Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem1 Structured version   Visualization version   GIF version

Theorem cvmliftlem1 35253
Description: Lemma for cvmlift 35267. In cvmliftlem15 35266, we picked an 𝑁 large enough so that the sections (𝐺 “ [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁]) are all contained in an even covering, and the function 𝑇 enumerates these even coverings. So 1st ‘(𝑇𝑀) is a neighborhood of (𝐺 “ [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁]), and 2nd ‘(𝑇𝑀) is an even covering of 1st ‘(𝑇𝑀), which is to say a disjoint union of open sets in 𝐶 whose image is 1st ‘(𝑇𝑀). (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem1.m ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
Assertion
Ref Expression
cvmliftlem1 ((𝜑𝜓) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
Distinct variable groups:   𝑣,𝐵   𝑗,𝑘,𝑠,𝑢,𝑣,𝐹   𝑗,𝑀,𝑘,𝑠,𝑢,𝑣   𝑃,𝑘,𝑢,𝑣   𝐶,𝑗,𝑘,𝑠,𝑢,𝑣   𝜑,𝑗,𝑠   𝑘,𝑁,𝑢,𝑣   𝑆,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝑋   𝑗,𝐺,𝑘,𝑠,𝑢,𝑣   𝑇,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝐽,𝑘,𝑠,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘)   𝜓(𝑣,𝑢,𝑗,𝑘,𝑠)   𝐵(𝑢,𝑗,𝑘,𝑠)   𝑃(𝑗,𝑠)   𝐿(𝑣,𝑢,𝑗,𝑘,𝑠)   𝑁(𝑗,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmliftlem1
StepHypRef Expression
1 relxp 5718 . . . . . 6 Rel ({𝑗} × (𝑆𝑗))
21rgenw 3071 . . . . 5 𝑗𝐽 Rel ({𝑗} × (𝑆𝑗))
3 reliun 5840 . . . . 5 (Rel 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ↔ ∀𝑗𝐽 Rel ({𝑗} × (𝑆𝑗)))
42, 3mpbir 231 . . . 4 Rel 𝑗𝐽 ({𝑗} × (𝑆𝑗))
5 cvmliftlem.t . . . . . 6 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
65adantr 480 . . . . 5 ((𝜑𝜓) → 𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
7 cvmliftlem1.m . . . . 5 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
86, 7ffvelcdmd 7119 . . . 4 ((𝜑𝜓) → (𝑇𝑀) ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
9 1st2nd 8080 . . . 4 ((Rel 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ (𝑇𝑀) ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗))) → (𝑇𝑀) = ⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩)
104, 8, 9sylancr 586 . . 3 ((𝜑𝜓) → (𝑇𝑀) = ⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩)
1110, 8eqeltrrd 2845 . 2 ((𝜑𝜓) → ⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩ ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
12 fveq2 6920 . . . 4 (𝑗 = (1st ‘(𝑇𝑀)) → (𝑆𝑗) = (𝑆‘(1st ‘(𝑇𝑀))))
1312opeliunxp2 5863 . . 3 (⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩ ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ↔ ((1st ‘(𝑇𝑀)) ∈ 𝐽 ∧ (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀)))))
1413simprbi 496 . 2 (⟨(1st ‘(𝑇𝑀)), (2nd ‘(𝑇𝑀))⟩ ∈ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
1511, 14syl 17 1 ((𝜑𝜓) → (2nd ‘(𝑇𝑀)) ∈ (𝑆‘(1st ‘(𝑇𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  cdif 3973  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648  cop 4654   cuni 4931   ciun 5015  cmpt 5249   × cxp 5698  ccnv 5699  ran crn 5701  cres 5702  cima 5703  Rel wrel 5705  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  0cc0 11184  1c1 11185  cmin 11520   / cdiv 11947  cn 12293  (,)cioo 13407  [,]cicc 13410  ...cfz 13567  t crest 17480  topGenctg 17497   Cn ccn 23253  Homeochmeo 23782  IIcii 24920   CovMap ccvm 35223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-1st 8030  df-2nd 8031
This theorem is referenced by:  cvmliftlem6  35258  cvmliftlem8  35260  cvmliftlem9  35261
  Copyright terms: Public domain W3C validator