| Step | Hyp | Ref
| Expression |
| 1 | | funfvop 7045 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) → 〈𝑋, (𝐹‘𝑋)〉 ∈ 𝐹) |
| 2 | | simplll 774 |
. . . . . . . 8
⊢ ((((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) ∧ 𝑝 ∈ 𝐹) ∧ 𝑋 = (1st ‘𝑝)) → Fun 𝐹) |
| 3 | | funrel 6558 |
. . . . . . . 8
⊢ (Fun
𝐹 → Rel 𝐹) |
| 4 | 2, 3 | syl 17 |
. . . . . . 7
⊢ ((((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) ∧ 𝑝 ∈ 𝐹) ∧ 𝑋 = (1st ‘𝑝)) → Rel 𝐹) |
| 5 | | simplr 768 |
. . . . . . 7
⊢ ((((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) ∧ 𝑝 ∈ 𝐹) ∧ 𝑋 = (1st ‘𝑝)) → 𝑝 ∈ 𝐹) |
| 6 | | 1st2nd 8043 |
. . . . . . 7
⊢ ((Rel
𝐹 ∧ 𝑝 ∈ 𝐹) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
| 7 | 4, 5, 6 | syl2anc 584 |
. . . . . 6
⊢ ((((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) ∧ 𝑝 ∈ 𝐹) ∧ 𝑋 = (1st ‘𝑝)) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
| 8 | | simpr 484 |
. . . . . . 7
⊢ ((((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) ∧ 𝑝 ∈ 𝐹) ∧ 𝑋 = (1st ‘𝑝)) → 𝑋 = (1st ‘𝑝)) |
| 9 | | simpllr 775 |
. . . . . . . 8
⊢ ((((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) ∧ 𝑝 ∈ 𝐹) ∧ 𝑋 = (1st ‘𝑝)) → 𝑋 ∈ dom 𝐹) |
| 10 | 8 | opeq1d 4860 |
. . . . . . . . . 10
⊢ ((((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) ∧ 𝑝 ∈ 𝐹) ∧ 𝑋 = (1st ‘𝑝)) → 〈𝑋, (2nd ‘𝑝)〉 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
| 11 | 7, 10 | eqtr4d 2774 |
. . . . . . . . 9
⊢ ((((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) ∧ 𝑝 ∈ 𝐹) ∧ 𝑋 = (1st ‘𝑝)) → 𝑝 = 〈𝑋, (2nd ‘𝑝)〉) |
| 12 | 11, 5 | eqeltrrd 2836 |
. . . . . . . 8
⊢ ((((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) ∧ 𝑝 ∈ 𝐹) ∧ 𝑋 = (1st ‘𝑝)) → 〈𝑋, (2nd ‘𝑝)〉 ∈ 𝐹) |
| 13 | | funopfvb 6938 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹‘𝑋) = (2nd ‘𝑝) ↔ 〈𝑋, (2nd ‘𝑝)〉 ∈ 𝐹)) |
| 14 | 13 | biimpar 477 |
. . . . . . . 8
⊢ (((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) ∧ 〈𝑋, (2nd ‘𝑝)〉 ∈ 𝐹) → (𝐹‘𝑋) = (2nd ‘𝑝)) |
| 15 | 2, 9, 12, 14 | syl21anc 837 |
. . . . . . 7
⊢ ((((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) ∧ 𝑝 ∈ 𝐹) ∧ 𝑋 = (1st ‘𝑝)) → (𝐹‘𝑋) = (2nd ‘𝑝)) |
| 16 | 8, 15 | opeq12d 4862 |
. . . . . 6
