| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isppw | Structured version Visualization version GIF version | ||
| Description: Two ways to say that 𝐴 is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| Ref | Expression |
|---|---|
| isppw | ⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} | |
| 2 | 1 | vmaval 27045 | . . 3 ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0)) |
| 3 | 2 | neeq1d 2987 | . 2 ⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0)) |
| 4 | reuen1 8943 | . . 3 ⊢ (∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴 ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) | |
| 5 | hash1 14306 | . . . . . . . . . 10 ⊢ (♯‘1o) = 1 | |
| 6 | 5 | eqeq2i 2744 | . . . . . . . . 9 ⊢ ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = (♯‘1o) ↔ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1) |
| 7 | prmdvdsfi 27039 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin) | |
| 8 | 1onn 8550 | . . . . . . . . . . 11 ⊢ 1o ∈ ω | |
| 9 | nnfi 9072 | . . . . . . . . . . 11 ⊢ (1o ∈ ω → 1o ∈ Fin) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . . . . . 10 ⊢ 1o ∈ Fin |
| 11 | hashen 14249 | . . . . . . . . . 10 ⊢ (({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin ∧ 1o ∈ Fin) → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = (♯‘1o) ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o)) | |
| 12 | 7, 10, 11 | sylancl 586 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = (♯‘1o) ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o)) |
| 13 | 6, 12 | bitr3id 285 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1 ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o)) |
| 14 | 13 | biimpar 477 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1) |
| 15 | 14 | iftrued 4478 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) = (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) |
| 16 | simpr 484 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) | |
| 17 | en1b 8942 | . . . . . . . . . . . . 13 ⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} = {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}}) | |
| 18 | 16, 17 | sylib 218 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} = {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}}) |
| 19 | ssrab2 4025 | . . . . . . . . . . . 12 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ⊆ ℙ | |
| 20 | 18, 19 | eqsstrrdi 3975 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}} ⊆ ℙ) |
| 21 | 7 | uniexd 7670 | . . . . . . . . . . . . 13 ⊢ (𝐴 ∈ ℕ → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ V) |
| 22 | 21 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ V) |
| 23 | snssg 4731 | . . . . . . . . . . . 12 ⊢ (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ V → (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℙ ↔ {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}} ⊆ ℙ)) | |
| 24 | 22, 23 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℙ ↔ {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}} ⊆ ℙ)) |
| 25 | 20, 24 | mpbird 257 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℙ) |
| 26 | prmuz2 16602 | . . . . . . . . . 10 ⊢ (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℙ → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ (ℤ≥‘2)) | |
| 27 | 25, 26 | syl 17 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ (ℤ≥‘2)) |
| 28 | eluzelre 12738 | . . . . . . . . 9 ⊢ (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ (ℤ≥‘2) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℝ) | |
| 29 | 27, 28 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℝ) |
| 30 | eluz2gt1 12813 | . . . . . . . . 9 ⊢ (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ (ℤ≥‘2) → 1 < ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) | |
| 31 | 27, 30 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → 1 < ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) |
| 32 | 29, 31 | rplogcld 26560 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℝ+) |
| 33 | 32 | rpne0d 12934 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ≠ 0) |
| 34 | 15, 33 | eqnetrd 2995 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0) |
| 35 | 34 | ex 412 | . . . 4 ⊢ (𝐴 ∈ ℕ → ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0)) |
| 36 | iffalse 4479 | . . . . . 6 ⊢ (¬ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1 → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) = 0) | |
| 37 | 36 | necon1ai 2955 | . . . . 5 ⊢ (if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0 → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1) |
| 38 | 37, 13 | imbitrid 244 | . . . 4 ⊢ (𝐴 ∈ ℕ → (if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o)) |
| 39 | 35, 38 | impbid 212 | . . 3 ⊢ (𝐴 ∈ ℕ → ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o ↔ if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0)) |
| 40 | 4, 39 | bitrid 283 | . 2 ⊢ (𝐴 ∈ ℕ → (∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴 ↔ if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0)) |
| 41 | 3, 40 | bitr4d 282 | 1 ⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃!wreu 3344 {crab 3395 Vcvv 3436 ⊆ wss 3897 ifcif 4470 {csn 4571 ∪ cuni 4854 class class class wbr 5086 ‘cfv 6476 ωcom 7791 1oc1o 8373 ≈ cen 8861 Fincfn 8864 ℝcr 11000 0cc0 11001 1c1 11002 < clt 11141 ℕcn 12120 2c2 12175 ℤ≥cuz 12727 ♯chash 14232 ∥ cdvds 16158 ℙcprime 16577 logclog 26485 Λcvma 27024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9789 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ioo 13244 df-ioc 13245 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-fac 14176 df-bc 14205 df-hash 14233 df-shft 14969 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-limsup 15373 df-clim 15390 df-rlim 15391 df-sum 15589 df-ef 15969 df-sin 15971 df-cos 15972 df-pi 15974 df-dvds 16159 df-prm 16578 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-xrs 17401 df-qtop 17406 df-imas 17407 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19224 df-cmn 19689 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-cnfld 21287 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-lp 23046 df-perf 23047 df-cn 23137 df-cnp 23138 df-haus 23225 df-tx 23472 df-hmeo 23665 df-fil 23756 df-fm 23848 df-flim 23849 df-flf 23850 df-xms 24230 df-ms 24231 df-tms 24232 df-cncf 24793 df-limc 25789 df-dv 25790 df-log 26487 df-vma 27030 |
| This theorem is referenced by: isppw2 27047 |
| Copyright terms: Public domain | W3C validator |