| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plyun0 | Structured version Visualization version GIF version | ||
| Description: The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| plyun0 | ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11166 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
| 2 | snssi 4772 | . . . . . . 7 ⊢ (0 ∈ ℂ → {0} ⊆ ℂ) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ {0} ⊆ ℂ |
| 4 | 3 | biantru 529 | . . . . 5 ⊢ (𝑆 ⊆ ℂ ↔ (𝑆 ⊆ ℂ ∧ {0} ⊆ ℂ)) |
| 5 | unss 4153 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ {0} ⊆ ℂ) ↔ (𝑆 ∪ {0}) ⊆ ℂ) | |
| 6 | 4, 5 | bitr2i 276 | . . . 4 ⊢ ((𝑆 ∪ {0}) ⊆ ℂ ↔ 𝑆 ⊆ ℂ) |
| 7 | unass 4135 | . . . . . . . 8 ⊢ ((𝑆 ∪ {0}) ∪ {0}) = (𝑆 ∪ ({0} ∪ {0})) | |
| 8 | unidm 4120 | . . . . . . . . 9 ⊢ ({0} ∪ {0}) = {0} | |
| 9 | 8 | uneq2i 4128 | . . . . . . . 8 ⊢ (𝑆 ∪ ({0} ∪ {0})) = (𝑆 ∪ {0}) |
| 10 | 7, 9 | eqtri 2752 | . . . . . . 7 ⊢ ((𝑆 ∪ {0}) ∪ {0}) = (𝑆 ∪ {0}) |
| 11 | 10 | oveq1i 7397 | . . . . . 6 ⊢ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0) = ((𝑆 ∪ {0}) ↑m ℕ0) |
| 12 | 11 | rexeqi 3298 | . . . . 5 ⊢ (∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 13 | 12 | rexbii 3076 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 14 | 6, 13 | anbi12i 628 | . . 3 ⊢ (((𝑆 ∪ {0}) ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 15 | elply 26100 | . . 3 ⊢ (𝑓 ∈ (Poly‘(𝑆 ∪ {0})) ↔ ((𝑆 ∪ {0}) ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
| 16 | elply 26100 | . . 3 ⊢ (𝑓 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
| 17 | 14, 15, 16 | 3bitr4i 303 | . 2 ⊢ (𝑓 ∈ (Poly‘(𝑆 ∪ {0})) ↔ 𝑓 ∈ (Poly‘𝑆)) |
| 18 | 17 | eqriv 2726 | 1 ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∪ cun 3912 ⊆ wss 3914 {csn 4589 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 ℂcc 11066 0cc0 11068 · cmul 11073 ℕ0cn0 12442 ...cfz 13468 ↑cexp 14026 Σcsu 15652 Polycply 26089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-n0 12443 df-ply 26093 |
| This theorem is referenced by: elplyd 26107 ply1term 26109 ply0 26113 plyaddlem 26120 plymullem 26121 plyco 26146 plycj 26183 plycjOLD 26185 |
| Copyright terms: Public domain | W3C validator |