![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isppw | Structured version Visualization version GIF version |
Description: Two ways to say that 𝐴 is a prime power. (Contributed by Mario Carneiro, 7-Apr-2016.) |
Ref | Expression |
---|---|
isppw | ⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2772 | . . . 4 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} | |
2 | 1 | vmaval 25382 | . . 3 ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) = if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0)) |
3 | 2 | neeq1d 3020 | . 2 ⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0)) |
4 | reuen1 8367 | . . 3 ⊢ (∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴 ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) | |
5 | hash1 13569 | . . . . . . . . . 10 ⊢ (♯‘1o) = 1 | |
6 | 5 | eqeq2i 2784 | . . . . . . . . 9 ⊢ ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = (♯‘1o) ↔ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1) |
7 | prmdvdsfi 25376 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin) | |
8 | 1onn 8058 | . . . . . . . . . . 11 ⊢ 1o ∈ ω | |
9 | nnfi 8498 | . . . . . . . . . . 11 ⊢ (1o ∈ ω → 1o ∈ Fin) | |
10 | 8, 9 | ax-mp 5 | . . . . . . . . . 10 ⊢ 1o ∈ Fin |
11 | hashen 13515 | . . . . . . . . . 10 ⊢ (({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin ∧ 1o ∈ Fin) → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = (♯‘1o) ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o)) | |
12 | 7, 10, 11 | sylancl 577 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = (♯‘1o) ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o)) |
13 | 6, 12 | syl5bbr 277 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1 ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o)) |
14 | 13 | biimpar 470 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1) |
15 | 14 | iftrued 4352 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) = (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) |
16 | simpr 477 | . . . . . . . . . . . . 13 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) | |
17 | en1b 8366 | . . . . . . . . . . . . 13 ⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} = {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}}) | |
18 | 16, 17 | sylib 210 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} = {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}}) |
19 | ssrab2 3942 | . . . . . . . . . . . 12 ⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ⊆ ℙ | |
20 | 18, 19 | syl6eqssr 3908 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}} ⊆ ℙ) |
21 | uniexg 7279 | . . . . . . . . . . . . . 14 ⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ V) | |
22 | 7, 21 | syl 17 | . . . . . . . . . . . . 13 ⊢ (𝐴 ∈ ℕ → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ V) |
23 | 22 | adantr 473 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ V) |
24 | snssg 4585 | . . . . . . . . . . . 12 ⊢ (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ V → (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℙ ↔ {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}} ⊆ ℙ)) | |
25 | 23, 24 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℙ ↔ {∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}} ⊆ ℙ)) |
26 | 20, 25 | mpbird 249 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℙ) |
27 | prmuz2 15886 | . . . . . . . . . 10 ⊢ (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℙ → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ (ℤ≥‘2)) | |
28 | 26, 27 | syl 17 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ (ℤ≥‘2)) |
29 | eluzelre 12062 | . . . . . . . . 9 ⊢ (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ (ℤ≥‘2) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℝ) | |
30 | 28, 29 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ ℝ) |
31 | eluz2gt1 12127 | . . . . . . . . 9 ⊢ (∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ (ℤ≥‘2) → 1 < ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) | |
32 | 28, 31 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → 1 < ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) |
