MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isppw Structured version   Visualization version   GIF version

Theorem isppw 26335
Description: Two ways to say that 𝐴 is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
isppw (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃!𝑝 ∈ ℙ 𝑝𝐴))
Distinct variable group:   𝐴,𝑝

Proof of Theorem isppw
StepHypRef Expression
1 eqid 2737 . . . 4 {𝑝 ∈ ℙ ∣ 𝑝𝐴} = {𝑝 ∈ ℙ ∣ 𝑝𝐴}
21vmaval 26334 . . 3 (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0))
32neeq1d 3001 . 2 (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0) ≠ 0))
4 reuen1 8867 . . 3 (∃!𝑝 ∈ ℙ 𝑝𝐴 ↔ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o)
5 hash1 14191 . . . . . . . . . 10 (♯‘1o) = 1
65eqeq2i 2750 . . . . . . . . 9 ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = (♯‘1o) ↔ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1)
7 prmdvdsfi 26328 . . . . . . . . . 10 (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin)
8 1onn 8518 . . . . . . . . . . 11 1o ∈ ω
9 nnfi 9009 . . . . . . . . . . 11 (1o ∈ ω → 1o ∈ Fin)
108, 9ax-mp 5 . . . . . . . . . 10 1o ∈ Fin
11 hashen 14134 . . . . . . . . . 10 (({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin ∧ 1o ∈ Fin) → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = (♯‘1o) ↔ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o))
127, 10, 11sylancl 586 . . . . . . . . 9 (𝐴 ∈ ℕ → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = (♯‘1o) ↔ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o))
136, 12bitr3id 284 . . . . . . . 8 (𝐴 ∈ ℕ → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1 ↔ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o))
1413biimpar 478 . . . . . . 7 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1)
1514iftrued 4479 . . . . . 6 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0) = (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}))
16 simpr 485 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o)
17 en1b 8865 . . . . . . . . . . . . 13 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o ↔ {𝑝 ∈ ℙ ∣ 𝑝𝐴} = { {𝑝 ∈ ℙ ∣ 𝑝𝐴}})
1816, 17sylib 217 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} = { {𝑝 ∈ ℙ ∣ 𝑝𝐴}})
19 ssrab2 4024 . . . . . . . . . . . 12 {𝑝 ∈ ℙ ∣ 𝑝𝐴} ⊆ ℙ
2018, 19eqsstrrdi 3986 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → { {𝑝 ∈ ℙ ∣ 𝑝𝐴}} ⊆ ℙ)
217uniexd 7635 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ V)
2221adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ V)
23 snssg 4729 . . . . . . . . . . . 12 ( {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ V → ( {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ ℙ ↔ { {𝑝 ∈ ℙ ∣ 𝑝𝐴}} ⊆ ℙ))
2422, 23syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → ( {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ ℙ ↔ { {𝑝 ∈ ℙ ∣ 𝑝𝐴}} ⊆ ℙ))
2520, 24mpbird 256 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ ℙ)
26 prmuz2 16471 . . . . . . . . . 10 ( {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ ℙ → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ (ℤ‘2))
2725, 26syl 17 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ (ℤ‘2))
28 eluzelre 12666 . . . . . . . . 9 ( {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ (ℤ‘2) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ ℝ)
2927, 28syl 17 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ ℝ)
30 eluz2gt1 12733 . . . . . . . . 9 ( {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ (ℤ‘2) → 1 < {𝑝 ∈ ℙ ∣ 𝑝𝐴})
3127, 30syl 17 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → 1 < {𝑝 ∈ ℙ ∣ 𝑝𝐴})
3229, 31rplogcld 25856 . . . . . . 7 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℝ+)
3332rpne0d 12850 . . . . . 6 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}) ≠ 0)
3415, 33eqnetrd 3009 . . . . 5 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0) ≠ 0)
