| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plyun0 | Structured version Visualization version GIF version | ||
| Description: The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| plyun0 | ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 11232 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
| 2 | snssi 4789 | . . . . . . 7 ⊢ (0 ∈ ℂ → {0} ⊆ ℂ) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ {0} ⊆ ℂ |
| 4 | 3 | biantru 529 | . . . . 5 ⊢ (𝑆 ⊆ ℂ ↔ (𝑆 ⊆ ℂ ∧ {0} ⊆ ℂ)) |
| 5 | unss 4170 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ {0} ⊆ ℂ) ↔ (𝑆 ∪ {0}) ⊆ ℂ) | |
| 6 | 4, 5 | bitr2i 276 | . . . 4 ⊢ ((𝑆 ∪ {0}) ⊆ ℂ ↔ 𝑆 ⊆ ℂ) |
| 7 | unass 4152 | . . . . . . . 8 ⊢ ((𝑆 ∪ {0}) ∪ {0}) = (𝑆 ∪ ({0} ∪ {0})) | |
| 8 | unidm 4137 | . . . . . . . . 9 ⊢ ({0} ∪ {0}) = {0} | |
| 9 | 8 | uneq2i 4145 | . . . . . . . 8 ⊢ (𝑆 ∪ ({0} ∪ {0})) = (𝑆 ∪ {0}) |
| 10 | 7, 9 | eqtri 2759 | . . . . . . 7 ⊢ ((𝑆 ∪ {0}) ∪ {0}) = (𝑆 ∪ {0}) |
| 11 | 10 | oveq1i 7420 | . . . . . 6 ⊢ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0) = ((𝑆 ∪ {0}) ↑m ℕ0) |
| 12 | 11 | rexeqi 3308 | . . . . 5 ⊢ (∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 13 | 12 | rexbii 3084 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 14 | 6, 13 | anbi12i 628 | . . 3 ⊢ (((𝑆 ∪ {0}) ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 15 | elply 26157 | . . 3 ⊢ (𝑓 ∈ (Poly‘(𝑆 ∪ {0})) ↔ ((𝑆 ∪ {0}) ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
| 16 | elply 26157 | . . 3 ⊢ (𝑓 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
| 17 | 14, 15, 16 | 3bitr4i 303 | . 2 ⊢ (𝑓 ∈ (Poly‘(𝑆 ∪ {0})) ↔ 𝑓 ∈ (Poly‘𝑆)) |
| 18 | 17 | eqriv 2733 | 1 ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ∪ cun 3929 ⊆ wss 3931 {csn 4606 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 ℂcc 11132 0cc0 11134 · cmul 11139 ℕ0cn0 12506 ...cfz 13529 ↑cexp 14084 Σcsu 15707 Polycply 26146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-mulcl 11196 ax-i2m1 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 df-n0 12507 df-ply 26150 |
| This theorem is referenced by: elplyd 26164 ply1term 26166 ply0 26170 plyaddlem 26177 plymullem 26178 plyco 26203 plycj 26240 plycjOLD 26242 |
| Copyright terms: Public domain | W3C validator |