MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1bOLD Structured version   Visualization version   GIF version

Theorem en1bOLD 8768
Description: Obsolete version of en1b 8767 as of 24-Sep-2024. (Contributed by Mario Carneiro, 17-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en1bOLD (𝐴 ≈ 1o𝐴 = { 𝐴})

Proof of Theorem en1bOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 8765 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
2 id 22 . . . . 5 (𝐴 = {𝑥} → 𝐴 = {𝑥})
3 unieq 4847 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 vex 3426 . . . . . . . 8 𝑥 ∈ V
54unisn 4858 . . . . . . 7 {𝑥} = 𝑥
63, 5eqtrdi 2795 . . . . . 6 (𝐴 = {𝑥} → 𝐴 = 𝑥)
76sneqd 4570 . . . . 5 (𝐴 = {𝑥} → { 𝐴} = {𝑥})
82, 7eqtr4d 2781 . . . 4 (𝐴 = {𝑥} → 𝐴 = { 𝐴})
98exlimiv 1934 . . 3 (∃𝑥 𝐴 = {𝑥} → 𝐴 = { 𝐴})
101, 9sylbi 216 . 2 (𝐴 ≈ 1o𝐴 = { 𝐴})
11 id 22 . . 3 (𝐴 = { 𝐴} → 𝐴 = { 𝐴})
12 snex 5349 . . . . . 6 { 𝐴} ∈ V
1311, 12eqeltrdi 2847 . . . . 5 (𝐴 = { 𝐴} → 𝐴 ∈ V)
1413uniexd 7573 . . . 4 (𝐴 = { 𝐴} → 𝐴 ∈ V)
15 ensn1g 8763 . . . 4 ( 𝐴 ∈ V → { 𝐴} ≈ 1o)
1614, 15syl 17 . . 3 (𝐴 = { 𝐴} → { 𝐴} ≈ 1o)
1711, 16eqbrtrd 5092 . 2 (𝐴 = { 𝐴} → 𝐴 ≈ 1o)
1810, 17impbii 208 1 (𝐴 ≈ 1o𝐴 = { 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  {csn 4558   cuni 4836   class class class wbr 5070  1oc1o 8260  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-1o 8267  df-en 8692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator