Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ig1pval3 | Structured version Visualization version GIF version |
Description: Characterizing properties of the monic generator of a nonzero ideal of polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.) |
Ref | Expression |
---|---|
ig1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ig1pval.g | ⊢ 𝐺 = (idlGen1p‘𝑅) |
ig1pval3.z | ⊢ 0 = (0g‘𝑃) |
ig1pval3.u | ⊢ 𝑈 = (LIdeal‘𝑃) |
ig1pval3.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
ig1pval3.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
Ref | Expression |
---|---|
ig1pval3 | ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ig1pval.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | ig1pval.g | . . . . . 6 ⊢ 𝐺 = (idlGen1p‘𝑅) | |
3 | ig1pval3.z | . . . . . 6 ⊢ 0 = (0g‘𝑃) | |
4 | ig1pval3.u | . . . . . 6 ⊢ 𝑈 = (LIdeal‘𝑃) | |
5 | ig1pval3.d | . . . . . 6 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
6 | ig1pval3.m | . . . . . 6 ⊢ 𝑀 = (Monic1p‘𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | ig1pval 25348 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → (𝐺‘𝐼) = if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))) |
8 | 7 | 3adant3 1131 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (𝐺‘𝐼) = if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))) |
9 | simp3 1137 | . . . . . 6 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 }) | |
10 | 9 | neneqd 2950 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ¬ 𝐼 = { 0 }) |
11 | 10 | iffalsed 4476 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → if(𝐼 = { 0 }, 0 , (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) = (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
12 | 8, 11 | eqtrd 2780 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (𝐺‘𝐼) = (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
13 | 1, 4, 3, 6, 5 | ig1peu 25347 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) |
14 | riotacl2 7246 | . . . 4 ⊢ (∃!𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ∈ {𝑔 ∈ (𝐼 ∩ 𝑀) ∣ (𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )}) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (℩𝑔 ∈ (𝐼 ∩ 𝑀)(𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ∈ {𝑔 ∈ (𝐼 ∩ 𝑀) ∣ (𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )}) |
16 | 12, 15 | eqeltrd 2841 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → (𝐺‘𝐼) ∈ {𝑔 ∈ (𝐼 ∩ 𝑀) ∣ (𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )}) |
17 | elin 3908 | . . . 4 ⊢ ((𝐺‘𝐼) ∈ (𝐼 ∩ 𝑀) ↔ ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀)) | |
18 | 17 | anbi1i 624 | . . 3 ⊢ (((𝐺‘𝐼) ∈ (𝐼 ∩ 𝑀) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ↔ (((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
19 | fveqeq2 6780 | . . . 4 ⊢ (𝑔 = (𝐺‘𝐼) → ((𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ↔ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) | |
20 | 19 | elrab 3626 | . . 3 ⊢ ((𝐺‘𝐼) ∈ {𝑔 ∈ (𝐼 ∩ 𝑀) ∣ (𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )} ↔ ((𝐺‘𝐼) ∈ (𝐼 ∩ 𝑀) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
21 | df-3an 1088 | . . 3 ⊢ (((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ↔ (((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀) ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) | |
22 | 18, 20, 21 | 3bitr4i 303 | . 2 ⊢ ((𝐺‘𝐼) ∈ {𝑔 ∈ (𝐼 ∩ 𝑀) ∣ (𝐷‘𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )} ↔ ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
23 | 16, 22 | sylib 217 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺‘𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∃!wreu 3068 {crab 3070 ∖ cdif 3889 ∩ cin 3891 ifcif 4465 {csn 4567 “ cima 5593 ‘cfv 6432 ℩crio 7228 infcinf 9188 ℝcr 10881 < clt 11020 0gc0g 17161 DivRingcdr 20002 LIdealclidl 20443 Poly1cpl1 21359 deg1 cdg1 25227 Monic1pcmn1 25301 idlGen1pcig1p 25305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 ax-pre-sup 10960 ax-addf 10961 ax-mulf 10962 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-of 7528 df-ofr 7529 df-om 7708 df-1st 7825 df-2nd 7826 df-supp 7970 df-tpos 8034 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-1o 8289 df-er 8490 df-map 8609 df-pm 8610 df-ixp 8678 df-en 8726 df-dom 8727 df-sdom 8728 df-fin 8729 df-fsupp 9117 df-sup 9189 df-inf 9190 df-oi 9257 df-card 9708 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-nn 11985 df-2 12047 df-3 12048 df-4 12049 df-5 12050 df-6 12051 df-7 12052 df-8 12053 df-9 12054 df-n0 12245 df-z 12331 df-dec 12449 df-uz 12594 df-fz 13251 df-fzo 13394 df-seq 13733 df-hash 14056 df-struct 16859 df-sets 16876 df-slot 16894 df-ndx 16906 df-base 16924 df-ress 16953 df-plusg 16986 df-mulr 16987 df-starv 16988 df-sca 16989 df-vsca 16990 df-ip 16991 df-tset 16992 df-ple 16993 df-ds 16995 df-unif 16996 df-0g 17163 df-gsum 17164 df-mre 17306 df-mrc 17307 df-acs 17309 df-mgm 18337 df-sgrp 18386 df-mnd 18397 df-mhm 18441 df-submnd 18442 df-grp 18591 df-minusg 18592 df-sbg 18593 df-mulg 18712 df-subg 18763 df-ghm 18843 df-cntz 18934 df-cmn 19399 df-abl 19400 df-mgp 19732 df-ur 19749 df-ring 19796 df-cring 19797 df-oppr 19873 df-dvdsr 19894 df-unit 19895 df-invr 19925 df-drng 20004 df-subrg 20033 df-lmod 20136 df-lss 20205 df-sra 20445 df-rgmod 20446 df-lidl 20447 df-rlreg 20565 df-cnfld 20609 df-ascl 21073 df-psr 21123 df-mvr 21124 df-mpl 21125 df-opsr 21127 df-psr1 21362 df-vr1 21363 df-ply1 21364 df-coe1 21365 df-mdeg 25228 df-deg1 25229 df-mon1 25306 df-uc1p 25307 df-ig1p 25310 |
This theorem is referenced by: ig1pcl 25351 ig1pdvds 25352 |
Copyright terms: Public domain | W3C validator |