![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isofr | Structured version Visualization version GIF version |
Description: An isomorphism preserves well-foundedness. Proposition 6.32(1) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.) |
Ref | Expression |
---|---|
isofr | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isocnv 6904 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴)) | |
2 | id 22 | . . . 4 ⊢ (◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → ◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴)) | |
3 | isof1o 6897 | . . . . 5 ⊢ (◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → ◡𝐻:𝐵–1-1-onto→𝐴) | |
4 | f1ofun 6443 | . . . . 5 ⊢ (◡𝐻:𝐵–1-1-onto→𝐴 → Fun ◡𝐻) | |
5 | vex 3411 | . . . . . 6 ⊢ 𝑥 ∈ V | |
6 | 5 | funimaex 6271 | . . . . 5 ⊢ (Fun ◡𝐻 → (◡𝐻 “ 𝑥) ∈ V) |
7 | 3, 4, 6 | 3syl 18 | . . . 4 ⊢ (◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → (◡𝐻 “ 𝑥) ∈ V) |
8 | 2, 7 | isofrlem 6914 | . . 3 ⊢ (◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → (𝑅 Fr 𝐴 → 𝑆 Fr 𝐵)) |
9 | 1, 8 | syl 17 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴 → 𝑆 Fr 𝐵)) |
10 | id 22 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
11 | isof1o 6897 | . . . 4 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) | |
12 | f1ofun 6443 | . . . 4 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → Fun 𝐻) | |
13 | 5 | funimaex 6271 | . . . 4 ⊢ (Fun 𝐻 → (𝐻 “ 𝑥) ∈ V) |
14 | 11, 12, 13 | 3syl 18 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻 “ 𝑥) ∈ V) |
15 | 10, 14 | isofrlem 6914 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
16 | 9, 15 | impbid 204 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∈ wcel 2051 Vcvv 3408 Fr wfr 5359 ◡ccnv 5402 “ cima 5406 Fun wfun 6179 –1-1-onto→wf1o 6184 Isom wiso 6186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-sbc 3675 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-id 5308 df-fr 5362 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-isom 6194 |
This theorem is referenced by: isowe 6923 wofib 8802 isfin1-4 9605 |
Copyright terms: Public domain | W3C validator |