MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1pval3 Structured version   Visualization version   GIF version

Theorem ig1pval3 26116
Description: Characterizing properties of the monic generator of a nonzero ideal of polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.)
Hypotheses
Ref Expression
ig1pval.p 𝑃 = (Poly1𝑅)
ig1pval.g 𝐺 = (idlGen1p𝑅)
ig1pval3.z 0 = (0g𝑃)
ig1pval3.u 𝑈 = (LIdeal‘𝑃)
ig1pval3.d 𝐷 = (deg1𝑅)
ig1pval3.m 𝑀 = (Monic1p𝑅)
Assertion
Ref Expression
ig1pval3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))

Proof of Theorem ig1pval3
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 ig1pval.p . . . . . 6 𝑃 = (Poly1𝑅)
2 ig1pval.g . . . . . 6 𝐺 = (idlGen1p𝑅)
3 ig1pval3.z . . . . . 6 0 = (0g𝑃)
4 ig1pval3.u . . . . . 6 𝑈 = (LIdeal‘𝑃)
5 ig1pval3.d . . . . . 6 𝐷 = (deg1𝑅)
6 ig1pval3.m . . . . . 6 𝑀 = (Monic1p𝑅)
71, 2, 3, 4, 5, 6ig1pval 26114 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → (𝐺𝐼) = if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))))
873adant3 1132 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐺𝐼) = if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))))
9 simp3 1138 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 })
109neneqd 2930 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ¬ 𝐼 = { 0 })
1110iffalsed 4495 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) = (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
128, 11eqtrd 2764 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐺𝐼) = (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
131, 4, 3, 6, 5ig1peu 26113 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
14 riotacl2 7342 . . . 4 (∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ∈ {𝑔 ∈ (𝐼𝑀) ∣ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )})
1513, 14syl 17 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ∈ {𝑔 ∈ (𝐼𝑀) ∣ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )})
1612, 15eqeltrd 2828 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐺𝐼) ∈ {𝑔 ∈ (𝐼𝑀) ∣ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )})
17 elin 3927 . . . 4 ((𝐺𝐼) ∈ (𝐼𝑀) ↔ ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀))
1817anbi1i 624 . . 3 (((𝐺𝐼) ∈ (𝐼𝑀) ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ↔ (((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀) ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
19 fveqeq2 6849 . . . 4 (𝑔 = (𝐺𝐼) → ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ↔ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
2019elrab 3656 . . 3 ((𝐺𝐼) ∈ {𝑔 ∈ (𝐼𝑀) ∣ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )} ↔ ((𝐺𝐼) ∈ (𝐼𝑀) ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
21 df-3an 1088 . . 3 (((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ↔ (((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀) ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
2218, 20, 213bitr4i 303 . 2 ((𝐺𝐼) ∈ {𝑔 ∈ (𝐼𝑀) ∣ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )} ↔ ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
2316, 22sylib 218 1 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  ∃!wreu 3349  {crab 3402  cdif 3908  cin 3910  ifcif 4484  {csn 4585  cima 5634  cfv 6499  crio 7325  infcinf 9368  cr 11043   < clt 11184  0gc0g 17378  DivRingcdr 20649  LIdealclidl 21148  Poly1cpl1 22094  deg1cdg1 25992  Monic1pcmn1 26064  idlGen1pcig1p 26068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-subrng 20466  df-subrg 20490  df-rlreg 20614  df-drng 20651  df-lmod 20800  df-lss 20870  df-sra 21112  df-rgmod 21113  df-lidl 21150  df-cnfld 21297  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-coe1 22100  df-mdeg 25993  df-deg1 25994  df-mon1 26069  df-uc1p 26070  df-ig1p 26073
This theorem is referenced by:  ig1pcl  26117  ig1pdvds  26118  ig1pmindeg  33560  minplym1p  33696  minplynzm1p  33697
  Copyright terms: Public domain W3C validator