Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgreu Structured version   Visualization version   GIF version

Theorem fgreu 30911
Description: Exactly one point of a function's graph has a given first element. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Assertion
Ref Expression
fgreu ((Fun 𝐹𝑋 ∈ dom 𝐹) → ∃!𝑝𝐹 𝑋 = (1st𝑝))
Distinct variable groups:   𝐹,𝑝   𝑋,𝑝

Proof of Theorem fgreu
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 funfvop 6909 . . 3 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹)
2 simplll 771 . . . . . . . 8 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → Fun 𝐹)
3 funrel 6435 . . . . . . . 8 (Fun 𝐹 → Rel 𝐹)
42, 3syl 17 . . . . . . 7 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → Rel 𝐹)
5 simplr 765 . . . . . . 7 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → 𝑝𝐹)
6 1st2nd 7853 . . . . . . 7 ((Rel 𝐹𝑝𝐹) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
74, 5, 6syl2anc 583 . . . . . 6 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
8 simpr 484 . . . . . . 7 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → 𝑋 = (1st𝑝))
9 simpllr 772 . . . . . . . 8 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → 𝑋 ∈ dom 𝐹)
108opeq1d 4807 . . . . . . . . . 10 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → ⟨𝑋, (2nd𝑝)⟩ = ⟨(1st𝑝), (2nd𝑝)⟩)
117, 10eqtr4d 2781 . . . . . . . . 9 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → 𝑝 = ⟨𝑋, (2nd𝑝)⟩)
1211, 5eqeltrrd 2840 . . . . . . . 8 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → ⟨𝑋, (2nd𝑝)⟩ ∈ 𝐹)
13 funopfvb 6807 . . . . . . . . 9 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹𝑋) = (2nd𝑝) ↔ ⟨𝑋, (2nd𝑝)⟩ ∈ 𝐹))
1413biimpar 477 . . . . . . . 8 (((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ ⟨𝑋, (2nd𝑝)⟩ ∈ 𝐹) → (𝐹𝑋) = (2nd𝑝))
152, 9, 12, 14syl21anc 834 . . . . . . 7 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → (𝐹𝑋) = (2nd𝑝))
168, 15opeq12d 4809 . . . . . 6 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → ⟨𝑋, (𝐹𝑋)⟩ = ⟨(1st𝑝), (2nd𝑝)⟩)
177, 16eqtr4d 2781 . . . . 5 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → 𝑝 = ⟨𝑋, (𝐹𝑋)⟩)
18 simpr 484 . . . . . . 7 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩) → 𝑝 = ⟨𝑋, (𝐹𝑋)⟩)
1918fveq2d 6760 . . . . . 6 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩) → (1st𝑝) = (1st ‘⟨𝑋, (𝐹𝑋)⟩))
20 fvex 6769 . . . . . . . 8 (𝐹𝑋) ∈ V
21 op1stg 7816 . . . . . . . 8 ((𝑋 ∈ dom 𝐹 ∧ (𝐹𝑋) ∈ V) → (1st ‘⟨𝑋, (𝐹𝑋)⟩) = 𝑋)
2220, 21mpan2 687 . . . . . . 7 (𝑋 ∈ dom 𝐹 → (1st ‘⟨𝑋, (𝐹𝑋)⟩) = 𝑋)
2322ad3antlr 727 . . . . . 6 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩) → (1st ‘⟨𝑋, (𝐹𝑋)⟩) = 𝑋)
2419, 23eqtr2d 2779 . . . . 5 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩) → 𝑋 = (1st𝑝))
2517, 24impbida 797 . . . 4 (((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) → (𝑋 = (1st𝑝) ↔ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩))
2625ralrimiva 3107 . . 3 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ∀𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩))
27 eqeq2 2750 . . . . . 6 (𝑞 = ⟨𝑋, (𝐹𝑋)⟩ → (𝑝 = 𝑞𝑝 = ⟨𝑋, (𝐹𝑋)⟩))
2827bibi2d 342 . . . . 5 (𝑞 = ⟨𝑋, (𝐹𝑋)⟩ → ((𝑋 = (1st𝑝) ↔ 𝑝 = 𝑞) ↔ (𝑋 = (1st𝑝) ↔ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩)))
2928ralbidv 3120 . . . 4 (𝑞 = ⟨𝑋, (𝐹𝑋)⟩ → (∀𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = 𝑞) ↔ ∀𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩)))
3029rspcev 3552 . . 3 ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹 ∧ ∀𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩)) → ∃𝑞𝐹𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = 𝑞))
311, 26, 30syl2anc 583 . 2 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ∃𝑞𝐹𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = 𝑞))
32 reu6 3656 . 2 (∃!𝑝𝐹 𝑋 = (1st𝑝) ↔ ∃𝑞𝐹𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = 𝑞))
3331, 32sylibr 233 1 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ∃!𝑝𝐹 𝑋 = (1st𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  ∃!wreu 3065  Vcvv 3422  cop 4564  dom cdm 5580  Rel wrel 5585  Fun wfun 6412  cfv 6418  1st c1st 7802  2nd c2nd 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-1st 7804  df-2nd 7805
This theorem is referenced by:  fcnvgreu  30912
  Copyright terms: Public domain W3C validator