| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plyun0 | Structured version Visualization version GIF version | ||
| Description: The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| plyun0 | ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11142 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
| 2 | snssi 4768 | . . . . . . 7 ⊢ (0 ∈ ℂ → {0} ⊆ ℂ) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ {0} ⊆ ℂ |
| 4 | 3 | biantru 529 | . . . . 5 ⊢ (𝑆 ⊆ ℂ ↔ (𝑆 ⊆ ℂ ∧ {0} ⊆ ℂ)) |
| 5 | unss 4149 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ {0} ⊆ ℂ) ↔ (𝑆 ∪ {0}) ⊆ ℂ) | |
| 6 | 4, 5 | bitr2i 276 | . . . 4 ⊢ ((𝑆 ∪ {0}) ⊆ ℂ ↔ 𝑆 ⊆ ℂ) |
| 7 | unass 4131 | . . . . . . . 8 ⊢ ((𝑆 ∪ {0}) ∪ {0}) = (𝑆 ∪ ({0} ∪ {0})) | |
| 8 | unidm 4116 | . . . . . . . . 9 ⊢ ({0} ∪ {0}) = {0} | |
| 9 | 8 | uneq2i 4124 | . . . . . . . 8 ⊢ (𝑆 ∪ ({0} ∪ {0})) = (𝑆 ∪ {0}) |
| 10 | 7, 9 | eqtri 2752 | . . . . . . 7 ⊢ ((𝑆 ∪ {0}) ∪ {0}) = (𝑆 ∪ {0}) |
| 11 | 10 | oveq1i 7379 | . . . . . 6 ⊢ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0) = ((𝑆 ∪ {0}) ↑m ℕ0) |
| 12 | 11 | rexeqi 3295 | . . . . 5 ⊢ (∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 13 | 12 | rexbii 3076 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 14 | 6, 13 | anbi12i 628 | . . 3 ⊢ (((𝑆 ∪ {0}) ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 15 | elply 26133 | . . 3 ⊢ (𝑓 ∈ (Poly‘(𝑆 ∪ {0})) ↔ ((𝑆 ∪ {0}) ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
| 16 | elply 26133 | . . 3 ⊢ (𝑓 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
| 17 | 14, 15, 16 | 3bitr4i 303 | . 2 ⊢ (𝑓 ∈ (Poly‘(𝑆 ∪ {0})) ↔ 𝑓 ∈ (Poly‘𝑆)) |
| 18 | 17 | eqriv 2726 | 1 ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∪ cun 3909 ⊆ wss 3911 {csn 4585 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 ℂcc 11042 0cc0 11044 · cmul 11049 ℕ0cn0 12418 ...cfz 13444 ↑cexp 14002 Σcsu 15628 Polycply 26122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-i2m1 11112 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-n0 12419 df-ply 26126 |
| This theorem is referenced by: elplyd 26140 ply1term 26142 ply0 26146 plyaddlem 26153 plymullem 26154 plyco 26179 plycj 26216 plycjOLD 26218 |
| Copyright terms: Public domain | W3C validator |