![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en1bOLD | Structured version Visualization version GIF version |
Description: Obsolete version of en1b 9054 as of 24-Sep-2024. (Contributed by Mario Carneiro, 17-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
en1bOLD | ⊢ (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en1 9052 | . . 3 ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) | |
2 | id 22 | . . . . 5 ⊢ (𝐴 = {𝑥} → 𝐴 = {𝑥}) | |
3 | unieq 4923 | . . . . . . 7 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∪ {𝑥}) | |
4 | vex 3477 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | 4 | unisn 4933 | . . . . . . 7 ⊢ ∪ {𝑥} = 𝑥 |
6 | 3, 5 | eqtrdi 2784 | . . . . . 6 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = 𝑥) |
7 | 6 | sneqd 4644 | . . . . 5 ⊢ (𝐴 = {𝑥} → {∪ 𝐴} = {𝑥}) |
8 | 2, 7 | eqtr4d 2771 | . . . 4 ⊢ (𝐴 = {𝑥} → 𝐴 = {∪ 𝐴}) |
9 | 8 | exlimiv 1925 | . . 3 ⊢ (∃𝑥 𝐴 = {𝑥} → 𝐴 = {∪ 𝐴}) |
10 | 1, 9 | sylbi 216 | . 2 ⊢ (𝐴 ≈ 1o → 𝐴 = {∪ 𝐴}) |
11 | id 22 | . . 3 ⊢ (𝐴 = {∪ 𝐴} → 𝐴 = {∪ 𝐴}) | |
12 | snex 5437 | . . . . . 6 ⊢ {∪ 𝐴} ∈ V | |
13 | 11, 12 | eqeltrdi 2837 | . . . . 5 ⊢ (𝐴 = {∪ 𝐴} → 𝐴 ∈ V) |
14 | 13 | uniexd 7753 | . . . 4 ⊢ (𝐴 = {∪ 𝐴} → ∪ 𝐴 ∈ V) |
15 | ensn1g 9050 | . . . 4 ⊢ (∪ 𝐴 ∈ V → {∪ 𝐴} ≈ 1o) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝐴 = {∪ 𝐴} → {∪ 𝐴} ≈ 1o) |
17 | 11, 16 | eqbrtrd 5174 | . 2 ⊢ (𝐴 = {∪ 𝐴} → 𝐴 ≈ 1o) |
18 | 10, 17 | impbii 208 | 1 ⊢ (𝐴 ≈ 1o ↔ 𝐴 = {∪ 𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3473 {csn 4632 ∪ cuni 4912 class class class wbr 5152 1oc1o 8486 ≈ cen 8967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-1o 8493 df-en 8971 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |