MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1bOLD Structured version   Visualization version   GIF version

Theorem en1bOLD 9020
Description: Obsolete version of en1b 9019 as of 24-Sep-2024. (Contributed by Mario Carneiro, 17-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en1bOLD (𝐴 ≈ 1o𝐴 = { 𝐴})

Proof of Theorem en1bOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 9017 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
2 id 22 . . . . 5 (𝐴 = {𝑥} → 𝐴 = {𝑥})
3 unieq 4918 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 vex 3478 . . . . . . . 8 𝑥 ∈ V
54unisn 4929 . . . . . . 7 {𝑥} = 𝑥
63, 5eqtrdi 2788 . . . . . 6 (𝐴 = {𝑥} → 𝐴 = 𝑥)
76sneqd 4639 . . . . 5 (𝐴 = {𝑥} → { 𝐴} = {𝑥})
82, 7eqtr4d 2775 . . . 4 (𝐴 = {𝑥} → 𝐴 = { 𝐴})
98exlimiv 1933 . . 3 (∃𝑥 𝐴 = {𝑥} → 𝐴 = { 𝐴})
101, 9sylbi 216 . 2 (𝐴 ≈ 1o𝐴 = { 𝐴})
11 id 22 . . 3 (𝐴 = { 𝐴} → 𝐴 = { 𝐴})
12 snex 5430 . . . . . 6 { 𝐴} ∈ V
1311, 12eqeltrdi 2841 . . . . 5 (𝐴 = { 𝐴} → 𝐴 ∈ V)
1413uniexd 7728 . . . 4 (𝐴 = { 𝐴} → 𝐴 ∈ V)
15 ensn1g 9015 . . . 4 ( 𝐴 ∈ V → { 𝐴} ≈ 1o)
1614, 15syl 17 . . 3 (𝐴 = { 𝐴} → { 𝐴} ≈ 1o)
1711, 16eqbrtrd 5169 . 2 (𝐴 = { 𝐴} → 𝐴 ≈ 1o)
1810, 17impbii 208 1 (𝐴 ≈ 1o𝐴 = { 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wex 1781  wcel 2106  Vcvv 3474  {csn 4627   cuni 4907   class class class wbr 5147  1oc1o 8455  cen 8932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-1o 8462  df-en 8936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator