| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isppw | Structured version Visualization version GIF version | ||
| Description: Two ways to say that 𝐴 is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
| Ref | Expression |
|---|---|
| isppw | ⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} | |
| 2 | 1 | vmaval 27023 | . . 3 ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0)) |
| 3 | 2 | neeq1d 2984 | . 2 ⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0)) |
| 4 | reuen1 8997 | . . 3 ⊢ (∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴 ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) | |
| 5 | hash1 14369 | . . . . . . . . . 10 ⊢ (♯‘1o) = 1 | |
| 6 | 5 | eqeq2i 2742 | . . . . . . . . 9 ⊢ ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = (♯‘1o) ↔ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1) |
| 7 | prmdvdsfi 27017 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin) | |
| 8 | 1onn 8604 | . . . . . . . . . . 11 ⊢ 1o ∈ ω | |
| 9 | nnfi 9131 | . . . . . . . . . . 11 ⊢ (1o ∈ ω → 1o ∈ Fin) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . . . . . 10 ⊢ 1o ∈ Fin |
| 11 | hashen 14312 | . . . . . . . . . 10 ⊢ (({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin ∧ 1o ∈ Fin) → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = (♯‘1o) ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o)) | |
| 12 | 7, 10, 11 | sylancl 586 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = (♯‘1o) ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o)) |
| 13 | 6, 12 | bitr3id 285 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1 ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o)) |
| 14 | 13 | biimpar 477 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1) |
| 15 | 14 | iftrued 4496 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) = (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) |
| 16 | simpr 484 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) | |
| 17 | en1b 8996 | . . . . . . . . . . . . 13 ⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} = {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}}) | |
| 18 | 16, 17 | sylib 218 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} = {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}}) |
| 19 | ssrab2 4043 | . . . . . . . . . . . 12 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ⊆ ℙ | |
| 20 | 18, 19 | eqsstrrdi 3992 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}} ⊆ ℙ) |
| 21 | 7 | uniexd 7718 | . . . . . . . . . . . . 13 ⊢ (𝐴 ∈ ℕ → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ V) |
| 22 | 21 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ V) |
| 23 | snssg 4747 | . . . . . . . . . . . 12 ⊢ (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ V → (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℙ ↔ {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}} ⊆ ℙ)) | |
| 24 | 22, 23 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℙ ↔ {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}} ⊆ ℙ)) |
| 25 | 20, 24 | mpbird 257 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℙ) |
| 26 | prmuz2 16666 | . . . . . . . . . 10 ⊢ (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℙ → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ (ℤ≥‘2)) | |
| 27 | 25, 26 | syl 17 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ (ℤ≥‘2)) |
| 28 | eluzelre 12804 | . . . . . . . . 9 ⊢ (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ (ℤ≥‘2) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℝ) | |
| 29 | 27, 28 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℝ) |
| 30 | eluz2gt1 12879 | . . . . . . . . 9 ⊢ (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ (ℤ≥‘2) → 1 < ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) | |
| 31 | 27, 30 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → 1 < ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) |
| 32 | 29, 31 | rplogcld 26538 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℝ+) |
| 33 | 32 | rpne0d 13000 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ≠ 0) |
| 34 | 15, 33 | eqnetrd 2992 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0) |
| 35 | 34 | ex 412 | . . . 4 ⊢ (𝐴 ∈ ℕ → ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0)) |
| 36 | iffalse 4497 | . . . . . 6 ⊢ (¬ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1 → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) = 0) | |
| 37 | 36 | necon1ai 2952 | . . . . 5 ⊢ (if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0 → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1) |
| 38 | 37, 13 | imbitrid 244 | . . . 4 ⊢ (𝐴 ∈ ℕ → (if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o)) |
| 39 | 35, 38 | impbid 212 | . . 3 ⊢ (𝐴 ∈ ℕ → ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o ↔ if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0)) |
| 40 | 4, 39 | bitrid 283 | . 2 ⊢ (𝐴 ∈ ℕ → (∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴 ↔ if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0)) |
| 41 | 3, 40 | bitr4d 282 | 1 ⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃!wreu 3352 {crab 3405 Vcvv 3447 ⊆ wss 3914 ifcif 4488 {csn 4589 ∪ cuni 4871 class class class wbr 5107 ‘cfv 6511 ωcom 7842 1oc1o 8427 ≈ cen 8915 Fincfn 8918 ℝcr 11067 0cc0 11068 1c1 11069 < clt 11208 ℕcn 12186 2c2 12241 ℤ≥cuz 12793 ♯chash 14295 ∥ cdvds 16222 ℙcprime 16641 logclog 26463 Λcvma 27002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ef 16033 df-sin 16035 df-cos 16036 df-pi 16038 df-dvds 16223 df-prm 16642 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cncf 24771 df-limc 25767 df-dv 25768 df-log 26465 df-vma 27008 |
| This theorem is referenced by: isppw2 27025 |
| Copyright terms: Public domain | W3C validator |