| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isofr | Structured version Visualization version GIF version | ||
| Description: An isomorphism preserves well-foundedness. Proposition 6.32(1) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| isofr | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isocnv 7308 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴)) | |
| 2 | id 22 | . . . 4 ⊢ (◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → ◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴)) | |
| 3 | isof1o 7301 | . . . . 5 ⊢ (◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → ◡𝐻:𝐵–1-1-onto→𝐴) | |
| 4 | f1ofun 6805 | . . . . 5 ⊢ (◡𝐻:𝐵–1-1-onto→𝐴 → Fun ◡𝐻) | |
| 5 | vex 3454 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 6 | 5 | funimaex 6608 | . . . . 5 ⊢ (Fun ◡𝐻 → (◡𝐻 “ 𝑥) ∈ V) |
| 7 | 3, 4, 6 | 3syl 18 | . . . 4 ⊢ (◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → (◡𝐻 “ 𝑥) ∈ V) |
| 8 | 2, 7 | isofrlem 7318 | . . 3 ⊢ (◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → (𝑅 Fr 𝐴 → 𝑆 Fr 𝐵)) |
| 9 | 1, 8 | syl 17 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴 → 𝑆 Fr 𝐵)) |
| 10 | id 22 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
| 11 | isof1o 7301 | . . . 4 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) | |
| 12 | f1ofun 6805 | . . . 4 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → Fun 𝐻) | |
| 13 | 5 | funimaex 6608 | . . . 4 ⊢ (Fun 𝐻 → (𝐻 “ 𝑥) ∈ V) |
| 14 | 11, 12, 13 | 3syl 18 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻 “ 𝑥) ∈ V) |
| 15 | 10, 14 | isofrlem 7318 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
| 16 | 9, 15 | impbid 212 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3450 Fr wfr 5591 ◡ccnv 5640 “ cima 5644 Fun wfun 6508 –1-1-onto→wf1o 6513 Isom wiso 6515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-fr 5594 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 |
| This theorem is referenced by: isowe 7327 wofib 9505 isfin1-4 10347 |
| Copyright terms: Public domain | W3C validator |