MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isppw Structured version   Visualization version   GIF version

Theorem isppw 27175
Description: Two ways to say that 𝐴 is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
isppw (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃!𝑝 ∈ ℙ 𝑝𝐴))
Distinct variable group:   𝐴,𝑝

Proof of Theorem isppw
StepHypRef Expression
1 eqid 2740 . . . 4 {𝑝 ∈ ℙ ∣ 𝑝𝐴} = {𝑝 ∈ ℙ ∣ 𝑝𝐴}
21vmaval 27174 . . 3 (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0))
32neeq1d 3006 . 2 (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0) ≠ 0))
4 reuen1 9090 . . 3 (∃!𝑝 ∈ ℙ 𝑝𝐴 ↔ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o)
5 hash1 14453 . . . . . . . . . 10 (♯‘1o) = 1
65eqeq2i 2753 . . . . . . . . 9 ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = (♯‘1o) ↔ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1)
7 prmdvdsfi 27168 . . . . . . . . . 10 (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin)
8 1onn 8696 . . . . . . . . . . 11 1o ∈ ω
9 nnfi 9233 . . . . . . . . . . 11 (1o ∈ ω → 1o ∈ Fin)
108, 9ax-mp 5 . . . . . . . . . 10 1o ∈ Fin
11 hashen 14396 . . . . . . . . . 10 (({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin ∧ 1o ∈ Fin) → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = (♯‘1o) ↔ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o))
127, 10, 11sylancl 585 . . . . . . . . 9 (𝐴 ∈ ℕ → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = (♯‘1o) ↔ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o))
136, 12bitr3id 285 . . . . . . . 8 (𝐴 ∈ ℕ → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1 ↔ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o))
1413biimpar 477 . . . . . . 7 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1)
1514iftrued 4556 . . . . . 6 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0) = (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}))
16 simpr 484 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o)
17 en1b 9088 . . . . . . . . . . . . 13 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o ↔ {𝑝 ∈ ℙ ∣ 𝑝𝐴} = { {𝑝 ∈ ℙ ∣ 𝑝𝐴}})
1816, 17sylib 218 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} = { {𝑝 ∈ ℙ ∣ 𝑝𝐴}})
19 ssrab2 4103 . . . . . . . . . . . 12 {𝑝 ∈ ℙ ∣ 𝑝𝐴} ⊆ ℙ
2018, 19eqsstrrdi 4064 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → { {𝑝 ∈ ℙ ∣ 𝑝𝐴}} ⊆ ℙ)
217uniexd 7777 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ V)
2221adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ V)
23 snssg 4808 . . . . . . . . . . . 12 ( {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ V → ( {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ ℙ ↔ { {𝑝 ∈ ℙ ∣ 𝑝𝐴}} ⊆ ℙ))
2422, 23syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → ( {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ ℙ ↔ { {𝑝 ∈ ℙ ∣ 𝑝𝐴}} ⊆ ℙ))
2520, 24mpbird 257 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ ℙ)
26 prmuz2 16743 . . . . . . . . . 10 ( {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ ℙ → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ (ℤ‘2))
2725, 26syl 17 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ (ℤ‘2))
28 eluzelre 12914 . . . . . . . . 9 ( {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ (ℤ‘2) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ ℝ)
2927, 28syl 17 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ ℝ)
30 eluz2gt1 12985 . . . . . . . . 9 ( {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ (ℤ‘2) → 1 < {𝑝 ∈ ℙ ∣ 𝑝𝐴})
3127, 30syl 17 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → 1 < {𝑝 ∈ ℙ ∣ 𝑝𝐴})
3229, 31rplogcld 26689 . . . . . . 7 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℝ+)
3332rpne0d 13104 . . . . . 6 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}) ≠ 0)
3415, 33eqnetrd 3014 . . . . 5 ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o) → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0) ≠ 0)
3534ex 412 . . . 4 (𝐴 ∈ ℕ → ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0) ≠ 0))
36 iffalse 4557 . . . . . 6 (¬ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1 → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0) = 0)
3736necon1ai 2974 . . . . 5 (if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0) ≠ 0 → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1)
3837, 13imbitrid 244 . . . 4 (𝐴 ∈ ℕ → (if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0) ≠ 0 → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o))
3935, 38impbid 212 . . 3 (𝐴 ∈ ℕ → ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ≈ 1o ↔ if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0) ≠ 0))
404, 39bitrid 283 . 2 (𝐴 ∈ ℕ → (∃!𝑝 ∈ ℙ 𝑝𝐴 ↔ if((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) = 1, (log‘ {𝑝 ∈ ℙ ∣ 𝑝𝐴}), 0) ≠ 0))
413, 40bitr4d 282 1 (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃!𝑝 ∈ ℙ 𝑝𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  ∃!wreu 3386  {crab 3443  Vcvv 3488  wss 3976  ifcif 4548  {csn 4648   cuni 4931   class class class wbr 5166  cfv 6573  ωcom 7903  1oc1o 8515  cen 9000  Fincfn 9003  cr 11183  0cc0 11184  1c1 11185   < clt 11324  cn 12293  2c2 12348  cuz 12903  chash 14379  cdvds 16302  cprime 16718  logclog 26614  Λcvma 27153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-prm 16719  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-vma 27159
This theorem is referenced by:  isppw2  27176
  Copyright terms: Public domain W3C validator