![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ig1pval3 | Structured version Visualization version GIF version |
Description: Characterizing properties of the monic generator of a nonzero ideal of polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.) |
Ref | Expression |
---|---|
ig1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ig1pval.g | ⊢ 𝐺 = (idlGen1p‘𝑅) |
ig1pval3.z | ⊢ 0 = (0g‘𝑃) |
ig1pval3.u | ⊢ 𝑈 = (LIdeal‘𝑃) |
ig1pval3.d | ⊢ 𝐷 = (deg1‘𝑅) |
ig1pval3.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
Ref | Expression |
---|---|
ig1pval3 | ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ig1pval.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | ig1pval.g | . . . . . 6 ⊢ 𝐺 = (idlGen1p‘𝑅) | |
3 | ig1pval3.z | . . . . . 6 ⊢ 0 = (0g‘𝑃) | |
4 | ig1pval3.u | . . . . . 6 ⊢ 𝑈 = (LIdeal‘𝑃) | |
5 | ig1pval3.d | . . . . . 6 ⊢ 𝐷 = (deg1‘𝑅) | |
6 | ig1pval3.m | . . . . . 6 ⊢ 𝑀 = (Monic1p‘𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | ig1pval 26195 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → (𝐺‘𝐼) = if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))) |
8 | 7 | 3adant3 1129 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (𝐺‘𝐼) = if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))) |
9 | simp3 1135 | . . . . . 6 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 }) | |
10 | 9 | neneqd 2934 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ¬ 𝐼 = { 0 }) |
11 | 10 | iffalsed 4543 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) = (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
12 | 8, 11 | eqtrd 2765 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (𝐺‘𝐼) = (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
13 | 1, 4, 3, 6, 5 | ig1peu 26194 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) |
14 | riotacl2 7396 | . . . 4 ⊢ (∃!𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ∈ {𝑔 ∈ (𝐼 ∩ 𝑀) ∣ (𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )}) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ∈ {𝑔 ∈ (𝐼 ∩ 𝑀) ∣ (𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )}) |
16 | 12, 15 | eqeltrd 2825 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (𝐺‘𝐼) ∈ {𝑔 ∈ (𝐼 ∩ 𝑀) ∣ (𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )}) |
17 | elin 3962 | . . . 4 ⊢ ((𝐺‘𝐼) ∈ (𝐼 ∩ 𝑀) ↔ ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀)) | |
18 | 17 | anbi1i 622 | . . 3 ⊢ (((𝐺‘𝐼) ∈ (𝐼 ∩ 𝑀) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ↔ (((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
19 | fveqeq2 6909 | . . . 4 ⊢ (𝑔 = (𝐺‘𝐼) → ((𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ↔ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) | |
20 | 19 | elrab 3680 | . . 3 ⊢ ((𝐺‘𝐼) ∈ {𝑔 ∈ (𝐼 ∩ 𝑀) ∣ (𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )} ↔ ((𝐺‘𝐼) ∈ (𝐼 ∩ 𝑀) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
21 | df-3an 1086 | . . 3 ⊢ (((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ↔ (((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) | |
22 | 18, 20, 21 | 3bitr4i 302 | . 2 ⊢ ((𝐺‘𝐼) ∈ {𝑔 ∈ (𝐼 ∩ 𝑀) ∣ (𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )} ↔ ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
23 | 16, 22 | sylib 217 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∃!wreu 3361 {crab 3418 ∖ cdif 3943 ∩ cin 3945 ifcif 4532 {csn 4632 “ cima 5684 ‘cfv 6553 ℩crio 7378 infcinf 9480 ℝcr 11153 < clt 11294 0gc0g 17449 DivRingcdr 20664 LIdealclidl 21142 Poly1cpl1 22158 deg1cdg1 26070 Monic1pcmn1 26145 idlGen1pcig1p 26149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 ax-pre-sup 11232 ax-addf 11233 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-se 5637 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-of 7689 df-ofr 7690 df-om 7876 df-1st 8002 df-2nd 8003 df-supp 8174 df-tpos 8240 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-2o 8496 df-er 8733 df-map 8856 df-pm 8857 df-ixp 8926 df-en 8974 df-dom 8975 df-sdom 8976 df-fin 8977 df-fsupp 9402 df-sup 9481 df-inf 9482 df-oi 9549 df-card 9978 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-nn 12260 df-2 12322 df-3 12323 df-4 12324 df-5 12325 df-6 12326 df-7 12327 df-8 12328 df-9 12329 df-n0 12520 df-z 12606 df-dec 12725 df-uz 12870 df-fz 13534 df-fzo 13677 df-seq 14017 df-hash 14343 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-starv 17276 df-sca 17277 df-vsca 17278 df-ip 17279 df-tset 17280 df-ple 17281 df-ds 17283 df-unif 17284 df-hom 17285 df-cco 17286 df-0g 17451 df-gsum 17452 df-prds 17457 df-pws 17459 df-mre 17594 df-mrc 17595 df-acs 17597 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-mhm 18768 df-submnd 18769 df-grp 18926 df-minusg 18927 df-sbg 18928 df-mulg 19057 df-subg 19112 df-ghm 19202 df-cntz 19306 df-cmn 19775 df-abl 19776 df-mgp 20113 df-rng 20131 df-ur 20160 df-ring 20213 df-cring 20214 df-oppr 20311 df-dvdsr 20334 df-unit 20335 df-invr 20365 df-subrng 20523 df-subrg 20548 df-drng 20666 df-lmod 20785 df-lss 20856 df-sra 21098 df-rgmod 21099 df-lidl 21144 df-rlreg 21276 df-cnfld 21336 df-ascl 21845 df-psr 21898 df-mvr 21899 df-mpl 21900 df-opsr 21902 df-psr1 22161 df-vr1 22162 df-ply1 22163 df-coe1 22164 df-mdeg 26071 df-deg1 26072 df-mon1 26150 df-uc1p 26151 df-ig1p 26154 |
This theorem is referenced by: ig1pcl 26198 ig1pdvds 26199 ig1pmindeg 33441 minplym1p 33552 |
Copyright terms: Public domain | W3C validator |