![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ig1pval3 | Structured version Visualization version GIF version |
Description: Characterizing properties of the monic generator of a nonzero ideal of polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.) |
Ref | Expression |
---|---|
ig1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ig1pval.g | ⊢ 𝐺 = (idlGen1p‘𝑅) |
ig1pval3.z | ⊢ 0 = (0g‘𝑃) |
ig1pval3.u | ⊢ 𝑈 = (LIdeal‘𝑃) |
ig1pval3.d | ⊢ 𝐷 = (deg1‘𝑅) |
ig1pval3.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
Ref | Expression |
---|---|
ig1pval3 | ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ig1pval.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | ig1pval.g | . . . . . 6 ⊢ 𝐺 = (idlGen1p‘𝑅) | |
3 | ig1pval3.z | . . . . . 6 ⊢ 0 = (0g‘𝑃) | |
4 | ig1pval3.u | . . . . . 6 ⊢ 𝑈 = (LIdeal‘𝑃) | |
5 | ig1pval3.d | . . . . . 6 ⊢ 𝐷 = (deg1‘𝑅) | |
6 | ig1pval3.m | . . . . . 6 ⊢ 𝑀 = (Monic1p‘𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | ig1pval 26229 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → (𝐺‘𝐼) = if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))) |
8 | 7 | 3adant3 1131 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (𝐺‘𝐼) = if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))) |
9 | simp3 1137 | . . . . . 6 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 }) | |
10 | 9 | neneqd 2942 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ¬ 𝐼 = { 0 }) |
11 | 10 | iffalsed 4541 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) = (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
12 | 8, 11 | eqtrd 2774 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (𝐺‘𝐼) = (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
13 | 1, 4, 3, 6, 5 | ig1peu 26228 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) |
14 | riotacl2 7403 | . . . 4 ⊢ (∃!𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ∈ {𝑔 ∈ (𝐼 ∩ 𝑀) ∣ (𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )}) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ∈ {𝑔 ∈ (𝐼 ∩ 𝑀) ∣ (𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )}) |
16 | 12, 15 | eqeltrd 2838 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (𝐺‘𝐼) ∈ {𝑔 ∈ (𝐼 ∩ 𝑀) ∣ (𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )}) |
17 | elin 3978 | . . . 4 ⊢ ((𝐺‘𝐼) ∈ (𝐼 ∩ 𝑀) ↔ ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀)) | |
18 | 17 | anbi1i 624 | . . 3 ⊢ (((𝐺‘𝐼) ∈ (𝐼 ∩ 𝑀) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ↔ (((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
19 | fveqeq2 6915 | . . . 4 ⊢ (𝑔 = (𝐺‘𝐼) → ((𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ↔ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) | |
20 | 19 | elrab 3694 | . . 3 ⊢ ((𝐺‘𝐼) ∈ {𝑔 ∈ (𝐼 ∩ 𝑀) ∣ (𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )} ↔ ((𝐺‘𝐼) ∈ (𝐼 ∩ 𝑀) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
21 | df-3an 1088 | . . 3 ⊢ (((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ↔ (((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) | |
22 | 18, 20, 21 | 3bitr4i 303 | . 2 ⊢ ((𝐺‘𝐼) ∈ {𝑔 ∈ (𝐼 ∩ 𝑀) ∣ (𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )} ↔ ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
23 | 16, 22 | sylib 218 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∃!wreu 3375 {crab 3432 ∖ cdif 3959 ∩ cin 3961 ifcif 4530 {csn 4630 “ cima 5691 ‘cfv 6562 ℩crio 7386 infcinf 9478 ℝcr 11151 < clt 11292 0gc0g 17485 DivRingcdr 20745 LIdealclidl 21233 Poly1cpl1 22193 deg1cdg1 26107 Monic1pcmn1 26179 idlGen1pcig1p 26183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-ofr 7697 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-tpos 8249 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-pm 8867 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-fzo 13691 df-seq 14039 df-hash 14366 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-mhm 18808 df-submnd 18809 df-grp 18966 df-minusg 18967 df-sbg 18968 df-mulg 19098 df-subg 19153 df-ghm 19243 df-cntz 19347 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-cring 20253 df-oppr 20350 df-dvdsr 20373 df-unit 20374 df-invr 20404 df-subrng 20562 df-subrg 20586 df-rlreg 20710 df-drng 20747 df-lmod 20876 df-lss 20947 df-sra 21189 df-rgmod 21190 df-lidl 21235 df-cnfld 21382 df-ascl 21892 df-psr 21946 df-mvr 21947 df-mpl 21948 df-opsr 21950 df-psr1 22196 df-vr1 22197 df-ply1 22198 df-coe1 22199 df-mdeg 26108 df-deg1 26109 df-mon1 26184 df-uc1p 26185 df-ig1p 26188 |
This theorem is referenced by: ig1pcl 26232 ig1pdvds 26233 ig1pmindeg 33601 minplym1p 33720 |
Copyright terms: Public domain | W3C validator |