MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofr Structured version   Visualization version   GIF version

Theorem isofr 7213
Description: An isomorphism preserves well-foundedness. Proposition 6.32(1) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
isofr (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴𝑆 Fr 𝐵))

Proof of Theorem isofr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isocnv 7201 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
2 id 22 . . . 4 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
3 isof1o 7194 . . . . 5 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → 𝐻:𝐵1-1-onto𝐴)
4 f1ofun 6718 . . . . 5 (𝐻:𝐵1-1-onto𝐴 → Fun 𝐻)
5 vex 3436 . . . . . 6 𝑥 ∈ V
65funimaex 6521 . . . . 5 (Fun 𝐻 → (𝐻𝑥) ∈ V)
73, 4, 63syl 18 . . . 4 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → (𝐻𝑥) ∈ V)
82, 7isofrlem 7211 . . 3 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → (𝑅 Fr 𝐴𝑆 Fr 𝐵))
91, 8syl 17 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴𝑆 Fr 𝐵))
10 id 22 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
11 isof1o 7194 . . . 4 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
12 f1ofun 6718 . . . 4 (𝐻:𝐴1-1-onto𝐵 → Fun 𝐻)
135funimaex 6521 . . . 4 (Fun 𝐻 → (𝐻𝑥) ∈ V)
1411, 12, 133syl 18 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻𝑥) ∈ V)
1510, 14isofrlem 7211 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
169, 15impbid 211 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴𝑆 Fr 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  Vcvv 3432   Fr wfr 5541  ccnv 5588  cima 5592  Fun wfun 6427  1-1-ontowf1o 6432   Isom wiso 6434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-fr 5544  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442
This theorem is referenced by:  isowe  7220  wofib  9304  isfin1-4  10143
  Copyright terms: Public domain W3C validator