MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidinv2 Structured version   Visualization version   GIF version

Theorem grpoidinv2 30547
Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpoidval.1 𝑋 = ran 𝐺
grpoidval.2 𝑈 = (GId‘𝐺)
Assertion
Ref Expression
grpoidinv2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦,𝑈   𝑦,𝑋

Proof of Theorem grpoidinv2
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpoidval.1 . . . . . . 7 𝑋 = ran 𝐺
2 grpoidval.2 . . . . . . 7 𝑈 = (GId‘𝐺)
31, 2grpoidval 30545 . . . . . 6 (𝐺 ∈ GrpOp → 𝑈 = (𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥))
41grpoideu 30541 . . . . . . 7 (𝐺 ∈ GrpOp → ∃!𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥)
5 riotacl2 7421 . . . . . . 7 (∃!𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥 → (𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥) ∈ {𝑢𝑋 ∣ ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥})
64, 5syl 17 . . . . . 6 (𝐺 ∈ GrpOp → (𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥) ∈ {𝑢𝑋 ∣ ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥})
73, 6eqeltrd 2844 . . . . 5 (𝐺 ∈ GrpOp → 𝑈 ∈ {𝑢𝑋 ∣ ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥})
8 simpll 766 . . . . . . . . . . 11 ((((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → (𝑢𝐺𝑥) = 𝑥)
98ralimi 3089 . . . . . . . . . 10 (∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥)
109rgenw 3071 . . . . . . . . 9 𝑢𝑋 (∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥)
1110a1i 11 . . . . . . . 8 (𝐺 ∈ GrpOp → ∀𝑢𝑋 (∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥))
121grpoidinv 30540 . . . . . . . 8 (𝐺 ∈ GrpOp → ∃𝑢𝑋𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)))
1311, 12, 43jca 1128 . . . . . . 7 (𝐺 ∈ GrpOp → (∀𝑢𝑋 (∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥) ∧ ∃𝑢𝑋𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) ∧ ∃!𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥))
14 reupick2 4350 . . . . . . 7 (((∀𝑢𝑋 (∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥) ∧ ∃𝑢𝑋𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) ∧ ∃!𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥) ∧ 𝑢𝑋) → (∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥 ↔ ∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))))
1513, 14sylan 579 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑢𝑋) → (∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥 ↔ ∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))))
1615rabbidva 3450 . . . . 5 (𝐺 ∈ GrpOp → {𝑢𝑋 ∣ ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥} = {𝑢𝑋 ∣ ∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))})
177, 16eleqtrd 2846 . . . 4 (𝐺 ∈ GrpOp → 𝑈 ∈ {𝑢𝑋 ∣ ∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))})
18 oveq1 7455 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑢𝐺𝑥) = (𝑈𝐺𝑥))
1918eqeq1d 2742 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝑥) = 𝑥))
20 oveq2 7456 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑥𝐺𝑢) = (𝑥𝐺𝑈))
2120eqeq1d 2742 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑥𝐺𝑢) = 𝑥 ↔ (𝑥𝐺𝑈) = 𝑥))
2219, 21anbi12d 631 . . . . . . 7 (𝑢 = 𝑈 → (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥)))
23 eqeq2 2752 . . . . . . . . 9 (𝑢 = 𝑈 → ((𝑦𝐺𝑥) = 𝑢 ↔ (𝑦𝐺𝑥) = 𝑈))
24 eqeq2 2752 . . . . . . . . 9 (𝑢 = 𝑈 → ((𝑥𝐺𝑦) = 𝑢 ↔ (𝑥𝐺𝑦) = 𝑈))
2523, 24anbi12d 631 . . . . . . . 8 (𝑢 = 𝑈 → (((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢) ↔ ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)))
2625rexbidv 3185 . . . . . . 7 (𝑢 = 𝑈 → (∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢) ↔ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)))
2722, 26anbi12d 631 . . . . . 6 (𝑢 = 𝑈 → ((((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) ↔ (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈))))
2827ralbidv 3184 . . . . 5 (𝑢 = 𝑈 → (∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) ↔ ∀𝑥𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈))))
2928elrab 3708 . . . 4 (𝑈 ∈ {𝑢𝑋 ∣ ∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))} ↔ (𝑈𝑋 ∧ ∀𝑥𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈))))
3017, 29sylib 218 . . 3 (𝐺 ∈ GrpOp → (𝑈𝑋 ∧ ∀𝑥𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈))))
3130simprd 495 . 2 (𝐺 ∈ GrpOp → ∀𝑥𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)))
32 oveq2 7456 . . . . . 6 (𝑥 = 𝐴 → (𝑈𝐺𝑥) = (𝑈𝐺𝐴))
33 id 22 . . . . . 6 (𝑥 = 𝐴𝑥 = 𝐴)
3432, 33eqeq12d 2756 . . . . 5 (𝑥 = 𝐴 → ((𝑈𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝐴) = 𝐴))
35 oveq1 7455 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐺𝑈) = (𝐴𝐺𝑈))
3635, 33eqeq12d 2756 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐺𝑈) = 𝑥 ↔ (𝐴𝐺𝑈) = 𝐴))
3734, 36anbi12d 631 . . . 4 (𝑥 = 𝐴 → (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ↔ ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴)))
38 oveq2 7456 . . . . . . 7 (𝑥 = 𝐴 → (𝑦𝐺𝑥) = (𝑦𝐺𝐴))
3938eqeq1d 2742 . . . . . 6 (𝑥 = 𝐴 → ((𝑦𝐺𝑥) = 𝑈 ↔ (𝑦𝐺𝐴) = 𝑈))
40 oveq1 7455 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
4140eqeq1d 2742 . . . . . 6 (𝑥 = 𝐴 → ((𝑥𝐺𝑦) = 𝑈 ↔ (𝐴𝐺𝑦) = 𝑈))
4239, 41anbi12d 631 . . . . 5 (𝑥 = 𝐴 → (((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈) ↔ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
4342rexbidv 3185 . . . 4 (𝑥 = 𝐴 → (∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈) ↔ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
4437, 43anbi12d 631 . . 3 (𝑥 = 𝐴 → ((((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)) ↔ (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))))
4544rspccva 3634 . 2 ((∀𝑥𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)) ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
4631, 45sylan 579 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  ∃!wreu 3386  {crab 3443  ran crn 5701  cfv 6573  crio 7403  (class class class)co 7448  GrpOpcgr 30521  GIdcgi 30522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-riota 7404  df-ov 7451  df-grpo 30525  df-gid 30526
This theorem is referenced by:  grpolid  30548  grporid  30549  grporcan  30550  grpoinveu  30551  grpoinv  30557
  Copyright terms: Public domain W3C validator