Step | Hyp | Ref
| Expression |
1 | | grpoidval.1 |
. . . . . . 7
⊢ 𝑋 = ran 𝐺 |
2 | | grpoidval.2 |
. . . . . . 7
⊢ 𝑈 = (GId‘𝐺) |
3 | 1, 2 | grpoidval 28875 |
. . . . . 6
⊢ (𝐺 ∈ GrpOp → 𝑈 = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥)) |
4 | 1 | grpoideu 28871 |
. . . . . . 7
⊢ (𝐺 ∈ GrpOp →
∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) |
5 | | riotacl2 7249 |
. . . . . . 7
⊢
(∃!𝑢 ∈
𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥 → (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) ∈ {𝑢 ∈ 𝑋 ∣ ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥}) |
6 | 4, 5 | syl 17 |
. . . . . 6
⊢ (𝐺 ∈ GrpOp →
(℩𝑢 ∈
𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) ∈ {𝑢 ∈ 𝑋 ∣ ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥}) |
7 | 3, 6 | eqeltrd 2839 |
. . . . 5
⊢ (𝐺 ∈ GrpOp → 𝑈 ∈ {𝑢 ∈ 𝑋 ∣ ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥}) |
8 | | simpll 764 |
. . . . . . . . . . 11
⊢ ((((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → (𝑢𝐺𝑥) = 𝑥) |
9 | 8 | ralimi 3087 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) |
10 | 9 | rgenw 3076 |
. . . . . . . . 9
⊢
∀𝑢 ∈
𝑋 (∀𝑥 ∈ 𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) |
11 | 10 | a1i 11 |
. . . . . . . 8
⊢ (𝐺 ∈ GrpOp →
∀𝑢 ∈ 𝑋 (∀𝑥 ∈ 𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥)) |
12 | 1 | grpoidinv 28870 |
. . . . . . . 8
⊢ (𝐺 ∈ GrpOp →
∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))) |
13 | 11, 12, 4 | 3jca 1127 |
. . . . . . 7
⊢ (𝐺 ∈ GrpOp →
(∀𝑢 ∈ 𝑋 (∀𝑥 ∈ 𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) ∧ ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥)) |
14 | | reupick2 4254 |
. . . . . . 7
⊢
(((∀𝑢 ∈
𝑋 (∀𝑥 ∈ 𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) ∧ ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥) ∧ 𝑢 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥 ↔ ∀𝑥 ∈ 𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)))) |
15 | 13, 14 | sylan 580 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥 ↔ ∀𝑥 ∈ 𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)))) |
16 | 15 | rabbidva 3413 |
. . . . 5
⊢ (𝐺 ∈ GrpOp → {𝑢 ∈ 𝑋 ∣ ∀𝑥 ∈ 𝑋 (𝑢𝐺𝑥) = 𝑥} = {𝑢 ∈ 𝑋 ∣ ∀𝑥 ∈ 𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))}) |
17 | 7, 16 | eleqtrd 2841 |
. . . 4
⊢ (𝐺 ∈ GrpOp → 𝑈 ∈ {𝑢 ∈ 𝑋 ∣ ∀𝑥 ∈ 𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))}) |
18 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → (𝑢𝐺𝑥) = (𝑈𝐺𝑥)) |
19 | 18 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝑥) = 𝑥)) |
20 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → (𝑥𝐺𝑢) = (𝑥𝐺𝑈)) |
21 | 20 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → ((𝑥𝐺𝑢) = 𝑥 ↔ (𝑥𝐺𝑈) = 𝑥)) |
22 | 19, 21 | anbi12d 631 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥))) |
23 | | eqeq2 2750 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → ((𝑦𝐺𝑥) = 𝑢 ↔ (𝑦𝐺𝑥) = 𝑈)) |
24 | | eqeq2 2750 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → ((𝑥𝐺𝑦) = 𝑢 ↔ (𝑥𝐺𝑦) = 𝑈)) |
25 | 23, 24 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → (((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢) ↔ ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈))) |
26 | 25 | rexbidv 3226 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → (∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢) ↔ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈))) |
27 | 22, 26 | anbi12d 631 |
. . . . . 6
⊢ (𝑢 = 𝑈 → ((((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) ↔ (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)))) |
28 | 27 | ralbidv 3112 |
. . . . 5
⊢ (𝑢 = 𝑈 → (∀𝑥 ∈ 𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) ↔ ∀𝑥 ∈ 𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)))) |
29 | 28 | elrab 3624 |
. . . 4
⊢ (𝑈 ∈ {𝑢 ∈ 𝑋 ∣ ∀𝑥 ∈ 𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))} ↔ (𝑈 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)))) |
30 | 17, 29 | sylib 217 |
. . 3
⊢ (𝐺 ∈ GrpOp → (𝑈 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)))) |
31 | 30 | simprd 496 |
. 2
⊢ (𝐺 ∈ GrpOp →
∀𝑥 ∈ 𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈))) |
32 | | oveq2 7283 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑈𝐺𝑥) = (𝑈𝐺𝐴)) |
33 | | id 22 |
. . . . . 6
⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) |
34 | 32, 33 | eqeq12d 2754 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑈𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝐴) = 𝐴)) |
35 | | oveq1 7282 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑈) = (𝐴𝐺𝑈)) |
36 | 35, 33 | eqeq12d 2754 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑥𝐺𝑈) = 𝑥 ↔ (𝐴𝐺𝑈) = 𝐴)) |
37 | 34, 36 | anbi12d 631 |
. . . 4
⊢ (𝑥 = 𝐴 → (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ↔ ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴))) |
38 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑦𝐺𝑥) = (𝑦𝐺𝐴)) |
39 | 38 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑦𝐺𝑥) = 𝑈 ↔ (𝑦𝐺𝐴) = 𝑈)) |
40 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦)) |
41 | 40 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑥𝐺𝑦) = 𝑈 ↔ (𝐴𝐺𝑦) = 𝑈)) |
42 | 39, 41 | anbi12d 631 |
. . . . 5
⊢ (𝑥 = 𝐴 → (((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈) ↔ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))) |
43 | 42 | rexbidv 3226 |
. . . 4
⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈) ↔ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))) |
44 | 37, 43 | anbi12d 631 |
. . 3
⊢ (𝑥 = 𝐴 → ((((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)) ↔ (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))) |
45 | 44 | rspccva 3560 |
. 2
⊢
((∀𝑥 ∈
𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)) ∧ 𝐴 ∈ 𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))) |
46 | 31, 45 | sylan 580 |
1
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))) |