MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1bOLD Structured version   Visualization version   GIF version

Theorem en1bOLD 8866
Description: Obsolete version of en1b 8865 as of 24-Sep-2024. (Contributed by Mario Carneiro, 17-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en1bOLD (𝐴 ≈ 1o𝐴 = { 𝐴})

Proof of Theorem en1bOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 8863 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
2 id 22 . . . . 5 (𝐴 = {𝑥} → 𝐴 = {𝑥})
3 unieq 4861 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 vex 3445 . . . . . . . 8 𝑥 ∈ V
54unisn 4872 . . . . . . 7 {𝑥} = 𝑥
63, 5eqtrdi 2793 . . . . . 6 (𝐴 = {𝑥} → 𝐴 = 𝑥)
76sneqd 4583 . . . . 5 (𝐴 = {𝑥} → { 𝐴} = {𝑥})
82, 7eqtr4d 2780 . . . 4 (𝐴 = {𝑥} → 𝐴 = { 𝐴})
98exlimiv 1932 . . 3 (∃𝑥 𝐴 = {𝑥} → 𝐴 = { 𝐴})
101, 9sylbi 216 . 2 (𝐴 ≈ 1o𝐴 = { 𝐴})
11 id 22 . . 3 (𝐴 = { 𝐴} → 𝐴 = { 𝐴})
12 snex 5369 . . . . . 6 { 𝐴} ∈ V
1311, 12eqeltrdi 2846 . . . . 5 (𝐴 = { 𝐴} → 𝐴 ∈ V)
1413uniexd 7635 . . . 4 (𝐴 = { 𝐴} → 𝐴 ∈ V)
15 ensn1g 8861 . . . 4 ( 𝐴 ∈ V → { 𝐴} ≈ 1o)
1614, 15syl 17 . . 3 (𝐴 = { 𝐴} → { 𝐴} ≈ 1o)
1711, 16eqbrtrd 5109 . 2 (𝐴 = { 𝐴} → 𝐴 ≈ 1o)
1810, 17impbii 208 1 (𝐴 ≈ 1o𝐴 = { 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  wex 1780  wcel 2105  Vcvv 3441  {csn 4571   cuni 4850   class class class wbr 5087  1oc1o 8337  cen 8778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-1o 8344  df-en 8782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator