![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plyun0 | Structured version Visualization version GIF version |
Description: The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
plyun0 | ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 11222 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
2 | snssi 4807 | . . . . . . 7 ⊢ (0 ∈ ℂ → {0} ⊆ ℂ) | |
3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ {0} ⊆ ℂ |
4 | 3 | biantru 529 | . . . . 5 ⊢ (𝑆 ⊆ ℂ ↔ (𝑆 ⊆ ℂ ∧ {0} ⊆ ℂ)) |
5 | unss 4180 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ {0} ⊆ ℂ) ↔ (𝑆 ∪ {0}) ⊆ ℂ) | |
6 | 4, 5 | bitr2i 276 | . . . 4 ⊢ ((𝑆 ∪ {0}) ⊆ ℂ ↔ 𝑆 ⊆ ℂ) |
7 | unass 4162 | . . . . . . . 8 ⊢ ((𝑆 ∪ {0}) ∪ {0}) = (𝑆 ∪ ({0} ∪ {0})) | |
8 | unidm 4148 | . . . . . . . . 9 ⊢ ({0} ∪ {0}) = {0} | |
9 | 8 | uneq2i 4156 | . . . . . . . 8 ⊢ (𝑆 ∪ ({0} ∪ {0})) = (𝑆 ∪ {0}) |
10 | 7, 9 | eqtri 2755 | . . . . . . 7 ⊢ ((𝑆 ∪ {0}) ∪ {0}) = (𝑆 ∪ {0}) |
11 | 10 | oveq1i 7424 | . . . . . 6 ⊢ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0) = ((𝑆 ∪ {0}) ↑m ℕ0) |
12 | 11 | rexeqi 3319 | . . . . 5 ⊢ (∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
13 | 12 | rexbii 3089 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
14 | 6, 13 | anbi12i 626 | . . 3 ⊢ (((𝑆 ∪ {0}) ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
15 | elply 26103 | . . 3 ⊢ (𝑓 ∈ (Poly‘(𝑆 ∪ {0})) ↔ ((𝑆 ∪ {0}) ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
16 | elply 26103 | . . 3 ⊢ (𝑓 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
17 | 14, 15, 16 | 3bitr4i 303 | . 2 ⊢ (𝑓 ∈ (Poly‘(𝑆 ∪ {0})) ↔ 𝑓 ∈ (Poly‘𝑆)) |
18 | 17 | eqriv 2724 | 1 ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3065 ∪ cun 3942 ⊆ wss 3944 {csn 4624 ↦ cmpt 5225 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8834 ℂcc 11122 0cc0 11124 · cmul 11129 ℕ0cn0 12488 ...cfz 13502 ↑cexp 14044 Σcsu 15650 Polycply 26092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-mulcl 11186 ax-i2m1 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7863 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-nn 12229 df-n0 12489 df-ply 26096 |
This theorem is referenced by: elplyd 26110 ply1term 26112 ply0 26116 plyaddlem 26123 plymullem 26124 plyco 26149 plycj 26186 |
Copyright terms: Public domain | W3C validator |