MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyun0 Structured version   Visualization version   GIF version

Theorem plyun0 26139
Description: The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyun0 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)

Proof of Theorem plyun0
Dummy variables 𝑘 𝑎 𝑛 𝑧 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 11219 . . . . . . 7 0 ∈ ℂ
2 snssi 4781 . . . . . . 7 (0 ∈ ℂ → {0} ⊆ ℂ)
31, 2ax-mp 5 . . . . . 6 {0} ⊆ ℂ
43biantru 529 . . . . 5 (𝑆 ⊆ ℂ ↔ (𝑆 ⊆ ℂ ∧ {0} ⊆ ℂ))
5 unss 4163 . . . . 5 ((𝑆 ⊆ ℂ ∧ {0} ⊆ ℂ) ↔ (𝑆 ∪ {0}) ⊆ ℂ)
64, 5bitr2i 276 . . . 4 ((𝑆 ∪ {0}) ⊆ ℂ ↔ 𝑆 ⊆ ℂ)
7 unass 4145 . . . . . . . 8 ((𝑆 ∪ {0}) ∪ {0}) = (𝑆 ∪ ({0} ∪ {0}))
8 unidm 4130 . . . . . . . . 9 ({0} ∪ {0}) = {0}
98uneq2i 4138 . . . . . . . 8 (𝑆 ∪ ({0} ∪ {0})) = (𝑆 ∪ {0})
107, 9eqtri 2757 . . . . . . 7 ((𝑆 ∪ {0}) ∪ {0}) = (𝑆 ∪ {0})
1110oveq1i 7409 . . . . . 6 (((𝑆 ∪ {0}) ∪ {0}) ↑m0) = ((𝑆 ∪ {0}) ↑m0)
1211rexeqi 3302 . . . . 5 (∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
1312rexbii 3082 . . . 4 (∃𝑛 ∈ ℕ0𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
146, 13anbi12i 628 . . 3 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
15 elply 26137 . . 3 (𝑓 ∈ (Poly‘(𝑆 ∪ {0})) ↔ ((𝑆 ∪ {0}) ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
16 elply 26137 . . 3 (𝑓 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
1714, 15, 163bitr4i 303 . 2 (𝑓 ∈ (Poly‘(𝑆 ∪ {0})) ↔ 𝑓 ∈ (Poly‘𝑆))
1817eqriv 2731 1 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2107  wrex 3059  cun 3922  wss 3924  {csn 4599  cmpt 5198  cfv 6527  (class class class)co 7399  m cmap 8834  cc 11119  0cc0 11121   · cmul 11126  0cn0 12493  ...cfz 13513  cexp 14068  Σcsu 15689  Polycply 26126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-mulcl 11183  ax-i2m1 11189
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-om 7856  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-nn 12233  df-n0 12494  df-ply 26130
This theorem is referenced by:  elplyd  26144  ply1term  26146  ply0  26150  plyaddlem  26157  plymullem  26158  plyco  26183  plycj  26220  plycjOLD  26222
  Copyright terms: Public domain W3C validator