Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isppw2 Structured version   Visualization version   GIF version

Theorem isppw2 25710
 Description: Two ways to say that 𝐴 is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
isppw2 (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝐴 = (𝑝𝑘)))
Distinct variable group:   𝑘,𝑝,𝐴

Proof of Theorem isppw2
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 isppw 25709 . 2 (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃!𝑞 ∈ ℙ 𝑞𝐴))
2 reu6 3665 . . 3 (∃!𝑞 ∈ ℙ 𝑞𝐴 ↔ ∃𝑝 ∈ ℙ ∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝))
3 equid 2019 . . . . . . . . 9 𝑝 = 𝑝
4 breq1 5034 . . . . . . . . . . . 12 (𝑞 = 𝑝 → (𝑞𝐴𝑝𝐴))
5 equequ1 2032 . . . . . . . . . . . 12 (𝑞 = 𝑝 → (𝑞 = 𝑝𝑝 = 𝑝))
64, 5bibi12d 349 . . . . . . . . . . 11 (𝑞 = 𝑝 → ((𝑞𝐴𝑞 = 𝑝) ↔ (𝑝𝐴𝑝 = 𝑝)))
76rspcva 3569 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ ∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝)) → (𝑝𝐴𝑝 = 𝑝))
87adantll 713 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ ∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝)) → (𝑝𝐴𝑝 = 𝑝))
93, 8mpbiri 261 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ ∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝)) → 𝑝𝐴)
10 simplr 768 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ ∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝)) → 𝑝 ∈ ℙ)
11 simpll 766 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ ∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝)) → 𝐴 ∈ ℕ)
12 pcelnn 16199 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ 𝑝𝐴))
1310, 11, 12syl2anc 587 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ ∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝)) → ((𝑝 pCnt 𝐴) ∈ ℕ ↔ 𝑝𝐴))
149, 13mpbird 260 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ ∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝)) → (𝑝 pCnt 𝐴) ∈ ℕ)
15 simpr 488 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ 𝑞 = 𝑝) → 𝑞 = 𝑝)
1615oveq1d 7151 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ 𝑞 = 𝑝) → (𝑞 pCnt 𝐴) = (𝑝 pCnt 𝐴))
17 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ 𝑞 = 𝑝) → 𝑝 ∈ ℙ)
18 pccl 16179 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
1918ancoms 462 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
2019ad2antrr 725 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ 𝑞 = 𝑝) → (𝑝 pCnt 𝐴) ∈ ℕ0)
2120nn0zd 12076 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ 𝑞 = 𝑝) → (𝑝 pCnt 𝐴) ∈ ℤ)
22 pcid 16202 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℤ) → (𝑝 pCnt (𝑝↑(𝑝 pCnt 𝐴))) = (𝑝 pCnt 𝐴))
2317, 21, 22syl2anc 587 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ 𝑞 = 𝑝) → (𝑝 pCnt (𝑝↑(𝑝 pCnt 𝐴))) = (𝑝 pCnt 𝐴))
2416, 23eqtr4d 2836 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ 𝑞 = 𝑝) → (𝑞 pCnt 𝐴) = (𝑝 pCnt (𝑝↑(𝑝 pCnt 𝐴))))
2515oveq1d 7151 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ 𝑞 = 𝑝) → (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴))) = (𝑝 pCnt (𝑝↑(𝑝 pCnt 𝐴))))
2624, 25eqtr4d 2836 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ 𝑞 = 𝑝) → (𝑞 pCnt 𝐴) = (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴))))
27 simprr 772 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) → (𝑞𝐴𝑞 = 𝑝))
2827notbid 321 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) → (¬ 𝑞𝐴 ↔ ¬ 𝑞 = 𝑝))
2928biimpar 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → ¬ 𝑞𝐴)
30 simplrl 776 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → 𝑞 ∈ ℙ)
31 simplll 774 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → 𝐴 ∈ ℕ)
