| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isppw | Structured version Visualization version GIF version | ||
| Description: Two ways to say that 𝐴 is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| Ref | Expression |
|---|---|
| isppw | ⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} | |
| 2 | 1 | vmaval 27070 | . . 3 ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0)) |
| 3 | 2 | neeq1d 2988 | . 2 ⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0)) |
| 4 | reuen1 8959 | . . 3 ⊢ (∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴 ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) | |
| 5 | hash1 14318 | . . . . . . . . . 10 ⊢ (♯‘1o) = 1 | |
| 6 | 5 | eqeq2i 2746 | . . . . . . . . 9 ⊢ ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = (♯‘1o) ↔ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1) |
| 7 | prmdvdsfi 27064 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin) | |
| 8 | 1onn 8564 | . . . . . . . . . . 11 ⊢ 1o ∈ ω | |
| 9 | nnfi 9088 | . . . . . . . . . . 11 ⊢ (1o ∈ ω → 1o ∈ Fin) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . . . . . 10 ⊢ 1o ∈ Fin |
| 11 | hashen 14261 | . . . . . . . . . 10 ⊢ (({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin ∧ 1o ∈ Fin) → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = (♯‘1o) ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o)) | |
| 12 | 7, 10, 11 | sylancl 586 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = (♯‘1o) ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o)) |
| 13 | 6, 12 | bitr3id 285 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1 ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o)) |
| 14 | 13 | biimpar 477 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1) |
| 15 | 14 | iftrued 4484 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) = (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) |
| 16 | simpr 484 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) | |
| 17 | en1b 8958 | . . . . . . . . . . . . 13 ⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} = {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}}) | |
| 18 | 16, 17 | sylib 218 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} = {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}}) |
| 19 | ssrab2 4029 | . . . . . . . . . . . 12 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ⊆ ℙ | |
| 20 | 18, 19 | eqsstrrdi 3976 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}} ⊆ ℙ) |
| 21 | 7 | uniexd 7684 | . . . . . . . . . . . . 13 ⊢ (𝐴 ∈ ℕ → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ V) |
| 22 | 21 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ V) |
| 23 | snssg 4737 | . . . . . . . . . . . 12 ⊢ (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ V → (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℙ ↔ {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}} ⊆ ℙ)) | |
| 24 | 22, 23 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℙ ↔ {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}} ⊆ ℙ)) |
| 25 | 20, 24 | mpbird 257 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℙ) |
| 26 | prmuz2 16614 | . . . . . . . . . 10 ⊢ (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℙ → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ (ℤ≥‘2)) | |
| 27 | 25, 26 | syl 17 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ (ℤ≥‘2)) |
| 28 | eluzelre 12753 | . . . . . . . . 9 ⊢ (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ (ℤ≥‘2) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℝ) | |
| 29 | 27, 28 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℝ) |
| 30 | eluz2gt1 12824 | . . . . . . . . 9 ⊢ (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ (ℤ≥‘2) → 1 < ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) | |
| 31 | 27, 30 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → 1 < ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) |
| 32 | 29, 31 | rplogcld 26585 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℝ+) |
| 33 | 32 | rpne0d 12945 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ≠ 0) |
| 34 | 15, 33 | eqnetrd 2996 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0) |
| 35 | 34 | ex 412 | . . . 4 ⊢ (𝐴 ∈ ℕ → ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0)) |
| 36 | iffalse 4485 | . . . . . 6 ⊢ (¬ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1 → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) = 0) | |
| 37 | 36 | necon1ai 2956 | . . . . 5 ⊢ (if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0 → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1) |
| 38 | 37, 13 | imbitrid 244 | . . . 4 ⊢ (𝐴 ∈ ℕ → (if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o)) |
| 39 | 35, 38 | impbid 212 | . . 3 ⊢ (𝐴 ∈ ℕ → ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o ↔ if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0)) |
| 40 | 4, 39 | bitrid 283 | . 2 ⊢ (𝐴 ∈ ℕ → (∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴 ↔ if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0)) |
| 41 | 3, 40 | bitr4d 282 | 1 ⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃!wreu 3345 {crab 3396 Vcvv 3437 ⊆ wss 3898 ifcif 4476 {csn 4577 ∪ cuni 4860 class class class wbr 5095 ‘cfv 6489 ωcom 7805 1oc1o 8387 ≈ cen 8876 Fincfn 8879 ℝcr 11016 0cc0 11017 1c1 11018 < clt 11157 ℕcn 12136 2c2 12191 ℤ≥cuz 12742 ♯chash 14244 ∥ cdvds 16170 ℙcprime 16589 logclog 26510 Λcvma 27049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 ax-addf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-fi 9306 df-sup 9337 df-inf 9338 df-oi 9407 df-dju 9805 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ioo 13256 df-ioc 13257 df-ico 13258 df-icc 13259 df-fz 13415 df-fzo 13562 df-fl 13703 df-mod 13781 df-seq 13916 df-exp 13976 df-fac 14188 df-bc 14217 df-hash 14245 df-shft 14981 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-limsup 15385 df-clim 15402 df-rlim 15403 df-sum 15601 df-ef 15981 df-sin 15983 df-cos 15984 df-pi 15986 df-dvds 16171 df-prm 16590 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-hom 17192 df-cco 17193 df-rest 17333 df-topn 17334 df-0g 17352 df-gsum 17353 df-topgen 17354 df-pt 17355 df-prds 17358 df-xrs 17414 df-qtop 17419 df-imas 17420 df-xps 17422 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-mulg 18989 df-cntz 19237 df-cmn 19702 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-fbas 21297 df-fg 21298 df-cnfld 21301 df-top 22829 df-topon 22846 df-topsp 22868 df-bases 22881 df-cld 22954 df-ntr 22955 df-cls 22956 df-nei 23033 df-lp 23071 df-perf 23072 df-cn 23162 df-cnp 23163 df-haus 23250 df-tx 23497 df-hmeo 23690 df-fil 23781 df-fm 23873 df-flim 23874 df-flf 23875 df-xms 24255 df-ms 24256 df-tms 24257 df-cncf 24818 df-limc 25814 df-dv 25815 df-log 26512 df-vma 27055 |
| This theorem is referenced by: isppw2 27072 |
| Copyright terms: Public domain | W3C validator |