MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyun0 Structured version   Visualization version   GIF version

Theorem plyun0 26100
Description: The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyun0 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)

Proof of Theorem plyun0
Dummy variables 𝑘 𝑎 𝑛 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 11107 . . . . . . 7 0 ∈ ℂ
2 snssi 4759 . . . . . . 7 (0 ∈ ℂ → {0} ⊆ ℂ)
31, 2ax-mp 5 . . . . . 6 {0} ⊆ ℂ
43biantru 529 . . . . 5 (𝑆 ⊆ ℂ ↔ (𝑆 ⊆ ℂ ∧ {0} ⊆ ℂ))
5 unss 4141 . . . . 5 ((𝑆 ⊆ ℂ ∧ {0} ⊆ ℂ) ↔ (𝑆 ∪ {0}) ⊆ ℂ)
64, 5bitr2i 276 . . . 4 ((𝑆 ∪ {0}) ⊆ ℂ ↔ 𝑆 ⊆ ℂ)
7 unass 4123 . . . . . . . 8 ((𝑆 ∪ {0}) ∪ {0}) = (𝑆 ∪ ({0} ∪ {0}))
8 unidm 4108 . . . . . . . . 9 ({0} ∪ {0}) = {0}
98uneq2i 4116 . . . . . . . 8 (𝑆 ∪ ({0} ∪ {0})) = (𝑆 ∪ {0})
107, 9eqtri 2752 . . . . . . 7 ((𝑆 ∪ {0}) ∪ {0}) = (𝑆 ∪ {0})
1110oveq1i 7359 . . . . . 6 (((𝑆 ∪ {0}) ∪ {0}) ↑m0) = ((𝑆 ∪ {0}) ↑m0)
1211rexeqi 3288 . . . . 5 (∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
1312rexbii 3076 . . . 4 (∃𝑛 ∈ ℕ0𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
146, 13anbi12i 628 . . 3 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
15 elply 26098 . . 3 (𝑓 ∈ (Poly‘(𝑆 ∪ {0})) ↔ ((𝑆 ∪ {0}) ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
16 elply 26098 . . 3 (𝑓 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
1714, 15, 163bitr4i 303 . 2 (𝑓 ∈ (Poly‘(𝑆 ∪ {0})) ↔ 𝑓 ∈ (Poly‘𝑆))
1817eqriv 2726 1 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wrex 3053  cun 3901  wss 3903  {csn 4577  cmpt 5173  cfv 6482  (class class class)co 7349  m cmap 8753  cc 11007  0cc0 11009   · cmul 11014  0cn0 12384  ...cfz 13410  cexp 13968  Σcsu 15593  Polycply 26087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-mulcl 11071  ax-i2m1 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-nn 12129  df-n0 12385  df-ply 26091
This theorem is referenced by:  elplyd  26105  ply1term  26107  ply0  26111  plyaddlem  26118  plymullem  26119  plyco  26144  plycj  26181  plycjOLD  26183
  Copyright terms: Public domain W3C validator