![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ig1pval3 | Structured version Visualization version GIF version |
Description: Characterizing properties of the monic generator of a nonzero ideal of polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.) |
Ref | Expression |
---|---|
ig1pval.p | β’ π = (Poly1βπ ) |
ig1pval.g | β’ πΊ = (idlGen1pβπ ) |
ig1pval3.z | β’ 0 = (0gβπ) |
ig1pval3.u | β’ π = (LIdealβπ) |
ig1pval3.d | β’ π· = ( deg1 βπ ) |
ig1pval3.m | β’ π = (Monic1pβπ ) |
Ref | Expression |
---|---|
ig1pval3 | β’ ((π β DivRing β§ πΌ β π β§ πΌ β { 0 }) β ((πΊβπΌ) β πΌ β§ (πΊβπΌ) β π β§ (π·β(πΊβπΌ)) = inf((π· β (πΌ β { 0 })), β, < ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ig1pval.p | . . . . . 6 β’ π = (Poly1βπ ) | |
2 | ig1pval.g | . . . . . 6 β’ πΊ = (idlGen1pβπ ) | |
3 | ig1pval3.z | . . . . . 6 β’ 0 = (0gβπ) | |
4 | ig1pval3.u | . . . . . 6 β’ π = (LIdealβπ) | |
5 | ig1pval3.d | . . . . . 6 β’ π· = ( deg1 βπ ) | |
6 | ig1pval3.m | . . . . . 6 β’ π = (Monic1pβπ ) | |
7 | 1, 2, 3, 4, 5, 6 | ig1pval 25681 | . . . . 5 β’ ((π β DivRing β§ πΌ β π) β (πΊβπΌ) = if(πΌ = { 0 }, 0 , (β©π β (πΌ β© π)(π·βπ) = inf((π· β (πΌ β { 0 })), β, < )))) |
8 | 7 | 3adant3 1132 | . . . 4 β’ ((π β DivRing β§ πΌ β π β§ πΌ β { 0 }) β (πΊβπΌ) = if(πΌ = { 0 }, 0 , (β©π β (πΌ β© π)(π·βπ) = inf((π· β (πΌ β { 0 })), β, < )))) |
9 | simp3 1138 | . . . . . 6 β’ ((π β DivRing β§ πΌ β π β§ πΌ β { 0 }) β πΌ β { 0 }) | |
10 | 9 | neneqd 2945 | . . . . 5 β’ ((π β DivRing β§ πΌ β π β§ πΌ β { 0 }) β Β¬ πΌ = { 0 }) |
11 | 10 | iffalsed 4538 | . . . 4 β’ ((π β DivRing β§ πΌ β π β§ πΌ β { 0 }) β if(πΌ = { 0 }, 0 , (β©π β (πΌ β© π)(π·βπ) = inf((π· β (πΌ β { 0 })), β, < ))) = (β©π β (πΌ β© π)(π·βπ) = inf((π· β (πΌ β { 0 })), β, < ))) |
12 | 8, 11 | eqtrd 2772 | . . 3 β’ ((π β DivRing β§ πΌ β π β§ πΌ β { 0 }) β (πΊβπΌ) = (β©π β (πΌ β© π)(π·βπ) = inf((π· β (πΌ β { 0 })), β, < ))) |
13 | 1, 4, 3, 6, 5 | ig1peu 25680 | . . . 4 β’ ((π β DivRing β§ πΌ β π β§ πΌ β { 0 }) β β!π β (πΌ β© π)(π·βπ) = inf((π· β (πΌ β { 0 })), β, < )) |
14 | riotacl2 7378 | . . . 4 β’ (β!π β (πΌ β© π)(π·βπ) = inf((π· β (πΌ β { 0 })), β, < ) β (β©π β (πΌ β© π)(π·βπ) = inf((π· β (πΌ β { 0 })), β, < )) β {π β (πΌ β© π) β£ (π·βπ) = inf((π· β (πΌ β { 0 })), β, < )}) | |
15 | 13, 14 | syl 17 | . . 3 β’ ((π β DivRing β§ πΌ β π β§ πΌ β { 0 }) β (β©π β (πΌ β© π)(π·βπ) = inf((π· β (πΌ β { 0 })), β, < )) β {π β (πΌ β© π) β£ (π·βπ) = inf((π· β (πΌ β { 0 })), β, < )}) |