⊢ ((((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) ∧ 𝑝 ∈ 𝐹) ∧ 𝑋 = (1st ‘𝑝)) → 〈𝑋, (𝐹‘𝑋)〉 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
| 17 | 7, 16 | eqtr4d 2774 |
. . . . 5
⊢ ((((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) ∧ 𝑝 ∈ 𝐹) ∧ 𝑋 = (1st ‘𝑝)) → 𝑝 = 〈𝑋, (𝐹‘𝑋)〉) |
| 18 | | simpr 484 |
. . . . . . 7
⊢ ((((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) ∧ 𝑝 ∈ 𝐹) ∧ 𝑝 = 〈𝑋, (𝐹‘𝑋)〉) → 𝑝 = 〈𝑋, (𝐹‘𝑋)〉) |
| 19 | 18 | fveq2d 6885 |
. . . . . 6
⊢ ((((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) ∧ 𝑝 ∈ 𝐹) ∧ 𝑝 = 〈𝑋, (𝐹‘𝑋)〉) → (1st ‘𝑝) = (1st
‘〈𝑋, (𝐹‘𝑋)〉)) |
| 20 | | fvex 6894 |
. . . . . . . 8
⊢ (𝐹‘𝑋) ∈ V |
| 21 | | op1stg 8005 |
. . . . . . . 8
⊢ ((𝑋 ∈ dom 𝐹 ∧ (𝐹‘𝑋) ∈ V) → (1st
‘〈𝑋, (𝐹‘𝑋)〉) = 𝑋) |
| 22 | 20, 21 | mpan2 691 |
. . . . . . 7
⊢ (𝑋 ∈ dom 𝐹 → (1st ‘〈𝑋, (𝐹‘𝑋)〉) = 𝑋) |
| 23 | 22 | ad3antlr 731 |
. . . . . 6
⊢ ((((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) ∧ 𝑝 ∈ 𝐹) ∧ 𝑝 = 〈𝑋, (𝐹‘𝑋)〉) → (1st
‘〈𝑋, (𝐹‘𝑋)〉) = 𝑋) |
| 24 | 19, 23 | eqtr2d 2772 |
. . . . 5
⊢ ((((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) ∧ 𝑝 ∈ 𝐹) ∧ 𝑝 = 〈𝑋, (𝐹‘𝑋)〉) → 𝑋 = (1st ‘𝑝)) |
| 25 | 17, 24 | impbida 800 |
. . . 4
⊢ (((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) ∧ 𝑝 ∈ 𝐹) → (𝑋 = (1st ‘𝑝) ↔ 𝑝 = 〈𝑋, (𝐹‘𝑋)〉)) |
| 26 | 25 | ralrimiva 3133 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) → ∀𝑝 ∈ 𝐹 (𝑋 = (1st ‘𝑝) ↔ 𝑝 = 〈𝑋, (𝐹‘𝑋)〉)) |
| 27 | | eqeq2 2748 |
. . . . . 6
⊢ (𝑞 = 〈𝑋, (𝐹‘𝑋)〉 → (𝑝 = 𝑞 ↔ 𝑝 = 〈𝑋, (𝐹‘𝑋)〉)) |
| 28 | 27 | bibi2d 342 |
. . . . 5
⊢ (𝑞 = 〈𝑋, (𝐹‘𝑋)〉 → ((𝑋 = (1st ‘𝑝) ↔ 𝑝 = 𝑞) ↔ (𝑋 = (1st ‘𝑝) ↔ 𝑝 = 〈𝑋, (𝐹‘𝑋)〉))) |
| 29 | 28 | ralbidv 3164 |
. . . 4
⊢ (𝑞 = 〈𝑋, (𝐹‘𝑋)〉 → (∀𝑝 ∈ 𝐹 (𝑋 = (1st ‘𝑝) ↔ 𝑝 = 𝑞) ↔ ∀𝑝 ∈ 𝐹 (𝑋 = (1st ‘𝑝) ↔ 𝑝 = 〈𝑋, (𝐹‘𝑋)〉))) |
| 30 | 29 | rspcev 3606 |
. . 3
⊢
((〈𝑋, (𝐹‘𝑋)〉 ∈ 𝐹 ∧ ∀𝑝 ∈ 𝐹 (𝑋 = (1st ‘𝑝) ↔ 𝑝 = 〈𝑋, (𝐹‘𝑋)〉)) → ∃𝑞 ∈ 𝐹 ∀𝑝 ∈ 𝐹 (𝑋 = (1st ‘𝑝) ↔ 𝑝 = 𝑞)) |
| 31 | 1, 26, 30 | syl2anc 584 |
. 2
⊢ ((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) → ∃𝑞 ∈ 𝐹 ∀𝑝 ∈ 𝐹 (𝑋 = (1st ‘𝑝) ↔ 𝑝 = 𝑞)) |
| 32 | | reu6 3714 |
. 2
⊢
(∃!𝑝 ∈
𝐹 𝑋 = (1st ‘𝑝) ↔ ∃𝑞 ∈ 𝐹 ∀𝑝 ∈ 𝐹 (𝑋 = (1st ‘𝑝) ↔ 𝑝 = 𝑞)) |
| 33 | 31, 32 | sylibr 234 |
1
⊢ ((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) → ∃!𝑝 ∈ 𝐹 𝑋 = (1st ‘𝑝)) |