32 pceq0 16200 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑞 pCnt 𝐴) = 0 ↔ ¬ 𝑞𝐴))
3330, 31, 32syl2anc 587 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → ((𝑞 pCnt 𝐴) = 0 ↔ ¬ 𝑞𝐴))
3429, 33mpbird 260 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → (𝑞 pCnt 𝐴) = 0)
35 simprl 770 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) → 𝑞 ∈ ℙ)
36 simplr 768 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) → 𝑝 ∈ ℙ)
3719adantr 484 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) → (𝑝 pCnt 𝐴) ∈ ℕ0)
38 prmdvdsexpr 16054 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℙ ∧ 𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ0) → (𝑞 ∥ (𝑝↑(𝑝 pCnt 𝐴)) → 𝑞 = 𝑝))
3935, 36, 37, 38syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) → (𝑞 ∥ (𝑝↑(𝑝 pCnt 𝐴)) → 𝑞 = 𝑝))
4039con3dimp 412 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → ¬ 𝑞 ∥ (𝑝↑(𝑝 pCnt 𝐴)))
41 prmnn 16011 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
4241adantl 485 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
4342, 19nnexpcld 13605 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ)
4443ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ)
45 pceq0 16200 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℙ ∧ (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ) → ((𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴))) = 0 ↔ ¬ 𝑞 ∥ (𝑝↑(𝑝 pCnt 𝐴))))
4630, 44, 45syl2anc 587 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → ((𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴))) = 0 ↔ ¬ 𝑞 ∥ (𝑝↑(𝑝 pCnt 𝐴))))
4740, 46mpbird 260 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴))) = 0)
4834, 47eqtr4d 2836 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) ∧ ¬ 𝑞 = 𝑝) → (𝑞 pCnt 𝐴) = (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴))))
4926, 48pm2.61dan 812 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ ℙ ∧ (𝑞𝐴𝑞 = 𝑝))) → (𝑞 pCnt 𝐴) = (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴))))
5049expr 460 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑞𝐴𝑞 = 𝑝) → (𝑞 pCnt 𝐴) = (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴)))))
5150ralimdva 3144 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝) → ∀𝑞 ∈ ℙ (𝑞 pCnt 𝐴) = (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴)))))
5251imp 410 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ ∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝)) → ∀𝑞 ∈ ℙ (𝑞 pCnt 𝐴) = (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴))))
53 nnnn0 11895 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
5453ad2antrr 725 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ ∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝)) → 𝐴 ∈ ℕ0)
5543adantr 484 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ ∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝)) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ)
5655nnnn0d 11946 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ ∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝)) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ0)
57 pc11 16209 . . . . . . . . 9 ((𝐴 ∈ ℕ0 ∧ (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ0) → (𝐴 = (𝑝↑(𝑝 pCnt 𝐴)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝐴) = (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴)))))
5854, 56, 57syl2anc 587 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ ∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝)) → (𝐴 = (𝑝↑(𝑝 pCnt 𝐴)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝐴) = (𝑞 pCnt (𝑝↑(𝑝 pCnt 𝐴)))))
5952, 58mpbird 260 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ ∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝)) → 𝐴 = (𝑝↑(𝑝 pCnt 𝐴)))
