MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyun0 Structured version   Visualization version   GIF version

Theorem plyun0 25263
Description: The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyun0 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)

Proof of Theorem plyun0
Dummy variables 𝑘 𝑎 𝑛 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 10898 . . . . . . 7 0 ∈ ℂ
2 snssi 4738 . . . . . . 7 (0 ∈ ℂ → {0} ⊆ ℂ)
31, 2ax-mp 5 . . . . . 6 {0} ⊆ ℂ
43biantru 529 . . . . 5 (𝑆 ⊆ ℂ ↔ (𝑆 ⊆ ℂ ∧ {0} ⊆ ℂ))
5 unss 4114 . . . . 5 ((𝑆 ⊆ ℂ ∧ {0} ⊆ ℂ) ↔ (𝑆 ∪ {0}) ⊆ ℂ)
64, 5bitr2i 275 . . . 4 ((𝑆 ∪ {0}) ⊆ ℂ ↔ 𝑆 ⊆ ℂ)
7 unass 4096 . . . . . . . 8 ((𝑆 ∪ {0}) ∪ {0}) = (𝑆 ∪ ({0} ∪ {0}))
8 unidm 4082 . . . . . . . . 9 ({0} ∪ {0}) = {0}
98uneq2i 4090 . . . . . . . 8 (𝑆 ∪ ({0} ∪ {0})) = (𝑆 ∪ {0})
107, 9eqtri 2766 . . . . . . 7 ((𝑆 ∪ {0}) ∪ {0}) = (𝑆 ∪ {0})
1110oveq1i 7265 . . . . . 6 (((𝑆 ∪ {0}) ∪ {0}) ↑m0) = ((𝑆 ∪ {0}) ↑m0)
1211rexeqi 3338 . . . . 5 (∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
1312rexbii 3177 . . . 4 (∃𝑛 ∈ ℕ0𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
146, 13anbi12i 626 . . 3 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
15 elply 25261 . . 3 (𝑓 ∈ (Poly‘(𝑆 ∪ {0})) ↔ ((𝑆 ∪ {0}) ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
16 elply 25261 . . 3 (𝑓 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
1714, 15, 163bitr4i 302 . 2 (𝑓 ∈ (Poly‘(𝑆 ∪ {0})) ↔ 𝑓 ∈ (Poly‘𝑆))
1817eqriv 2735 1 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  wrex 3064  cun 3881  wss 3883  {csn 4558  cmpt 5153  cfv 6418  (class class class)co 7255  m cmap 8573  cc 10800  0cc0 10802   · cmul 10807  0cn0 12163  ...cfz 13168  cexp 13710  Σcsu 15325  Polycply 25250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-mulcl 10864  ax-i2m1 10870
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904  df-n0 12164  df-ply 25254
This theorem is referenced by:  elplyd  25268  ply1term  25270  ply0  25274  plyaddlem  25281  plymullem  25282  plyco  25307  plycj  25343
  Copyright terms: Public domain W3C validator