33 | 30, 32 | rplogcld 24903 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈ ℝ+) |
34 | 33 | rpne0d 12246 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ≠ 0) |
35 | 15, 34 | eqnetrd 3028 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o) → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0) |
36 | 35 | ex 405 | . . . 4 ⊢ (𝐴 ∈ ℕ → ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0)) |
37 | iffalse 4353 | . . . . . 6 ⊢ (¬ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1 → if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) = 0) | |
38 | 37 | necon1ai 2988 | . . . . 5 ⊢ (if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0 → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1) |
39 | 38, 13 | syl5ib 236 | . . . 4 ⊢ (𝐴 ∈ ℕ → (if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o)) |
40 | 36, 39 | impbid 204 | . . 3 ⊢ (𝐴 ∈ ℕ → ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ≈ 1o ↔ if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0)) |
41 | 4, 40 | syl5bb 275 | . 2 ⊢ (𝐴 ∈ ℕ → (∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴 ↔ if((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) = 1, (log‘∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}), 0) ≠ 0)) |
42 | 3, 41 | bitr4d 274 | 1 ⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃!𝑝 ∈ ℙ 𝑝 ∥ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ≠ wne 2961 ∃!wreu 3084 {crab 3086 Vcvv 3409 ⊆ wss 3825 ifcif 4344 {csn 4435 ∪ cuni 4706 class class class wbr 4923 ‘cfv 6182 ωcom 7390 1oc1o 7890 ≈ cen 8295 Fincfn 8298 ℝcr 10326 0cc0 10327 1c1 10328 < clt 10466 ℕcn 11431 2c2 11488 ℤ≥cuz 12051 ♯chash 13498 ∥ cdvds 15457 ℙcprime 15861 logclog 24829 Λcvma 25361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-inf2 8890 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 ax-pre-sup 10405 ax-addf 10406 ax-mulf 10407 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-iin 4789 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-se 5360 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-of 7221 df-om 7391 df-1st 7494 df-2nd 7495 df-supp 7627 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-2o 7898 df-oadd 7901 df-er 8081 df-map 8200 df-pm 8201 df-ixp 8252 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-fsupp 8621 df-fi 8662 df-sup 8693 df-inf 8694 df-oi 8761 df-dju 9116 df-card 9154 df-cda 9380 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-div 11091 df-nn 11432 df-2 11496 df-3 11497 df-4 11498 df-5 11499 df-6 11500 df-7 11501 df-8 11502 df-9 11503 df-n0 11701 df-z 11787 df-dec 11905 df-uz 12052 df-q 12156 df-rp 12198 df-xneg 12317 df-xadd 12318 df-xmul 12319 df-ioo 12551 df-ioc 12552 df-ico 12553 df-icc 12554 df-fz 12702 df-fzo 12843 df-fl 12970 df-mod 13046 df-seq 13178 df-exp 13238 df-fac 13442 df-bc 13471 df-hash 13499 df-shft 14277 df-cj 14309 df-re 14310 df-im 14311 df-sqrt 14445 df-abs 14446 df-limsup 14679 df-clim 14696 df-rlim 14697 df-sum 14894 df-ef 15271 df-sin 15273 df-cos 15274 df-pi 15276 df-dvds 15458 df-prm 15862 df-struct 16331 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-ress 16337 df-plusg 16424 df-mulr 16425 df-starv 16426 df-sca 16427 df-vsca 16428 df-ip 16429 df-tset 16430 df-ple 16431 df-ds 16433 df-unif 16434 df-hom 16435 df-cco 16436 df-rest 16542 df-topn 16543 df-0g 16561 df-gsum 16562 df-topgen 16563 df-pt 16564 df-prds 16567 df-xrs 16621 df-qtop 16626 df-imas 16627 df-xps 16629 df-mre 16705 df-mrc 16706 df-acs 16708 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-submnd 17794 df-mulg 18002 df-cntz 18208 df-cmn 18658 df-psmet 20229 df-xmet 20230 df-met 20231 df-bl 20232 df-mopn 20233 df-fbas 20234 df-fg 20235 df-cnfld 20238 df-top 21196 df-topon 21213 df-topsp 21235 df-bases 21248 df-cld 21321 df-ntr 21322 df-cls 21323 df-nei 21400 df-lp 21438 df-perf 21439 df-cn 21529 df-cnp 21530 df-haus 21617 df-tx 21864 df-hmeo 22057 df-fil 22148 df-fm 22240 df-flim 22241 df-flf 22242 df-xms 22623 df-ms 22624 df-tms 22625 df-cncf 23179 df-limc 24157 df-dv 24158 df-log 24831 df-vma 25367 |
This theorem is referenced by: isppw2 25384 |
Copyright terms: Public domain | W3C validator |