60 oveq2 7144 . . . . . . . 8 (𝑘 = (𝑝 pCnt 𝐴) → (𝑝𝑘) = (𝑝↑(𝑝 pCnt 𝐴)))
6160rspceeqv 3586 . . . . . . 7 (((𝑝 pCnt 𝐴) ∈ ℕ ∧ 𝐴 = (𝑝↑(𝑝 pCnt 𝐴))) → ∃𝑘 ∈ ℕ 𝐴 = (𝑝𝑘))
6214, 59, 61syl2anc 587 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ ∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝)) → ∃𝑘 ∈ ℕ 𝐴 = (𝑝𝑘))
6362ex 416 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝) → ∃𝑘 ∈ ℕ 𝐴 = (𝑝𝑘)))
64 prmdvdsexpb 16053 . . . . . . . . . . 11 ((𝑞 ∈ ℙ ∧ 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (𝑞 ∥ (𝑝𝑘) ↔ 𝑞 = 𝑝))
65643coml 1124 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝑝𝑘) ↔ 𝑞 = 𝑝))
66653expa 1115 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ (𝑝𝑘) ↔ 𝑞 = 𝑝))
6766ralrimiva 3149 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → ∀𝑞 ∈ ℙ (𝑞 ∥ (𝑝𝑘) ↔ 𝑞 = 𝑝))
6867adantll 713 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → ∀𝑞 ∈ ℙ (𝑞 ∥ (𝑝𝑘) ↔ 𝑞 = 𝑝))
69 breq2 5035 . . . . . . . . 9 (𝐴 = (𝑝𝑘) → (𝑞𝐴𝑞 ∥ (𝑝𝑘)))
7069bibi1d 347 . . . . . . . 8 (𝐴 = (𝑝𝑘) → ((𝑞𝐴𝑞 = 𝑝) ↔ (𝑞 ∥ (𝑝𝑘) ↔ 𝑞 = 𝑝)))
7170ralbidv 3162 . . . . . . 7 (𝐴 = (𝑝𝑘) → (∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝) ↔ ∀𝑞 ∈ ℙ (𝑞 ∥ (𝑝𝑘) ↔ 𝑞 = 𝑝)))
7268, 71syl5ibrcom 250 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑘 ∈ ℕ) → (𝐴 = (𝑝𝑘) → ∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝)))
7372rexlimdva 3243 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (∃𝑘 ∈ ℕ 𝐴 = (𝑝𝑘) → ∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝)))
7463, 73impbid 215 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝) ↔ ∃𝑘 ∈ ℕ 𝐴 = (𝑝𝑘)))
7574rexbidva 3255 . . 3 (𝐴 ∈ ℕ → (∃𝑝 ∈ ℙ ∀𝑞 ∈ ℙ (𝑞𝐴𝑞 = 𝑝) ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝐴 = (𝑝𝑘)))
762, 75syl5bb 286 . 2 (𝐴 ∈ ℕ → (∃!𝑞 ∈ ℙ 𝑞𝐴 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝐴 = (𝑝𝑘)))
771, 76bitrd 282 1 (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝐴 = (𝑝𝑘)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107  ∃!wreu 3108   class class class wbr 5031  ‘cfv 6325  (class class class)co 7136  0cc0 10529  ℕcn 11628  ℕ0cn0 11888  ℤcz 11972  ↑cexp 13428   ∥ cdvds 15602  ℙcprime 16008   pCnt cpc 16166  Λcvma 25687 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-of 7391  df-om 7564  df-1st 7674  df-2nd 7675  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-er 8275  df-map 8394  df-pm 8395  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8821  df-fi 8862  df-sup 8893  df-inf 8894  df-oi 8961  df-dju 9317  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-7 11696  df-8 11697  df-9 11698  df-n0 11889  df-z 11973  df-dec 12090  df-uz 12235  df-q 12340  df-rp 12381  df-xneg 12498  df-xadd 12499  df-xmul 12500  df-ioo 12733  df-ioc 12734  df-ico 12735  df-icc 12736  df-fz 12889  df-fzo 13032  df-fl 13160  df-mod 13236  df-seq 13368  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-ef 15416  df-sin 15418  df-cos 15419  df-pi 15421  df-dvds 15603  df-gcd 15837  df-prm 16009  df-pc 16167  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21509  df-topon 21526  df-topsp 21548  df-bases 21561  df-cld 21634  df-ntr 21635  df-cls 21636  df-nei 21713  df-lp 21751  df-perf 21752  df-cn 21842  df-cnp 21843  df-haus 21930  df-tx 22177  df-hmeo 22370  df-fil 22461  df-fm 22553  df-flim 22554  df-flf 22555  df-xms 22937  df-ms 22938  df-tms 22939  df-cncf 23493  df-limc 24479  df-dv 24480  df-log 25158  df-vma 25693 This theorem is referenced by:  vmacl  25713  efvmacl  25715  vma1  25761  vmalelog  25799  fsumvma  25807
 Copyright terms: Public domain W3C validator