MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1pval3 Structured version   Visualization version   GIF version

Theorem ig1pval3 25350
Description: Characterizing properties of the monic generator of a nonzero ideal of polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.)
Hypotheses
Ref Expression
ig1pval.p 𝑃 = (Poly1𝑅)
ig1pval.g 𝐺 = (idlGen1p𝑅)
ig1pval3.z 0 = (0g𝑃)
ig1pval3.u 𝑈 = (LIdeal‘𝑃)
ig1pval3.d 𝐷 = ( deg1𝑅)
ig1pval3.m 𝑀 = (Monic1p𝑅)
Assertion
Ref Expression
ig1pval3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))

Proof of Theorem ig1pval3
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 ig1pval.p . . . . . 6 𝑃 = (Poly1𝑅)
2 ig1pval.g . . . . . 6 𝐺 = (idlGen1p𝑅)
3 ig1pval3.z . . . . . 6 0 = (0g𝑃)
4 ig1pval3.u . . . . . 6 𝑈 = (LIdeal‘𝑃)
5 ig1pval3.d . . . . . 6 𝐷 = ( deg1𝑅)
6 ig1pval3.m . . . . . 6 𝑀 = (Monic1p𝑅)
71, 2, 3, 4, 5, 6ig1pval 25348 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → (𝐺𝐼) = if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))))
873adant3 1131 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐺𝐼) = if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))))
9 simp3 1137 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 })
109neneqd 2950 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ¬ 𝐼 = { 0 })
1110iffalsed 4476 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) = (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
128, 11eqtrd 2780 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐺𝐼) = (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
131, 4, 3, 6, 5ig1peu 25347 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
14 riotacl2 7246 . . . 4 (∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ∈ {𝑔 ∈ (𝐼𝑀) ∣ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )})
1513, 14syl 17 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ∈ {𝑔 ∈ (𝐼𝑀) ∣ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )})
1612, 15eqeltrd 2841 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐺𝐼) ∈ {𝑔 ∈ (𝐼𝑀) ∣ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )})
17 elin 3908 . . . 4 ((𝐺𝐼) ∈ (𝐼𝑀) ↔ ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀))
1817anbi1i 624 . . 3 (((𝐺𝐼) ∈ (𝐼𝑀) ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ↔ (((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀) ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
19 fveqeq2 6780 . . . 4 (𝑔 = (𝐺𝐼) → ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ↔ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
2019elrab 3626 . . 3 ((𝐺𝐼) ∈ {𝑔 ∈ (𝐼𝑀) ∣ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )} ↔ ((𝐺𝐼) ∈ (𝐼𝑀) ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
21 df-3an 1088 . . 3 (((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ↔ (((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀) ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
2218, 20, 213bitr4i 303 . 2 ((𝐺𝐼) ∈ {𝑔 ∈ (𝐼𝑀) ∣ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )} ↔ ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
2316, 22sylib 217 1 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  ∃!wreu 3068  {crab 3070  cdif 3889  cin 3891  ifcif 4465  {csn 4567  cima 5593  cfv 6432  crio 7228  infcinf 9188  cr 10881   < clt 11020  0gc0g 17161  DivRingcdr 20002  LIdealclidl 20443  Poly1cpl1 21359   deg1 cdg1 25227  Monic1pcmn1 25301  idlGen1pcig1p 25305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960  ax-addf 10961  ax-mulf 10962
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-of 7528  df-ofr 7529  df-om 7708  df-1st 7825  df-2nd 7826  df-supp 7970  df-tpos 8034  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-map 8609  df-pm 8610  df-ixp 8678  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-fsupp 9117  df-sup 9189  df-inf 9190  df-oi 9257  df-card 9708  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-n0 12245  df-z 12331  df-dec 12449  df-uz 12594  df-fz 13251  df-fzo 13394  df-seq 13733  df-hash 14056  df-struct 16859  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ress 16953  df-plusg 16986  df-mulr 16987  df-starv 16988  df-sca 16989  df-vsca 16990  df-ip 16991  df-tset 16992  df-ple 16993  df-ds 16995  df-unif 16996  df-0g 17163  df-gsum 17164  df-mre 17306  df-mrc 17307  df-acs 17309  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-mhm 18441  df-submnd 18442  df-grp 18591  df-minusg 18592  df-sbg 18593  df-mulg 18712  df-subg 18763  df-ghm 18843  df-cntz 18934  df-cmn 19399  df-abl 19400  df-mgp 19732  df-ur 19749  df-ring 19796  df-cring 19797  df-oppr 19873  df-dvdsr 19894  df-unit 19895  df-invr 19925  df-drng 20004  df-subrg 20033  df-lmod 20136  df-lss 20205  df-sra 20445  df-rgmod 20446  df-lidl 20447  df-rlreg 20565  df-cnfld 20609  df-ascl 21073  df-psr 21123  df-mvr 21124  df-mpl 21125  df-opsr 21127  df-psr1 21362  df-vr1 21363  df-ply1 21364  df-coe1 21365  df-mdeg 25228  df-deg1 25229  df-mon1 25306  df-uc1p 25307  df-ig1p 25310
This theorem is referenced by:  ig1pcl  25351  ig1pdvds  25352
  Copyright terms: Public domain W3C validator