Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem1 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 32974. In cvmliftlem15 32973, we picked an 𝑁 large enough so that the sections (𝐺 “ [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁]) are all contained in an even covering, and the function 𝑇 enumerates these even coverings. So 1st ‘(𝑇‘𝑀) is a neighborhood of (𝐺 “ [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁]), and 2nd ‘(𝑇‘𝑀) is an even covering of 1st ‘(𝑇‘𝑀), which is to say a disjoint union of open sets in 𝐶 whose image is 1st ‘(𝑇‘𝑀). (Contributed by Mario Carneiro, 14-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
cvmliftlem1.m | ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) |
Ref | Expression |
---|---|
cvmliftlem1 | ⊢ ((𝜑 ∧ 𝜓) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5569 | . . . . . 6 ⊢ Rel ({𝑗} × (𝑆‘𝑗)) | |
2 | 1 | rgenw 3073 | . . . . 5 ⊢ ∀𝑗 ∈ 𝐽 Rel ({𝑗} × (𝑆‘𝑗)) |
3 | reliun 5686 | . . . . 5 ⊢ (Rel ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ↔ ∀𝑗 ∈ 𝐽 Rel ({𝑗} × (𝑆‘𝑗))) | |
4 | 2, 3 | mpbir 234 | . . . 4 ⊢ Rel ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) |
5 | cvmliftlem.t | . . . . . 6 ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) | |
6 | 5 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
7 | cvmliftlem1.m | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) | |
8 | 6, 7 | ffvelrnd 6905 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝑇‘𝑀) ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
9 | 1st2nd 7810 | . . . 4 ⊢ ((Rel ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ∧ (𝑇‘𝑀) ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) → (𝑇‘𝑀) = 〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉) | |
10 | 4, 8, 9 | sylancr 590 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑇‘𝑀) = 〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉) |
11 | 10, 8 | eqeltrrd 2839 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉 ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
12 | fveq2 6717 | . . . 4 ⊢ (𝑗 = (1st ‘(𝑇‘𝑀)) → (𝑆‘𝑗) = (𝑆‘(1st ‘(𝑇‘𝑀)))) | |
13 | 12 | opeliunxp2 5707 | . . 3 ⊢ (〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉 ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) ↔ ((1st ‘(𝑇‘𝑀)) ∈ 𝐽 ∧ (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀))))) |
14 | 13 | simprbi 500 | . 2 ⊢ (〈(1st ‘(𝑇‘𝑀)), (2nd ‘(𝑇‘𝑀))〉 ∈ ∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗)) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) |
15 | 11, 14 | syl 17 | 1 ⊢ ((𝜑 ∧ 𝜓) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 {crab 3065 ∖ cdif 3863 ∩ cin 3865 ⊆ wss 3866 ∅c0 4237 𝒫 cpw 4513 {csn 4541 〈cop 4547 ∪ cuni 4819 ∪ ciun 4904 ↦ cmpt 5135 × cxp 5549 ◡ccnv 5550 ran crn 5552 ↾ cres 5553 “ cima 5554 Rel wrel 5556 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 1st c1st 7759 2nd c2nd 7760 0cc0 10729 1c1 10730 − cmin 11062 / cdiv 11489 ℕcn 11830 (,)cioo 12935 [,]cicc 12938 ...cfz 13095 ↾t crest 16925 topGenctg 16942 Cn ccn 22121 Homeochmeo 22650 IIcii 23772 CovMap ccvm 32930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-1st 7761 df-2nd 7762 |
This theorem is referenced by: cvmliftlem6 32965 cvmliftlem8 32967 cvmliftlem9 32968 |
Copyright terms: Public domain | W3C validator |