MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1bOLD Structured version   Visualization version   GIF version

Theorem en1bOLD 8679
Description: Obsolete version of en1b 8678 as of 24-Sep-2024. (Contributed by Mario Carneiro, 17-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en1bOLD (𝐴 ≈ 1o𝐴 = { 𝐴})

Proof of Theorem en1bOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 8676 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
2 id 22 . . . . 5 (𝐴 = {𝑥} → 𝐴 = {𝑥})
3 unieq 4816 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 vex 3402 . . . . . . . 8 𝑥 ∈ V
54unisn 4827 . . . . . . 7 {𝑥} = 𝑥
63, 5eqtrdi 2787 . . . . . 6 (𝐴 = {𝑥} → 𝐴 = 𝑥)
76sneqd 4539 . . . . 5 (𝐴 = {𝑥} → { 𝐴} = {𝑥})
82, 7eqtr4d 2774 . . . 4 (𝐴 = {𝑥} → 𝐴 = { 𝐴})
98exlimiv 1938 . . 3 (∃𝑥 𝐴 = {𝑥} → 𝐴 = { 𝐴})
101, 9sylbi 220 . 2 (𝐴 ≈ 1o𝐴 = { 𝐴})
11 id 22 . . 3 (𝐴 = { 𝐴} → 𝐴 = { 𝐴})
12 snex 5309 . . . . . 6 { 𝐴} ∈ V
1311, 12eqeltrdi 2839 . . . . 5 (𝐴 = { 𝐴} → 𝐴 ∈ V)
1413uniexd 7508 . . . 4 (𝐴 = { 𝐴} → 𝐴 ∈ V)
15 ensn1g 8674 . . . 4 ( 𝐴 ∈ V → { 𝐴} ≈ 1o)
1614, 15syl 17 . . 3 (𝐴 = { 𝐴} → { 𝐴} ≈ 1o)
1711, 16eqbrtrd 5061 . 2 (𝐴 = { 𝐴} → 𝐴 ≈ 1o)
1810, 17impbii 212 1 (𝐴 ≈ 1o𝐴 = { 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1543  wex 1787  wcel 2112  Vcvv 3398  {csn 4527   cuni 4805   class class class wbr 5039  1oc1o 8173  cen 8601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-1o 8180  df-en 8605
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator