Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wffr Structured version   Visualization version   GIF version

Theorem wffr 44935
Description: The class of well-founded sets is well-founded. Lemma I.9.24(2) of [Kunen2] p. 53. (Contributed by Eric Schmidt, 11-Oct-2025.)
Assertion
Ref Expression
wffr E Fr (𝑅1 “ On)

Proof of Theorem wffr
StepHypRef Expression
1 rankrelp 44934 . 2 rank RelPres E , E ( (𝑅1 “ On), On)
2 onfr 6402 . 2 E Fr On
3 relpfr 44932 . 2 (rank RelPres E , E ( (𝑅1 “ On), On) → ( E Fr On → E Fr (𝑅1 “ On)))
41, 2, 3mp2 9 1 E Fr (𝑅1 “ On)
Colors of variables: wff setvar class
Syntax hints:   cuni 4887   E cep 5563   Fr wfr 5614  cima 5668  Oncon0 6363  𝑅1cr1 9784  rankcrnk 9785   RelPres wrelp 44920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-r1 9786  df-rank 9787  df-relp 44921
This theorem is referenced by:  tcfr  44937  sswfaxreg  44961
  Copyright terms: Public domain W3C validator