![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en1bOLD | Structured version Visualization version GIF version |
Description: Obsolete version of en1b 9022 as of 24-Sep-2024. (Contributed by Mario Carneiro, 17-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
en1bOLD | ⊢ (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en1 9020 | . . 3 ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) | |
2 | id 22 | . . . . 5 ⊢ (𝐴 = {𝑥} → 𝐴 = {𝑥}) | |
3 | unieq 4913 | . . . . . . 7 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∪ {𝑥}) | |
4 | vex 3472 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | 4 | unisn 4923 | . . . . . . 7 ⊢ ∪ {𝑥} = 𝑥 |
6 | 3, 5 | eqtrdi 2782 | . . . . . 6 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = 𝑥) |
7 | 6 | sneqd 4635 | . . . . 5 ⊢ (𝐴 = {𝑥} → {∪ 𝐴} = {𝑥}) |
8 | 2, 7 | eqtr4d 2769 | . . . 4 ⊢ (𝐴 = {𝑥} → 𝐴 = {∪ 𝐴}) |
9 | 8 | exlimiv 1925 | . . 3 ⊢ (∃𝑥 𝐴 = {𝑥} → 𝐴 = {∪ 𝐴}) |
10 | 1, 9 | sylbi 216 | . 2 ⊢ (𝐴 ≈ 1o → 𝐴 = {∪ 𝐴}) |
11 | id 22 | . . 3 ⊢ (𝐴 = {∪ 𝐴} → 𝐴 = {∪ 𝐴}) | |
12 | snex 5424 | . . . . . 6 ⊢ {∪ 𝐴} ∈ V | |
13 | 11, 12 | eqeltrdi 2835 | . . . . 5 ⊢ (𝐴 = {∪ 𝐴} → 𝐴 ∈ V) |
14 | 13 | uniexd 7728 | . . . 4 ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) |
15 | ensn1g 9018 | . . . 4 ⊢ (∪ 𝐴 ∈ V → {∪ 𝐴} ≈ 1o) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝐴 = {∪ 𝐴} → {∪ 𝐴} ≈ 1o) |
17 | 11, 16 | eqbrtrd 5163 | . 2 ⊢ (𝐴 = {∪ 𝐴} → 𝐴 ≈ 1o) |
18 | 10, 17 | impbii 208 | 1 ⊢ (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3468 {csn 4623 ∪ cuni 4902 class class class wbr 5141 1oc1o 8457 ≈ cen 8935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-1o 8464 df-en 8939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |