| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orbitex | Structured version Visualization version GIF version | ||
| Description: Orbits exist. Given a set 𝐴 and a function 𝐹, the orbit of 𝐴 under 𝐹 is the smallest set 𝑍 such that 𝐴 ∈ 𝑍 and 𝑍 is closed under 𝐹. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| orbitex | ⊢ (rec(𝐹, 𝐴) “ ω) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfun 8338 | . 2 ⊢ Fun rec(𝐹, 𝐴) | |
| 2 | omex 9539 | . . 3 ⊢ ω ∈ V | |
| 3 | 2 | funimaex 6570 | . 2 ⊢ (Fun rec(𝐹, 𝐴) → (rec(𝐹, 𝐴) “ ω) ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (rec(𝐹, 𝐴) “ ω) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 “ cima 5622 Fun wfun 6476 ωcom 7799 reccrdg 8331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 |
| This theorem is referenced by: permaxinf2lem 44986 |
| Copyright terms: Public domain | W3C validator |