Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isofr | Structured version Visualization version GIF version |
Description: An isomorphism preserves well-foundedness. Proposition 6.32(1) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.) |
Ref | Expression |
---|---|
isofr | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isocnv 7201 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴)) | |
2 | id 22 | . . . 4 ⊢ (◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → ◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴)) | |
3 | isof1o 7194 | . . . . 5 ⊢ (◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → ◡𝐻:𝐵–1-1-onto→𝐴) | |
4 | f1ofun 6718 | . . . . 5 ⊢ (◡𝐻:𝐵–1-1-onto→𝐴 → Fun ◡𝐻) | |
5 | vex 3436 | . . . . . 6 ⊢ 𝑥 ∈ V | |
6 | 5 | funimaex 6521 | . . . . 5 ⊢ (Fun ◡𝐻 → (◡𝐻 “ 𝑥) ∈ V) |
7 | 3, 4, 6 | 3syl 18 | . . . 4 ⊢ (◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → (◡𝐻 “ 𝑥) ∈ V) |
8 | 2, 7 | isofrlem 7211 | . . 3 ⊢ (◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → (𝑅 Fr 𝐴 → 𝑆 Fr 𝐵)) |
9 | 1, 8 | syl 17 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴 → 𝑆 Fr 𝐵)) |
10 | id 22 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
11 | isof1o 7194 | . . . 4 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) | |
12 | f1ofun 6718 | . . . 4 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → Fun 𝐻) | |
13 | 5 | funimaex 6521 | . . . 4 ⊢ (Fun 𝐻 → (𝐻 “ 𝑥) ∈ V) |
14 | 11, 12, 13 | 3syl 18 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻 “ 𝑥) ∈ V) |
15 | 10, 14 | isofrlem 7211 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
16 | 9, 15 | impbid 211 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 Vcvv 3432 Fr wfr 5541 ◡ccnv 5588 “ cima 5592 Fun wfun 6427 –1-1-onto→wf1o 6432 Isom wiso 6434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-fr 5544 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 |
This theorem is referenced by: isowe 7220 wofib 9304 isfin1-4 10143 |
Copyright terms: Public domain | W3C validator |