MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofr Structured version   Visualization version   GIF version

Theorem isofr 7362
Description: An isomorphism preserves well-foundedness. Proposition 6.32(1) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
isofr (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴𝑆 Fr 𝐵))

Proof of Theorem isofr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isocnv 7350 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
2 id 22 . . . 4 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
3 isof1o 7343 . . . . 5 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → 𝐻:𝐵1-1-onto𝐴)
4 f1ofun 6851 . . . . 5 (𝐻:𝐵1-1-onto𝐴 → Fun 𝐻)
5 vex 3482 . . . . . 6 𝑥 ∈ V
65funimaex 6656 . . . . 5 (Fun 𝐻 → (𝐻𝑥) ∈ V)
73, 4, 63syl 18 . . . 4 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → (𝐻𝑥) ∈ V)
82, 7isofrlem 7360 . . 3 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → (𝑅 Fr 𝐴𝑆 Fr 𝐵))
91, 8syl 17 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴𝑆 Fr 𝐵))
10 id 22 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
11 isof1o 7343 . . . 4 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
12 f1ofun 6851 . . . 4 (𝐻:𝐴1-1-onto𝐵 → Fun 𝐻)
135funimaex 6656 . . . 4 (Fun 𝐻 → (𝐻𝑥) ∈ V)
1411, 12, 133syl 18 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻𝑥) ∈ V)
1510, 14isofrlem 7360 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
169, 15impbid 212 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴𝑆 Fr 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2106  Vcvv 3478   Fr wfr 5638  ccnv 5688  cima 5692  Fun wfun 6557  1-1-ontowf1o 6562   Isom wiso 6564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-fr 5641  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572
This theorem is referenced by:  isowe  7369  wofib  9583  isfin1-4  10425
  Copyright terms: Public domain W3C validator