3534ex 413 . . . 4 (𝐴 ∈ ℕ → ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0) ≠ 0))
36 iffalse 4480 . . . . . 6 (¬ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1 → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0) = 0)
3736necon1ai 2969 . . . . 5 (if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0) ≠ 0 → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1)
3837, 13syl5ib 243 . . . 4 (𝐴 ∈ ℕ → (if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0) ≠ 0 → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o))
3935, 38impbid 211 . . 3 (𝐴 ∈ ℕ → ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o ↔ if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0) ≠ 0))
404, 39bitrid 282 . 2 (𝐴 ∈ ℕ → (∃!𝑝 ∈ ℙ 𝑝𝐴 ↔ if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0) ≠ 0))
413, 40bitr4d 281 1 (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃!𝑝 ∈ ℙ 𝑝𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2941  ∃!wreu 3348  {crab 3404  Vcvv 3441  wss 3897  ifcif 4471  {csn 4571   cuni 4850   class class class wbr 5087  cfv 6465  ωcom 7757  1oc1o 8337  cen 8778  Fincfn 8781  cr 10943  0cc0 10944  1c1 10945   < clt 11082  cn 12046  2c2 12101  cuz 12655  chash 14117  cdvds 16035  cprime 16446  logclog 25782  Λcvma 26313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-inf2 9470  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021  ax-pre-sup 11022  ax-addf 11023  ax-mulf 11024
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-iin 4940  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-of 7573  df-om 7758  df-1st 7876  df-2nd 7877  df-supp 8025  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-1o 8344  df-2o 8345  df-oadd 8348  df-er 8546  df-map 8665  df-pm 8666  df-ixp 8734  df-en 8782  df-dom 8783  df-sdom 8784  df-fin 8785  df-fsupp 9199  df-fi 9240  df-sup 9271  df-inf 9272  df-oi 9339  df-dju 9730  df-card 9768  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-div 11706  df-nn 12047  df-2 12109  df-3 12110  df-4 12111  df-5 12112  df-6 12113  df-7 12114  df-8 12115  df-9 12116  df-n0 12307  df-z 12393  df-dec 12511  df-uz 12656  df-q 12762  df-rp 12804  df-xneg 12921  df-xadd 12922  df-xmul 12923  df-ioo 13156  df-ioc 13157  df-ico 13158  df-icc 13159  df-fz 13313  df-fzo 13456  df-fl 13585  df-mod 13663  df-seq 13795  df-exp 13856  df-fac 14061  df-bc 14090  df-hash 14118  df-shft 14850  df-cj 14882  df-re 14883  df-im 14884  df-sqrt 15018  df-abs 15019  df-limsup 15252  df-clim 15269  df-rlim 15270  df-sum 15470  df-ef 15849  df-sin 15851  df-cos 15852  df-pi 15854  df-dvds 16036  df-prm 16447  df-struct 16918  df-sets 16935  df-slot 16953  df-ndx 16965  df-base 16983  df-ress 17012  df-plusg 17045  df-mulr 17046  df-starv 17047  df-sca 17048  df-vsca 17049  df-ip 17050  df-tset 17051  df-ple 17052  df-ds 17054  df-unif 17055  df-hom 17056  df-cco 17057  df-rest 17203  df-topn 17204  df-0g 17222  df-gsum 17223  df-topgen 17224  df-pt 17225  df-prds 17228  df-xrs 17283  df-qtop 17288  df-imas 17289  df-xps 17291  df-mre 17365  df-mrc 17366  df-acs 17368  df-mgm 18396  df-sgrp 18445  df-mnd 18456  df-submnd 18501  df-mulg 18770  df-cntz 18992  df-cmn 19456  df-psmet 20661  df-xmet 20662  df-met 20663  df-bl 20664  df-mopn 20665  df-fbas 20666  df-fg 20667  df-cnfld 20670  df-top 22115  df-topon 22132  df-topsp 22154  df-bases 22168  df-cld 22242  df-ntr 22243  df-cls 22244  df-nei 22321  df-lp 22359  df-perf 22360  df-cn 22450  df-cnp 22451  df-haus 22538  df-tx 22785  df-hmeo 22978  df-fil 23069  df-fm 23161  df-flim 23162  df-flf 23163  df-xms 23545  df-ms 23546  df-tms 23547  df-cncf 24113  df-limc 25102  df-dv 25103  df-log 25784  df-vma 26319
This theorem is referenced by:  isppw2  26336
  Copyright terms: Public domain W3C validator