16 | 12, 15 | eqeltrd 2833 | . 2 β’ ((π β DivRing β§ πΌ β π β§ πΌ β { 0 }) β (πΊβπΌ) β {π β (πΌ β© π) β£ (π·βπ) = inf((π· β (πΌ β { 0 })), β, < )}) |
17 | elin 3963 | . . . 4 β’ ((πΊβπΌ) β (πΌ β© π) β ((πΊβπΌ) β πΌ β§ (πΊβπΌ) β π)) | |
18 | 17 | anbi1i 624 | . . 3 β’ (((πΊβπΌ) β (πΌ β© π) β§ (π·β(πΊβπΌ)) = inf((π· β (πΌ β { 0 })), β, < )) β (((πΊβπΌ) β πΌ β§ (πΊβπΌ) β π) β§ (π·β(πΊβπΌ)) = inf((π· β (πΌ β { 0 })), β, < ))) |
19 | fveqeq2 6897 | . . . 4 β’ (π = (πΊβπΌ) β ((π·βπ) = inf((π· β (πΌ β { 0 })), β, < ) β (π·β(πΊβπΌ)) = inf((π· β (πΌ β { 0 })), β, < ))) | |
20 | 19 | elrab 3682 | . . 3 β’ ((πΊβπΌ) β {π β (πΌ β© π) β£ (π·βπ) = inf((π· β (πΌ β { 0 })), β, < )} β ((πΊβπΌ) β (πΌ β© π) β§ (π·β(πΊβπΌ)) = inf((π· β (πΌ β { 0 })), β, < ))) |
21 | df-3an 1089 | . . 3 β’ (((πΊβπΌ) β πΌ β§ (πΊβπΌ) β π β§ (π·β(πΊβπΌ)) = inf((π· β (πΌ β { 0 })), β, < )) β (((πΊβπΌ) β πΌ β§ (πΊβπΌ) β π) β§ (π·β(πΊβπΌ)) = inf((π· β (πΌ β { 0 })), β, < ))) | |
22 | 18, 20, 21 | 3bitr4i 302 | . 2 β’ ((πΊβπΌ) β {π β (πΌ β© π) β£ (π·βπ) = inf((π· β (πΌ β { 0 })), β, < )} β ((πΊβπΌ) β πΌ β§ (πΊβπΌ) β π β§ (π·β(πΊβπΌ)) = inf((π· β (πΌ β { 0 })), β, < ))) |
23 | 16, 22 | sylib 217 | 1 β’ ((π β DivRing β§ πΌ β π β§ πΌ β { 0 }) β ((πΊβπΌ) β πΌ β§ (πΊβπΌ) β π β§ (π·β(πΊβπΌ)) = inf((π· β (πΌ β { 0 })), β, < ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 β!wreu 3374 {crab 3432 β cdif 3944 β© cin 3946 ifcif 4527 {csn 4627 β cima 5678 βcfv 6540 β©crio 7360 infcinf 9432 βcr 11105 < clt 11244 0gc0g 17381 DivRingcdr 20307 LIdealclidl 20775 Poly1cpl1 21692 deg1 cdg1 25560 Monic1pcmn1 25634 idlGen1pcig1p 25638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-ofr 7667 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-0g 17383 df-gsum 17384 df-prds 17389 df-pws 17391 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-ghm 19084 df-cntz 19175 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-cring 20052 df-oppr 20142 df-dvdsr 20163 df-unit 20164 df-invr 20194 df-drng 20309 df-subrg 20353 df-lmod 20465 df-lss 20535 df-sra 20777 df-rgmod 20778 df-lidl 20779 df-rlreg 20891 df-cnfld 20937 df-ascl 21401 df-psr 21453 df-mvr 21454 df-mpl 21455 df-opsr 21457 df-psr1 21695 df-vr1 21696 df-ply1 21697 df-coe1 21698 df-mdeg 25561 df-deg1 25562 df-mon1 25639 df-uc1p 25640 df-ig1p 25643 |
This theorem is referenced by: ig1pcl 25684 ig1pdvds 25685 ig1pmindeg 32659 |
Copyright terms: Public domain | W3C validator |