 480 . . . . 5 ((𝜑𝜓) → 𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
7 cvmliftlem1.m . . . . 5 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
86, 7ffvelcdmd 7060 . . . 4 ((𝜑𝜓) → (𝑇𝑀) ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
9 1st2nd 8021 . . . 4 ((Rel 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ (𝑇𝑀) ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗))) → (𝑇𝑀) = ⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩)
104, 8, 9sylancr 587 . . 3 ((𝜑𝜓) → (𝑇𝑀) = ⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩)
1110, 8eqeltrrd 2830 . 2 ((𝜑𝜓) → ⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩ ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
12 fveq2 6861 . . . 4 (𝑗 = (1st ‘(𝑇𝑀)) → (𝑆𝑗) = (𝑆‘(1st ‘(𝑇𝑀))))
1312opeliunxp2 5805 . . 3 (⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩ ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ↔ ((1st ‘(𝑇𝑀)) ∈ 𝐽 ∧ (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀)))))
1413simprbi 496 . 2 (⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩ ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
1511, 14syl 17 1 ((𝜑𝜓) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  cdif 3914  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592  cop 4598   cuni 4874   ciun 4958  cmpt 5191   × cxp 5639  ccnv 5640  ran crn 5642  cres 5643  cima 5644  Rel wrel 5646  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  0cc0 11075  1c1 11076  cmin 11412   / cdiv 11842  cn 12193  (,)cioo 13313  [,]cicc 13316  ...cfz 13475  t crest 17390  topGenctg 17407   Cn ccn 23118  Homeochmeo 23647  IIcii 24775   CovMap ccvm 35249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-1st 7971  df-2nd 7972
This theorem is referenced by:  cvmliftlem6  35284  cvmliftlem8  35286  cvmliftlem9  35287
  Copyright terms: Public domain W3C validator